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I. INTRODUCTION 

 

Core inflation has a significant role in monetary policy decisions. Core inflation is 

determined by removing the temporary price changes and retaining permanent (core) price 

changes of the headline inflation commodity basket. Forecasting inflation is of vital interest 

to policymakers. Different methodologies are constructed for measuring core inflation like 

exclusion based method, symmetric trim method, asymmetric trim method, weighted median 

method, and moving average process. The inflation, a time series, was estimated by applying 

the ARIMA model (Iqbal et al., 2016; Habibah et al., 2017). Long memory properties of 

inflation are studied globally, and ARFIMA models are suggested (Hassler & Wolters, 1995; 

Baillie & Morano, 2012). In this study, we concentrate on the characteristics of the headline 

and core inflation rather than the methods to determine the core inflation. Various properties 

of core inflation are presented in the literature (Marques, 2003). Previous studies reported the 

presence of LRD behaviour in the inflation of some countries. Inspired by these facts, we 

examined India's monthly CPI headline inflation to check the self-similarity. Besides that, we 

try to identify whether the headline inflation series belong to SRD or LRD based on the Hurst 

exponent. The current study to compute the Hurst index is based on different approaches 

methods like the R/S method, Variance-Time method, Higuchi’s method and Average 

Periodogram method. The Hurst parameter estimate gives an idea about the strength of the 

self-similar nature in CPI headline inflation of India. The chapter presents a criteria for core 

inflation measures in terms of Hurst exponent. Then core inflation indicators for CPI inflation 

are selected based on the exclusion approach and examined their Hurst exponents along with 

other properties of core inflation for the possibility of being a core inflation measure. The 

present study plays a prominent role in the determination of core inflation in the Indian 

context. The empirical investigation has been conducted using monthly Combined CPI time 

series data considering the period: Jan 2012-April 2019 (base year: 2012). The CPI headline 

Y-o-Y inflation is computed and checked for the self-similarity behaviour by computing 

Hurst exponent. R programming and MS Excel tools are used for performing the analysis.  

The remaining work of the chapter has been planned as follows:  Section 2.2 presents the 

overview of the time series concepts. Section 2.3 discusses the preliminaries of self-

similarity, its definition and usage in various fields.  Section 2.4 offers the literature review in 

the context of self-similarity applications. Section 2.5 discusses the different methods to 

compute the Hurst exponent. Section 2.6 presents the numerical results of the Hurst exponent 

for the CPI headline inflation. Section 2.7 establishes new criteria for core inflation based on 
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the Hurst exponent and applies it to the conventional CPI exclusion measures. Section 2.9 

presents the conclusions of the chapter. 

 

II. AN OVERVIEW OF TIME SERIES CONCEPTS 

 

1.  Definition of Time Series: Time series is a sequence of observations collected in 

chronological arrangement. A discrete-time time series is obtained when observations are 

collected at a discrete set of times. It is commonly denoted by { },    

where  are the time points at which the random variable  is measured. Here 

‘t’ can be years, months, weeks, days, hours and even seconds. If the observations of   

are collected continuously over an interval of time (T), it results in continuous-time time 

series and denoted by { }. Price of onion in a city collected daily, Number of active 

covid-19 positive patients in a town collected weekly,   Population of Telangana in every 

census are some of the examples of discrete-time time series. The temperature in a city, 

Water level of a dam, Velocity of an aeroplane, A continuous-time binary process are 

some of the examples of continuous-time time series. The dimension of the time series 

depends on the dimension of the random variable { }.  

 

Figure 1 presents the time series plot of the monthly price index for ‘sugar and 

confectionery’ of CPI-India data. We can observe the prices of ‘sugar and confectionery’ 

increase for some period and then decrease. Fig. 2 presents the time series plot of the 

monthly price index for ‘vegetables’ of CPI-India data. Here we can observe some 

periodicity in prices of ‘vegetables,’ i.e. the month or season of the year seem to influence 

the prices.  

 

 
 

Figure 1: Time series plot of the monthly price index for Sugar and confectionery of CPI-

India data 
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Figure 2: Time series plot of the monthly price index for vegetables of CPI-India data 

 

2.  Components of Time Series: The various influences that cause the fluctuations in a time 

series are broadly classified into four categories, usually known as time series 

components. They are Trend, Seasonal, Cyclic and Irregular or Random variations. These 

four components are briefly described below. When observed for a long period, the 

characteristic revealed by time series to rise or decline is termed as a trend. For example, 

population growth, literacy rate, and monthly family expenditure show an upward trend, 

whereas mortality rates and labour force engaged in agriculture show a downward trend. 

