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DNA METHYLATION AND HISTONE 

MODIFICATION AS A DRIVING FORCE OF CANCER  

 
Abstract 

 

Cancer is a major human health 

problem worldwide and is largely 

characterized by its abnormal increase in 

cell number and cell proliferation, 

decreased cell death or apoptosis, and its 

ability to invade surrounding tissues. A lot 

of factors are responsible for causing 

cancer one of which include epigenetic 

changes. 

Epigenetic changes are concerned with 

genetic alterations to drive the cancer 

phenotype. Epigenetic mutations result due 

to DNA methylation, histone 

modifications, chromatin remodelling, 

microRNAs, and other components of 

chromatin [3]. Histone modifications 

include histone acetylation, histone 

methylation, histone phosphorylation and 

histone ubiquitination.   Epigenetic changes 

can also be induced by exposure to various 

environmental factors. These stimuli 

include aging that was shown with 

increased levels of DNA methylation; 

physical agents such as X – rays, UV light; 

infectious agents such as bacteria and 

viruses; similarly chronic inflammation 

was also involved in inducing aberrant 

DNA methylation [1]. 

The sections in this chapter provide us with 

the controlled information about role of 

epigenetics in causing cancer and how it 

can be controlled with the help of 

epigenetic therapy. 
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I. INTRODUCTION  

 

In 1940 C.H. Waddington defined the term “epigenetics” which means “the branch of 

biology which studies the causal interactions between genes and their products, which bring 

the phenotype into being” [4]. Accumulation of genetic mutations with epigenetic alterations 

together with environmental factors are the main root cause of cancer. Epigenetic alterations 

are reversible. These epigenetic mechanisms are regulated by four classes of epigenetic 

regulators in a coordinated manner. Those which add the epigenetic marks are known as 

‘writers’; which remove the epigenetic marks are known as ‘erasers’; which recognize 

specific epigenetic marks to mediate proximate effects are known as ‘readers’; and which 

modify chromatin structure are known as ‘remodelers’. Mammals contain about ~ 1000 

epigenetic regulators forming the largest protein group. 

 

II. CANCER EPIGENETICS  

 

Cancer is caused by mutations to the DNA within cells either by somatic mutations or 

epigenetic mutations. Mutation causing loss of function in tumor suppressor genes or gain of 

function in oncogenes and abnormal expression eventually leads the path to cancer. Whereas ,  

the epigenetic pathway to cancer is determined by DNA methylation, histone modifications, 

nucleosome remodelling as well as miRNAs (Sharma et al., 2010). The figure below 

describes the various mechanisms involving DNA methylation that can led to cancer [3]. 

During tumor initiation and progression, the epigenome goes through multiple alterations, 

including loss of DNA methylation (hypomethylation), frequent increases in promoter 

methylation of CpG islands, changes in nucleosome occupancy, and modification profiles.  

 

 
                                    

Figure 1:  Epigenetic mutations – DNA methylation 

https://www.sciencedirect.com/science/article/pii/S1535610812002577#bib98
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III. DNA METHYLATION 

 

DNA methylation is a crucial epigenetic mechanism for the upkeeping of heritable 

changes in the process of gene transcription. This mechanism occurs by the covalent addition 

of a methyl group (-CH3) to the fifth carbon of the cytosine in the dinucleotide 5 ‘– CpG – 3’. 

 

The CpG islands are present at the promoter of some regulatory genes. These possess 

a GC content of -60% approximately and form long stretches of DNA (1-2 KB). The human 

genome has 29,000 islands and all the necessary ‘housekeeping’ genes that are expressed 

constitutively have these islands. Any alteration in the pattern of DNA methylation will 

eventually lead to genomic instability which subsequentially is responsible for oncogenesis. 

 

1. Role of DNA methyltransferases (DNA MTases) in DNA methylation: DNA 

methylation is catalyzed by key enzymes known as DNA methyltransferases which have 

an important regulatory role in preserving the integrity of the genome. 

 

These DNA modifying enzymes are essential for mammalian development. 

DNMT family comprises of the following members which include DNMT 1, DNMT 3A, 

DNMT 3B being present in mammals. All DNMTs have their respective roles in the 

process of DNA methylation. 

 

Mammalian DNMT’s are composed of two important domains: 

 

 N terminal domain: Regulatory domain which possess NLS (nuclear localization 

sequence) along with PBD (proliferating cell nuclear antigen binding domain), ATRX 

gene, and PHD (polybromo homology domain). 

 C terminal domain: catalytic domain composed of six motifs namely I, IV, VI, VIII, 

IX, X. 