It need not be in a unique direction for the total period. 

 

Seasonal variations are periodic in nature and repeatedly occur in regular intervals 

of time within a period of one year or less. The seasonal variations arise mainly due to 

natural (climate and weather conditions) and humanmade conventions (festivals, 

conventions, customary practices etc.). Deals of air coolers, ice cream rise in a warm 

season, demand for gold ornaments raise in festivals, marriage seasons. 

 

Cyclical variations are also periodic in nature and consist of oscillatory 

movements (up and down). Cyclical variations extend above a long period of time, 

generally several years; they cannot be predicted to occur with a regular period of times. 

Cyclical variations may be present in the economic and financial time series data. In 

general, a business cycle has four phases- i) Prosperity or period of boom ii) Recession 

iii) Stagnation or Depression iv)Upturn or Recovery. 

 

The fluctuations that are not caused by the trend, seasonal and cyclical variations 

are called Irregular fluctuations. They are unpredictable and beyond the control of the 

human hand. Some of the irregular causes of variations are wars, floods, earthquakes etc.   

 

3.  Decomposition of Time Series: To study the effect of four factors, generally, two 

decomposition methods are applied in time series. 

 

Additive Model: 

                                                                                                (2.1) 
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Where  is the effect of trend, is the effect of seasonal variations,  is the 

effect of cyclic variations,  is the effect of random variations observed at time t. In this 

model, the components are independent of each other. 

 

Multiplicative Model: 

                                                                                                    (2.2) 

 

This approach does not assume the independence of components or factors. 

 

Time series data is generated in almost all the fields such as economics, business, 

engineers, geography, meteorology and the social sciences. An example of time series 

decomposition is shown below in Fig. 3. 

 
 

Figure 3: A classical multiplicative decomposition for electrical equipment orders index 

(United States) 

 

Source: https://otexts.com/fpp2/classical-decomposition.html 
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4. Analysis of Time Series: An essential feature of time series is that consecutive 

observations are dependent. This dependence among the observations is practically 

important in any practical situation. The time series analysis commences with the 

exploration of the dependence within the time-series observations. This involves the 

development of stochastic and dynamic structure and applications of those models in 

particular areas (Hipel et al., 1994). Forecasting the future values by using previous and 

present values using developed models of time series is being the main focus of time 

series analysis. Fitting a proper time series model is very important, which results in an 

accurate forecast. 

 

The probabilistic design of a sequence of data points described by a model is 

called a stochastic process (Cochrane, 1997). An N successive data points  

from a time series is a sample from the stochastic process. The main desire of statistical 

analysis is to conjecture the characteristics of the population from the characteristics of 

the sample. To forecast means to deduce the probabilistic pattern of future values for the 

population under a specified sample . 

 

5. Stationary Process: A key aspect in the invention of the models of time series is based 

on a belief that it is of the appearance of statistical stability. In precise, this kind of 

assumption is stationarity. In general, different stationarity of time series process are 

defined by its mean, variance and autocorrelation structure or spectral density function. 

 

Definition 2.1: A process  is the first-order stationary if its pdf doesn’t change over 

time i.e. 

)                                                                                                                  (2.3) 

  This results in constant mean of  over time. 

 

Definition 2.2: A process  is the second-order stationary if first and second degree 

density function satisfies  

                                                                                     (2.4) 

                                                   (2.5) 

 

A time-series } is called strictly stationary of order n (n ) if the joint 

probability density function of  is the same as the joint probability 

density function of , for every value of  In other 

words, if the joint pdf is time-invariant, the  time series { } is strictly stationary.  

 

But in materialistic implementations, the hypothesis of strictly stationary is not 

necessarily needed; therefore a weekly or second-order or covariance stationarity is 

considered. A time series is stationary if variance and mean are time-independent. 

Stationarity in any time series data can be tested by various tests like the Phillips-

Perron (PP) test and the Augmented Dickey-Fuller (ADF) test. 
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In practical applications, time-series data may be non-stationary. As per Hipel and 

McLeod, as the time span of time series observations increases, the chance of non-

stationarity of time series increases. When the data is not stationary, it is to be converted 

to stationary by stabilizing variance and mean of the series. Preferably variance to be 

stabilized first and then stabilize means. The variance of a time series can be stabilized by 

using square root or logarithmic transformations successively. The mean of a data can be 

made stable by successive differencing. It is to be noted that one observation will be lost 

in each differencing. It usually requires one or two differencing to stabilize the mean. By 

stabilizing mean we eliminate the trend in the data. Sometimes seasonal patterns may also 

be present in the experimental data. Seasonal patterns may be removed by using seasonal 

differencing. If there are s seasons in a year, then .   Generally, there will 

be twelve seasons for monthly data and four seasons for quarterly data. 

 

The stationarity condition also states that the covariance of ,   segregated 

by k time intervals should be the same for all t. The covariance between and   for 

lag k is called the autocovariance of lag k and is given by  

                                                                     (2.6) 

The detailed discussion on ACF and ACVFs are presented in Chapter-IV.  

 

III.  SELF-SIMILARITY 

 

In this section, we started with the preliminaries of self-similarity. In the primary 

segment, we commence the concept of self-similarity by presenting various examples. The 

Occurrence of self-similarity in nature is discussed widely. The importance of self-similarity 

and its usefulness in modelling internet traffic data is discussed. Mathematical definitions of 

self-similarity are stated, and the method of identifying the SRD or LRD nature is explained. 

 

1. Preliminaries of Self-Similarity: The notion of self-similarity was pioneered by 

Mandelbrot (1964) and is used in support of modelling Geological and Hydrological 

problems. Self-similarity is a word that is a convinced attribute of an entity is retained 

w.r.t scaling in time or/and space. If an entity is self-similar, its elements, as enhanced, 

bear a resemblance to the whole configuration. 

 

 
 

Figure 4: Few stages in the construction of Cantor set 

 

One simple example of self-similarity is the two-dimensional Cantor set which is 

put up as follows: Consider the set [0, 1] × [0, 1] which is unit square. If each side is 

trisected, then nine smaller squares are formed.  All the squares, except the square at the 

corners, are to be dropped. Now, the side length of small squares is 1/3 unit. If the same 

process is repeated to get smaller squares, one obtains a limit set known as the Cantor set. 
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This construction process of the Cantor set is depicted in Fig. 4. Cantor set has valuable 

applications in Science and Engineering. 

 
 

Figure 5: Few stages in the construction of the Sierpinski triangle 

 

Another example of self-similarity is the Sierpinski triangle. Consider an 

equilateral triangle and identify the midpoints of the sides. Using these points, divide the 

original equilateral triangle into four congruent triangles. Now, remove the inside triangle 

and continue dividing each of the remaining three triangles further into four triangles. By 

continuing the process indefinitely, we get the Sierpinski triangle. This construction 

process of the Sierpinski triangle is depicted in Fig. 5. 

 

2. Self-Similarity Screening in Natural World: In general, self-similarity occurs when the 

shape of a thing is similar or approximately the same as the part of itself. That is, every 

portion of the self-similar object is able to consider as a reduced scale of the whole. In 

natural science, there are a lot of examples of self-similarity, such as fern, snowflake, 

mountain ridges, coastlines etc. From a view of statistics, self-similarity is defined as two 

subsets of the whole set are invariant in statistical distribution on different scales. In other 

words, self-similarity implies being rescaled or translated on the original signal keeps the 

same statistical distribution.  

 

As a fresh and exciting topic, many studies on self-similarity have been done in 

different fields, such as Magneto Hydrodynamics (MHD) in physics, the human nervous 

system in biology, stellar fragments in astronomy and option pricing in finance etc. 

 

In historical mathematics, the idea of self-similarity was first introduced 

(Mandelbrot, 1964). Self-similarity is so broad and plays a significant role in nature, 

society and arts that it can no longer be computed without as a minimum theoretical 

indulgence of this barely credible phenomenon.  Fortunately, the main thoughts of self-

similarity are not so complicated to skilled and illustrations of self-similarity are 
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extraordinarily simple to find out. We can merely understand the fundamentals of self-

similar phenomena and be able to recognize them practically everywhere we look.  

 

When graphically mapped, internet traffic provides a striking example of self-

similarity in the technological world. In this fractal model, internet hubs (Google and 

Face book) are represented as the largest nodes on the graphic. Smaller nodes branch off 

of the major ones, and these represent popular but slightly less travelled sites. And this 

pattern repeats. At the furthest reaches of the graphic are local networks that receive very 

little daily traffic. So, basically, based just on graphic representations, our brains, the 

universe, and the internet are all the same thing.  

 

In the research ground of music information recovery, self-similarity generally 

refers to the fact that music repeatedly consists of parts that are frequently in time. In 

other words, music is self-similar under chronological conversion rather than under 

scaling. In music, strict canons show various amounts of self-similarity, as perform 

segments of fugues. Sheppard tone is self-similar in the frequency domains. 