 

 
                                     

Figure 2: Organization of mammalian DNMT’s 

 

DNMT 1 is denoted as maintenance methyltransferase in mammals with respect to 

its role in the maintenance of net methylation that occurs in the genome during cell 

division.  

 



Futuristic Trends in Biotechnology 

e-ISBN: 978-93-6252-519-2 

IIP Series, Volume 3, Book  21, Part 1, Chapter 12 

 DNA METHYLATION AND HISTONE MODIFICATION AS A DRIVING FORCE OF CANCER 

 

Copyright © 2024 Authors                                                                                                                      Page | 155  

In the course of DNA replication this maintenance methyltransferase is 

responsible for the restoration of the methylation pattern on the daughter strand with 

respect to that present on the parent strand. These enzymes show a higher attraction 

towards the hemimethylated DNA hence it binds methyl groups to the hemimethylated 

DNA. 

 

DNMT1 function have their role in MMR pathway as a MMR modifier gene 

which is responsible for the correction of mismatches that are generated during 

replication such as insertion -deletion and base substitution. 

 

 The loss in DNMT1 activity reduces the efficiency of MMR by modification of 

chromatin structure.     The inactivation of this MMR activity eventually leads to 

multistage carcinogenesis. 

 

 
 

                                       Figure 3: DNMT1 role in MMR AND DDR  

 

The DNMT3 family is composed of DNMT3A and DNMT3B. They are 

designated as de novo methyltransferases and are known for their efficient roles during 

embryonic development for the establishment of proper methylation patterns. This family 

of methyltransferases have almost equal affinity for hemimethylated and methylated 

DNA. 

 

DNMT3 family also includes an another critical methyltransferase namely DNMT 

3L. It is characterized on the basis of its attachment with the de novo methyltransferases. 

Binding of DNMT 3L with DNMT3A and DNMT3B increase the catalytic activity of 

these enzymes to several folds. 

 

Upregulation of any of the DNMTs family is related to serious consequences such 

as tumorigenesis. 
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DNMT inhibitors play a significant role as epigenetic drugs in cancer therapeutics.  

 

2. TET proteins and their regulatory role in DNA methylation: TET named as Ten-

Eleven-Translocation proteins are large ( -170 -240 KDa ) with multiple domains and are 

known for their m5C oxidase activity that have active participation in both physiological 

and pathological processes. Domains in TET proteins include cysteine rich domain, 

double stranded beta helix domain along with cofactor binding sites (Fe (II) and 2- 

oxoglutarate (2- 0G). TET dioxygenase (TET 1, TET 2, TET 3) mediate active 

demethylation by oxidization of   5-methylcytosine to generate 5- 

hydroxymethylcytosine, 5- formylcytosine, 5-carboxylcytosine. Among all the 

intermediates formed two of them i.e.5-fC and 5- caC can be excised by DNA mismatch 

repair enzyme called Thymine- DNA glycosylase. After the excision the sites that are 

modified return to their non- methylated state via Base Excision Repair. Passive 

demethylation is progressed by loss of m5C via DNMT 1 during rounds of DNA 

replication and it is initiated in the absence of maintenance methylation machinery. Thus, 

the main function of TET proteins was to oxidate 5-methylcytosine and the intermediates 

formed were involved in DNA demethylation.  

 

3. A typical DNA methylation and its role in carcinogenesis: Anomalistic DNA 

methylation pattern is closely associated with the onset of cancer as it is an initial 

epigenetic defect in tumor cells. The cancer epigenome shows global hypomethylation all 

over the genome with certain areas of localized hypermethylation being responsible for a 

variety of human cancers. Aberrant DNA methylation is considered a driving force in 

tumor development due to the overexpression of various DNMTs present in mammalian 

genomic sequence. 

 

Both DNA hypomethylation and hypermethylation are inter-related to each other 

can give rise to malignancies. 

 

The genome wide hypomethylation is related to increased expression of gene. It 

involves reduction of m5C at repeat elements which are heavily methylated such as 

satellite repeats and transposons for example Alu-1 and LINE-1 element repeats. Such 

modifications increase a higher probability of causing a number of defects such as genetic 

instability in cancer cells contributing to tumor progression via oncogene activation. This 

underlying epigenetic mechanism causes chromosomal missegregation in the course of 

cellular division. 

 

Focal hypermethylation induces the transcriptional silencing of Tumor Suppressor 

Gene which plays key role in the progression of tumor. Hypermethylation causes 

dysregulation in the growth phenomenon of cells. Hypermethylation defects combine 

along with mutations involved in cancer development and progression. In an experimental 

analysis its was seen that in spasmic breast tumor there was partial hypermethylation of 

BRCA1 promoter due to overexpression of DNA methyltransferases. 

 

IV. HISTONE MODIFICATION  

 

Along with DNA Methylation, histone modification after translation does not differ 

the DNA nucleotide sequence enhances it efficiency for transcriptional machinery. Epigenetic 
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machinery. It is classically represented by methylation of DNA and modification in histone. 

Histone modification includes acetylation, phosphorylation, ubiquitination, methylation, etc. 

Histone modification has role in allergic reaction that can be Manifested at two level, first 

regulating these cells that cause allergic inflammation, like T cells and macrophage and the 

participants of airway.  Second, the direct connection between allergic phenotype and his 

modification drugs that could inhibit the History modification enzymes are potentially the 

anti-allergic drugs. Usually act at the end terminal of histone with amino acids like 

arginine/lysine furthermore threonine, serine, tyrosine etc. Histone methylation has role 

effective in gene expression. Methylation of histone could be either transcriptionally 

permeable or impermeable based on amino acid position in tail or on the number of groups 

added that are modified. 

  

 
           

Figure 4: (a) Histone acetylation, (b) Histone methylation, (c) Histone phosphorylation. 

 

1. Histone Acetylation: Acetylation is modulated by analogously acting two enzymes 

histone deacetylases (HDACs) and histone acetyltransferases (HATs). The acetyl group 

transfer from the acetyl CoA is mediated by HAT to amino acid group like lysine residues 

targeted at the tail. Acetylation removes histone positivity resulting in weaker interaction 

between DNA and histone. Weak interaction between DNA plus histone lessens the 

compaction in chromatin and hence enhances its availability to the machinery of 

transcription. HDACs have a role in repressing gene expression by removing acetyl group 

from tail of the histone where lysine residue is present. Five families of HATs are known 

GNAT family, MYST family, p300/CBP family, steroid receptors co-activators family, 

and cytoplasmic HATs. GNAT family compromises KAT2A and KAT2B enzymes that 
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regulate cell cycle, DNA repair, DNA replication  along with centrosome function. MYST 

family comprises KAT6A/MYST3/MOZ, KAT6B/MYST4/MORF, KAT7/MYST2/HBOI, 

KATT8/hMOF/MYST and KAT5/Tip60 that regulate DNA repair and transcription. The 

MYST family enzymes have unique characteristics of autoacetylation. p300/CBP family 

comprises of KAT3A and KAT3B enzymes and KAT4/TBP/TAF1 and TIF 3C90/KAt12 

are contributors of general transcriptional factors related to HAT family. KAT13A/SRC1, 

KAT13B/SRC/AIB1/ACTR, KAT13C/p600, and KAT13D/ CLOCK are members of the 

steroid receptor coordinators family. Cytoplasmic HATs have Kat1/HAT1 and 

HAT4/NAA 60 [29]. 

 

2. Histone Methylation:  Histone methylation (HMTs) mediate histone methylation these 

include lysine and arginine methyltransferase along with histone demethylases (HDMs) 

for demethylation. Histone methylated lysine and arginine impacts the different 

regulatory protein binding to the chromatin indirectly. Three methyl groups can be 

transferred by HMTs from cofactor S-adenosyl-L-methionine (SAM) to the histone either 

lysine or Arginine residues. This specificity of KMTs is higher than HATs because of 

target-specific lysine residues. Methylation of different histone residues is mediated by 

different KMTs. H3K4 residue is methylated by KMT2A/MLL1, KMT2A/MLL2, 

KMT2F/hSETIA, KMT2G/hSET1B or KMT2H/ASH1. H3K9 is methylated by 

KMTIA/SUV39H1, KMT1B/SUV39H2, KMTIC/G9a or KMT1D/EuHMTase/GLP. 

Methylation of H3K36 is usually catalyzed by KMT3B/NSD1, KMT3C/SMYD2 OR 

KMT3A/SETD2. Others like H3K27 is methylated by KMT6A/EZH2 and H3K79 by 

KMT4/DOT1L etc. based on mechanism of catalysis and sequence homology HDMs are 

of two types: 1) amine oxidase type lysine-specific demethylase (lSDs or KDM-1s) 2) 

Jumonji C (JMJC) domain-containing HDMs. The LSDs include KDM1A/LSD1/AOF2 

and KDMIB/LSD2/AOF1 that eradicate the methyl groups and demethylated H3K4. The 

JMJC domain incorporated HDMS acts on mono, di, and trimethylated lysine residues 

and catalyzes their demethylation at histone [25,44,45,46,47]. 