 

Romanesco broccoli shows sign of strong self-similarity.  Broccoli is another kind 

of cauliflower. It exhibits strong self-similarity that is a tedious fact. Romanesco broccoli 

is too possibly the most extremely fractal vegetable in the world. Its pattern absolutely 

represents spirals upon spirals of the vegetable pattern replicating themselves at various 

levels of scale.      

                                         

 
                                           

Figure 6: Dill plant 

 

The Dill plant gives a pleasing and straightforward example of self-similarity with 

two scales of structure. In the Fig. 6, the main stem goes up to a joint, as of which various 

secondary stems branch out.  Towards the end of every second level stem, there is a small 

copy through shining third level stems so on present the impressive example of self-
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similarity. Various categories of cactus plants, for example, the Saguaro, have 

enlargement patterns turn out a ladder of self-similar lobes.   

 

Having a fairly broad sampling of self-similarity in different areas of nature, make 

a decision to attempt something new by looking for more conceptual models of this 

design in common systems, arts and mathematics. If one supposes regarding how our 

governments, legal systems, different types of economic systems or law enforcement 

agencies effort one sees that they have quite discrete hierarchical collections with central, 

state and neighbouring levels frequently being the most important scales. Fundamentally 

a similar kind of movement is happening at various scales, and thus we discover a well-

known design within a new background.  

 

The main characteristic of self-similarity is the same thing on different scales can 

be obtained in innumerable examples from the social divisions. (Chin Wen Cheong, 2010) 

proposed the self-similarity through fractionally integrated techniques in financial 

markets. Self-similarity has vital effects intended for the plan of computer networks like 

distinctive network traffic has shown the self-similar properties. 

 

For instance, packet-switched data patterns and telegraphic engineering traffic 

flows seem to be present as statistically self-similar. This possession indicates that simple 

techniques using a Poisson distribution are imprecise networks intended without 

enchanting self-similarity into concern is probably to function in an unpredicted manner. 

In the same way, stock market associations are illustrated as exhibiting self-affinity. That 

is, they come into view self-similar when transformed through a suitable affine 

transformation intended for the level of the aspect being exposed.  

 

Finite subdivision regulations are powerful techniques used for structuring self-

similar sets, including the Sierpinski triangle and the Cantor set. The additional examples 

of self-similarity are designs on shells, lightning bolts, metal ions or aggregation of 

bacteria, crystallization patterns in agate, surfaces of cancer cells, quantum particle paths, 

scores of scaling laws in biology, gamma-ray burst fluctuations, abundances or species 

distributions, renormalization in quantum electrodynamics, drop formation and so on. We 

will have various opportunities in the future for our accumulation. Since, further, than any 

reasonable hesitation, nature is passionate about self-similarity. 

 

3. Evidence of Self-Similarity in Network Traffic: (Leland et al., 1994) made a seminal 

study at AT&T Bell Labs, USA and measured real Ethernet traffic. The pertinent 

observations are depicted in Fig. 7, from which the following inferences can be made. In 

Ethernet traffic, no matter what time scale we choose, we shall see similar patterns, unlike 

the other one. In the case of Ethernet traffic, burstiness exhibits across all time scale, 

unlike the other one. Hence, network traffic modelling that uses the Poisson process does 

not take self-similar characteristics in data congestion into consideration. The observable 

fact of traffic self-similarity has a significant blow on queuing concert and is obtained a 

major concentration in the network exploring society. 
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Figure 7: Self-similar nature of Ethernet traffic: Burstiness at various time scales is apparent 

 

Source: Leland et al., 1994 

 

Data networks possess extreme variability (Leland et al., 1994), (Willinger & 

Paxson, 1998), (Paxson & Floyd, 1995). This variability can be captured by models of 

LRD.  This can be observed from Fig. 8, where traffic means and variance are represented 

again by the Poisson model and a simple fractal model. The new model exhibits 

burstiness at different time scales similar to the original traffic. This burstiness is not seen 

in the Poisson model. 
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Figure 8: Mean and Variance fit to Synthetized traffic from a Poisson model, Internet traffic 

and Fractal model over different magnitude 

 

Source: W. Willinger and V. Paxson, 1998 

 

4. Mathematical Definition of Self-Similarity: The pioneer of the Self Similar process, 

Mandelbrot, defined it as a stochastic process whose behaviour is the same at different 

scales on a dimension (time or space).  

 

Let  be the second-order stochastic process with 

mean , variance  and ACF  with lag‘ ’ i.e. 

 

,                                                                                                  (2.7)                                   

 

Then the aggregating process, is computed using the initial process  as 

                                                                                      (2.8)                           

 

Where  is an integer  represents the size of blocks for the averaging process  
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The ACF of can be given as  as it is also a second-order stationary process. 

 

Definition 1: The A stochastic process  is known as self-similar if   

                                                                                       (2.9)  

where  indicates equality of distributions for finite-dimensional and 

  where H is the Hurst parameter of the process 

. 

 

Definition 2: The stochastic process ‘X’ is defined to be precisely second-order self-

similar with variance and Hurst exponent   if  

            
                                                          (2.10) 

 

Definition 3: The stochastic process ‘X’ is defined to be asymptotically second-order self-

similar with variance and Hurst exponent   if  

 

                                                  (2.11)
  

Definition 4: In the variance-time analysis, the process ‘X’ is defined to be precisely 

second-order self-similar with variance  and Hurst exponent   if           

              

                                                                                          (2.12)        

 

From definition one and Eqn. (2.9), we can see that a self-similar process is scale-

invariant, i.e. if an entity or object is compiled to subunits continuously on multiple 

stages, then the subunits at any stage are statistically similar to the considered initial 

object. Mathematically this property should embrace on all time scales. In real-life 

situations, there are unavoidably lower and upper bounds over which such self-similar 

nature apply. Scale invariance is a fundamental property of ensembles of natural images. 

 

5. SRD and LRD 

From definition 2 and Eqn. (2.10), we observe that for  

                                                                                   (2.13)                  

 

By applying the summation, we get 

                                                                                   (2.14)           

 

The series  is divergent if  or  otherwise, it is 

convergent, being a series of positive terms. The other series   can be interpreted 

accordingly. Thus, for , the ACF decays hyperbolically, and the stochastic 

process X is classified as LRD (long-range dependent). And for ,  is 

finite and the stochastic process X is classified as SRD (short-range dependent). 
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Mathematically, the variation among SRD and LRD process (Cox D.R., 1984) can be 

stated as follows:  

 

In case of Short-Range Dependence processes, the following properties are identified. 

 

 approaches pure noise of second-order as p ∞ 

 For large p, Var[X
p
] asymptotically is of the form  

 is convergent  

 S(w) is a spectrum be finite at w =0  

 

In case of Long-Range Dependence processes, the following properties are identified. 

 

 , as p  ∞  doesn’t approach second-order pure noise  

 For large p, Var[X
p
] asymptotically is of the form   

  is divergent 

 S (w) is a spectrum singular at w =0 

 

IV.  METHODS TO ESTIMATE THE HURST PARAMETER OF SELF SIMILAR 

PROCESS 

 

The Hurst parameter enables us to determine the strength of self-similar behaviour in 

a time series. H.E. Hurst, a hydrologist, investigated the water storage problems and level 

patterns regarding the Nile River for several years, and thus the index H had emerged. Even 

though Hurst exponent is mathematically well defined, it’s complicated to determine for a 

given time series.   

 

To compute the Hurst exponent for a small-sized time series, the observations must be 

taken at high lags. The range of the index H is . Many methods are developed in 

the literature for determining H for a time series. Here, we discussed the four widely used 

methods: R/S method, Variance-time method, Higuchi’s method, and Average periodogram 

method. Finally, we determined the Hurst index H for the CPI headline inflation time series 

using the above methods and compared them. 

 

1.  Rescaled Adjusted Range Statistics (R/S method): For a self-similar process, the 

statistical characteristics are invariant with the partition of data. This idea is the sole of 

this method, where we determine the Hurst exponent by computing the rescaled range 

over sub-parts of the main data (Gospodinov & Gospodinova, 2005).  

 

Initially, the rescaled range is computed for the main time series data (  

= ). Then the time series data is partitioned into two equal parts, and rescaled range is 

computed, giving rise to  and  The partitioning of a section continues as in Fig. 9 

unless its subsections have less than 8 data values. For each level, the rescaled range 

values are averaged, and the Hurst exponent is estimated. The adjusted partial sums for 

the data   is defined as: 
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                                                            (2.15) 

           

where  is the sample mean.                   

 

The range R(n) and standard deviation S(n) are defined by 

                                     (2.16)                        

 

                                                                                                         (2.17)                          

 

The rescaled adjusted range is defined by  

 

                                                                                       (2.18) 

             

  According to the power-law relation of , we have   

                                                                                            (2.19) 

 

Where c is a positive finite constant and H is Hurst exponent. The robustness of this 

method is discussed in (Mandelbrot-Wallis, 1969). 