 

3. Histone Phosphorylation: Two antagonistic enzymes kinases and phosphates remove it 

[19,21]. phosphorylated histones are known for their three special function 1) chromatin 

compaction control 2) DNA damage repair 3) transcriptional activity repair. Histone 

phosphorylation creates a platform for the other histone modifications to interact. histone 

H3 phosphorylation directly affects the two amine acid residues of similar histone 

(H3K9ac and H3K14ac) at acetylation levels [19,21,48]. 

 

4. Histone Ubiquitination: Histone ubiquitination has a role in all aspect of cellular 

function like cell signaling pathways, especially in eukaryotes ubiquitination is regulated 

by a protein ubiquitin of 8.5 kD conjugated with substance protein by ubiquitin 

proteosome system hence managing the stability and modified target protein. 

Ubiquitination and DE ubiquitination are catalyzed by histone ubiquitin ligases and 

ubiquitin-specific peptidases ubiquitinating enzymes (DUBS) respectively the number of 

ubiquitin-associated results in distinct functions [51,52,53]. Mono ubiquitination 

regulates protein translocation transcriptional regulation and DNA damage signaling. 

Histone 2A Mono ubiquitination regulates gene silencing histone 2B Mono ubiquitination 

(H2Bub) is related with transcription activation. Activation or degradation of a certain 

protein is marked by polyubiquitination in cell signaling pathways. Histone ubi also 
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provides a platform for crosstalk between other histone modifications for example: 

histone H3 Mono ubiquitination induces acetylation of the same histone [55]. 

 

V. EPIGENETIC THERAPY  

 

A number of ways have been developed in treating cancer some which include 

chemotherapy, radiotherapy, surgery for the removal of local tumors, cytotoxic treatments etc. 

But due to some major drawback of these treatments like damaging or killing normal cells or 

limitations in their effectiveness other treatments immunotherapy and epigenetic therapy are 

also considered. 

 

The bottom of epigenetic treatments relay on treating cancer cells by reversing its 

abnormal modifications with the help of drugs known as “epi-drugs”.  Generally, the 

enzymes involved in epigenetic modifications are the main targets of epigenetic therapy. 

These enzymes a Histone deacetylase (HDACs), DNA methyltransferases (DNMTs) and 

histone demethylases (HDMs). Therefore, the epi-drugs being considered are inhibitors of 

these enzymes such as Histone deacetylase inhibitors and DNA methyltransferase inhibitors. 

 

1. Histone Deacetylase (HDAC) Inhibitors: Acetylation is the process involved in histone 

modification and its main function is to add acetyl groups to histones.  An antagonistic 

effect to acetylation is caused by histone deacetylation by an enzyme HDAC which 

eventually leads to gene silencing of tumor suppressor genes and DNA repair genes. 

Therefore, histone deacetylase inhibitors decrease histone deacetylase activity and 

indirectly increase the activity of tumor suppressors genes. Example of histone 

deacetylase inhibitors for clinical use includes vorinostat mefniyh{ (Zolinza®), 

romidepsin (Istodax®). 

 

2. DNA Methyltransferase (DNMT) Inhibitors: One of the major occurrence of cancer 

are often result of heavy methylation and silencing of tumor suppressor genes. During 

DNA methylation enzymes called DNA methyltransferases add methyl groups to bases in 

DNA. When these epi drugs comes in contact with DNA they inhibit any DNA 

methyltransferase that come along and ultimately destroyed them preventing them from 

further methylation. Treatment of acute myeloid leukemia and myelodyplastic syndrome 

have been shown to be effective with the help of two epi drugs: azacytidine (Vidaza®) 

and decitabine (Dacogen®).  

 

 Although epi-drugs are widely used in clinical treatment, they have several 

disadvantages associated with it including fatigue and diarrhea. Chemical instability 

related with these drugs rapidly broke down and are changed into inactive compounds 

that can cause DNA damage and lower immune function. Also due to their lack of 

specificity they are also toxic to bone marrow, and can reduce blood cell counts.  

 

VI.  CONCLUSION  
 

In conclusion, cancer is caused when cells of the body start multiplying at a fast rate 

without any definite differentiation and formation of a tumour which spreads to other body 

organs and tissue. Cancer epigenetics is the study on how your environment and behaviour 

can affect the work of genes. Epigenetics changes are regulated by the genes which are turned 
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on or turned off. These changes do not change the DNA building blocks sequences. 

Epigenetic changes include modifications of histone that lead to cancer, DNA 

hypermethylation and other environmental stimuli. The study of these epigenetic changes are 

useful in treating various cancers through epi drugs and the advancement in this area is much 

needed as well as important to meet the competitive evolving rate of cancer. 
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