 

 
 

Figure 9: Estimation of the Hurst parameter by R/S method 

     

2. Variance-Time Method: This method is developed based on gradually decaying variance 

features of the self-similar process and its aggregated process. The p-aggregate process of  

  is given by 

          
 

where          

                                                       (2.20)                

 

The variance of the aggregate process(  is defined as:    

                                                                                    
                                                                           (2.21) 

                  

 For large values of p,  decrease linearly. Thus we get  
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                                                                                               (2.22)                      

 

By applying log on both sides of the above equation, we get 

                                                                      (2.23)                     

 

The value of   can be found by estimating a regression line to the plot of 

 against . This plot is defined as a variance-time plot. Small values 

of p should be ignored for regression fitting to increase accuracy. Finally, Hurst exponent 

can be computed using the relation 

                                                                                                                           (2.24)                                      

 

3. Higuchi’s Method:  A technique suggested by T. Higuchi (1988) uses       

                                    

                                              (2.25)                      

 

Here p represents block size, n represents the size of time series and [ ] stand for 

the greatest integer function. For a time series with self-similarity or LRD, we 

have . Being computationally rigorous, this method's results are more 

accurate, especially in the case of smaller time series like CPI headline inflation we 

considered. More details of this method are discussed in (Taqqu et al. 1995, 1996) 

 

4. The Averaged Periodogram Method: In this method, the spectral representation is used 

for a stationary process. The averaged periodogram of the process  with 

Fourier frequency  is given by     

 

                                                                              (2.26) 

                                 

 

where                  

                                                          (2.27) 

                   

In this method,  is estimated using the Robinson integration technique 

(Robinson, 1994; Lobato & Robinson, 1996). The first step to determine the Hurst 

exponent is to calculate periodogram and use the relation . By plotting 

periodogram against frequency on a log scale and fitting regression, one can obtain the 

slope 1-2H.  
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V. NUMERICAL RESULTS: HURST PARAMETER OF CPI HEADLINE 

INFLATION 

 

In this section, we compute the Hurst index value using the methods discussed in 

section 2.4. Applying the R/S approach, the Hurst parameter value of the CPI inflation series 

is computed using the rescaled range over sub-parts of the data defined in Eqn. (2.18) and 

finally using the relation . The Hurst index value obtained by this 

method is 0.9354. To further confirm the self-similarity behaviour of the CPI inflation series, 

in Fig. 10, we drew the plot for H value against the length of the series considered. The range 

of H values in the plot concludes the self-similarity behaviour of the CPI inflation series. 

 

 
 

Figure 10: Plot of H index(R/S method) vs Length of series 

 

Table 2.1: Variance-Time values 

 

p Var(  log(p) log(Var(  

2 7.0819 0.301 0.8502 

4 6.8767 0.6021 0.8374 

8 6.6454 0.9031 0.8226 

16 5.5625 1.2041 0.7453 

32 5.0262 1.5052 0.7012 

 

In Variance-Time method, the value of   can be found by estimating a regression 

equation to the plot of  against   and using the relations 

and  where  is defined in Eqn. (2.23). The 

computed values of Variance-time are presented in Table 2.1, and from Fig. 11 of the 

Variance-time plot, the Hurst index value is obtained as 0.9578. In Fig. 12, we show the H 

index values computed using the Variance-Time technique against the length of the series. 

The range of the plot concludes the presence of self-similar behaviour in the CPI inflation 

series. 
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Figure 11:  Variance-Time plot for calculating H value 

 

 
 

Figure 12: Plot of H index (Variance-Time method) vs Length of series 

 

Table 2.2: Higuchi-Time values 

 

p  log(p) log(  

2 261.45 0.301 2.4174 

4 131.08 0.6021 2.1175 

8 65.628 0.9031 1.8171 

16 32.441 1.2041 1.5111 

32 15.627 1.5052 1.1939 

 

In the Higuchi method, we compute   which is defined in Eqn. (2.25), and use 

the relation   to obtain the Hurst index value. The initial computed 

values of Higuchi-time are presented in Table 2.2 and then log ( ) is plotted against 

log (p) in Fig. 13, Higuchi-time plot. Thus, from the graph, the Hurst index value is 

obtained as 0.9857. In Fig. 14, we present the H index values computed using the Higuchi 

method vs the length of the series. The range of the plot concludes the existence of self-

similar behaviour in the CPI inflation series. 
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Figure 13:  Higuchi-Time plot for calculating H value 

 

 
 

Figure 14: Plot of H index (Higuchi method) vs Length of series 

 

  

 

Figure 15: Plot of H index (Robinson-Periodogram method) vs Length of series 

 

In the averaged periodogram method, spectral representation defined in Eqns. 

(2.26) and (2.27) are used in estimating the Hurst index value. Using the relation 

 Hurst index value of CPI headline inflation is obtained as 0.9844. In Fig. 

15, we present the H index values computed using the Robinson-Periodogram method vs 

the length of the series. The plot range suggests that the CPI inflation series has self-

similar nature. 

 

All the four widely used methods: R/S method, Variance-time method, Higuchi’s 

method, and Average periodogram method result in Hurst index value which lies in (0.5, 

1). All the Hurst index estimates are near to each other and greater than 0.9. This states 

that the CPI headline inflation time series satisfies the self-similarity and LRD property. 
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VI.  CRITERIA FOR CPI CORE INFLATION AND ITS APPLICATION 

 

In this section, we present the criteria for CPI Core Inflation in terms of Hurst 

parameter and then use it to judge the conventional exclusion measures of CPI. The Hurst 

index value measures the intensity of LRD of a series, i.e., the larger the Hurst index value, 

the larger the LRD or persistence nature. The range of Hurst index value for long-range 

dependence series lies in (0.5, 1). The results in section 2.6 state that the CPI headline 

inflation series has LRD property. We also know that the CPI core inflation is identified by 

eliminating the transient price changes from the CPI headline inflation, specifying that the 

Hurst parameter of the CPI core inflation measure should be greater than that of CPI headline 

inflation.   

 

Exclusion based indicators are determined by eliminating certain volatile 

commodities from the headline inflation. The conventional exclusion based indicators widely 

used in India for CPI inflation are excluding food commodities, excluding energy 

commodities and excluding food and energy commodities. CPI excluding food eliminates all 

the commodities under the food group, which weighs 45.85% of the total CPI basket. CPI 

excluding energy eliminates the energy group commodities, which weighs only 6.84% of the 

total CPI basket. Whereas CPI excluding food and energy eliminates both food and energy 

group commodities whose combined weight is 52.7% of the total CPI basket. Table 2.3 

presents the other descriptive statistics of CPI exclusion based indicators. While the mean of 

CPI excluding energy is very close to the CPI headline inflation, the standard deviation and 

coefficient of variation of CPI excluding food and energy are less compared to other 

indicators. Fig. 16 presents the time-series graph of CPI exclusion based indicators and CPI 

headline inflation. One can see that there is no much difference between the charts of CPI 

headline inflation and CPI excluding energy, which question the core inflation behaviour of 

the latter. 

 

Generally, the core inflation measure is expected to have the same mean as the 

headline inflation. This property is usually known as unbiasedness and tested using the t-test. 

Table 2.4 presents the p-value results of the t-test and from which we can say that all the 

conventional CPI exclusion indicators obey the unbiasedness property of the core inflation 

measure. Further, it is expected that errors should be stationary. The differenced series formed 

by CPI headline inflation and CPI exclusion indicators are examined for stationarity 

performing PP and ADF tests. The results of both the tests convey that only CPI excluding 

energy satisfies the stationarity criteria. So, CPI excluding food and CPI excluding food and 

energy cannot be considered as a measure of CPI core inflation. As we stated, CPI headline 

inflation has LRD property; we expect the same from the CPI core measure. Also, the Hurst 

index value of CPI core measure is expected to be greater than that of CPI headline inflation. 

Next, we computed the Hurst index value using the Variance-Time method for the three CPI 

exclusion indicators. The CPI excluding energy has the Hurst index value of 0.936, which is 

lesser than the Hurst index value of CPI headline inflation which is 0.958, and thus it cannot 

be CPI core inflation measure. Even though the other two indicators satisfy the Hurst index 

criteria, they already failed in Stationarity criteria. Apart from these, core measures are also 

expected to fulfil attractor and exogenous property. Thus LRD or self-similar property of CPI 

headline inflation has simplified the screening for the core measures. All three conventional 

CPI exclusion based indicators cannot be treated as CPI core measures and a need to develop 

new CPI exclusion indicators is identified. 
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Table 2.3: Descriptive Statistics of Exclusion Based Indicators 

 

S.No Inflation (CPI) Mean 
Standard 

Deviation 

Coefficient of 

Variation 
Weight 

1 Headline  5.994 2.701 0.451 100 

2 Excluding food  6.071 1.821 0.299 54.14 

3 Excluding energy  5.983 2.781 0.465 93.16 

4 Excluding food and energy  6.058 1.767 0.292 47.30 

 

 
 

Figure 16: Time series plot to compare CPI exclusion based indicators 

 

 

Table 2.4: Characteristics of Exclusion Based Indicators 

 

S.No 
Core Inflation 

Indicator (CPI) 

Unbiasedness  Stationarity LRD 

T-Test           

(P-value) 

PP Test 

(P-value) 

ADF Test  

(P-value) 

Hurst 

Index 

1 Excluding food  0.821 0.061 0.133  0.982 

2 Excluding energy  0.984 0.043* 0.021*  0.936 

3 
Excluding food and 

energy  
0.851 0.078 0.154  0.989 

*Indicates significance at 0.05 level 
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Table 2.5: Hurst exponent of CPI inflation at the group level 

 

S.No Group Hurst exponent Weight 

1 Food and Beverages 0.885 45.86 

2 Pan, tobacco and intoxicants 0.901 2.38 

3 Clothing and footwear 0.952 6.53 

4 Housing 0.960 10.07 

5 Fuel and light 0.927 6.84 

6 Miscellaneous 0.969 28.32 

 

Table 2.6: Hurst exponent of CPI inflation at the sub-group level 

 

S.No Commodity (Sub-group) Hurst Exponent Weight 

1 Cereals and products 0.894 9.67 

2 Meat and fish 0.907 3.61 

3 Egg 0.858 0.43 

4 Milk and products 0.832 6.61 

5 Oils and fats 0.802 3.56 

6 Fruits 0.695 2.89 

7 Vegetables 0.771 6.04 

8 Pulses and products 0.632 2.38 

9 Sugar and confectionery 0.132 1.36 

10 Spices 0.747 2.5 

11 Non-alcoholic beverages 0.9 1.26 

12 Prepared meals, snacks, sweets etc. 0.914 5.55 

13 Pan, tobacco and intoxicants 0.901 2.38 

14 Clothing 0.926 5.58 

15 Footwear 0.931 0.95 

16 Housing 0.96 10.07 

17 Fuel and light 0.927 6.84 

18 Household goods and services 0.966 3.8 

19 Health 0.872 5.89 

20 Transport and communication 0.966 8.59 

21 Recreation and amusement 0.81 1.68 

22 Education 0.896 4.46 

23 Personal Care and Effects 0.808 3.89 

 

VII. HURST PARAMETER OF GROUPS AND SUB-GROUPS OF CPI INFLATION 

 

In the previous section, we identified the need to develop new exclusion-based CPI 

core inflation as the conventional CPI core inflation indicators fail to satisfy the properties of 

core inflation. First, we start by examining the Hurst exponent of CPI inflation at the group 

level. The variance-Time method is used in determining the Hurst exponent. Among the six 

groups, the ‘food and beverages’ group has the least Hurst exponent indicating less 
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persistence in its series than the other groups (Table 2.5). When this group is excluded, i.e. 

CPI excluding food indicator attains good persistence with the Hurst exponent of 0.982, but it 

fails to satisfy other core inflation properties. Additionally, it also leads to the removal of 

46% weightage components from the CPI-India basket. The group ‘fuel and light’ has the 

Hurst exponent of 0.927, which implies that this group inflation is more persistent than the 

‘food and beverages’ group. 

 

Further, we determined the Hurst exponent of sub-groups (commodities) of the CPI-

India basket in Table 2.6. The subgroups: ‘sugar and confectionery’, ‘pulses and products’, 

‘fruits’, ‘spices’ and ‘vegetables’ have Hurst exponent less than 0.8. Many factors like weight, 

volatility, correlation with headline and persistence of commodity (sub-groups) inflation 

influence the CPI headline inflation. Thus a detailed study regarding commodity (sub-group) 

inflation is carried out, and a new exclusion based core inflation is determined in chapter III. 

 

VIII. CONCLUSIONS 

 

In this chapter, CPI headline inflation is studied for self-similarity behaviour by 

determining the Hurst index. Various approaches of computing the Hurst parameter have 

been conversed and applied to CPI headline inflation. The Hurst parameter estimates confirm 

the presence of self-similar and LRD nature in CPI headline inflation. A criterion for core 

inflation measures in terms of Hurst exponent is presented. This kind of analysis is beneficial 

to CPI headline inflation, especially for identifying the CPI core inflation. Mainly, the Hurst 

index criteria help in identifying the potential core inflation measure from a pool of 

indicators. The analysis also advises to perform ARFIMA modelling to forecast CPI inflation.  
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