
Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 159

SCALABLE SERVICE ORIENTED DISTRIBUTED

COMPUTING ARCHITECTURE: A PROTOTYPE

DESIGN AND IMPLEMENTATION

Abstract

Distributed Computing has remained

a phenomenon focusing either on owned

infrastructure or on volunteered resources

geographically spread presenting only

abstract view to its users. The prototype

architectural design and its implementation

in the present article follow a layered model.

The model is implemented to demonstrate

an extremely affordable Distributed

Computing ecosystem with commonly

available hardware such as single board

computers and microcontrollers using Free

and Open Source Software. This ecosystem

presents a platform independent,

architectural neutral and programming

language agnostic Distributed Computing

architecture for sake of simplicity,

affordability and ease of deployment.

Keywords: Distributed Computing, IoT,

Web Services

Authors

Xitij U. Shukla

College of Agricultural Information

Technology

Anand Agricultural University

Anand, India.

xus@aau.in

N. N. Jani

Faculty of Computer Science and IT

KSV University (retd.)

Gandhinagar, India.

mailto:xus@aau.in

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 160

I. INTRODUCTION

 Distributed computing is an architectural representation of different

computational resources such as CPU cycles and storage geographically dispersed are

collectively utilised to bring the solution over internet. With the introduction of concept of

virtual organisations and the Grid, distributed systems gained wider popularity in resource

sharing and problem solving in dynamic manner at inter-institutional level. They present a

type of parallel and distributed architecture enabling sharing, exchange, selection and

aggregation of geographically distributed autonomous resources depending upon their

availability, capability, cost and required levels of Quality of Services by the user. The spread

of distributed computing is not limited to resource utilisation at intra-institutional level; but it

has also been spread towards inter-institutional level for generation of a common resource

pool in dynamic manner, in order to use it to bring the desired solution. Foster, redefined and

simplified it as a system, “That coordinates resources, that are not subjected to central

control, using standard, open and general-purpose protocols and interfaces to deliver

nontrivial qualities of service”. However, as Foster stressed that, contrary to cloud

computing, which focuses on commercial outsourced models for computing the distributed

architecture presented here limits itself to non-commercial collaboration of federated

computing resources.

II. TOOLS

Resources in the distributed computing infrastructure follow a decentralized and

heterogeneous pattern. This attribute eventually necessitates a universal, open, platform

independent, architecture neutral set of environment for the reasons of interoperability.

Further, this infrastructure not only remains human centric but also remains application

(machine) centric ; involving frequent underlying application to application exchange of

messages across the its computational resources. A Web Service provides capability of

performing certain function over network. In general, a Web Service can be summarized as

an interface built using standard Internet technology for certain application functionality

accessed over network. The interoperability is achieved through a set of multi-tier operations.

A machine-readable interface descriptor i.e. Web Services Description Language (WSDL)

describes the Web Service for interaction with other resources. UDDI (Universal Description,

Discovery and Integration) is used to advertise these Web Services. SOAP protocol is used to

interact with the Web Service as per the WSDL description. SOAP messages wrapped in

XML (eXtensible Markup Language) are exchanged generally through the Hypertext

Transfer Protocol (HTTP) over the network for end-to-end transport. Web Services add a

layer of abstraction between the legacy code and the application layer, hiding underlying

platform specific and language specific implementation details from the user by a

programming language neutral, platform independent and architecture agnostic, standard

interface accessible over network. Figure 1 depicts this phenomenon.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 161

Figure 1: Web Services Abstraction Layer

The architecture is built over SOAP (referred as Simple Object Access Protocol when

associated with Remote Procedure Calls style implementation and referred as Service

Oriented Architecture Protocol when associated with web service consumption) acts as a

common data transport protocol to exchange structured messages. HTTP POST method is the

common approach for SOAP transport with encoding MIME type at either ends set at

text/xml. The concerned HTTP server is required to be equipped with SOAP processor in

order to deal with SOAP messages. Every SOAP message is surrounded by a SOAP Envelop

consisting of the root element Envelope. The SOAP Envelope consists of an optional SOAP

header and the mandatory message body. SOAP header may include application specific

information such as handshaking information, electronic transaction identifier, security token

etc. Whereas, the SOAP message body carries the message as payload consisting of methods,

arguments, values etc. The XML schemas associated with the envelope assist in interpretation

of SOAP response. Upon success, the HTTP server responds with the HTTP status code 200,

however, in case of problems from the server side it responds with the concerned status code

starting with 5, indicating server-side error.

WSDL (Web Services Description Language from version 2 onwards instead of Web

Services Definition Language) acts as glue between the Web Services Provider and the

Consumer. A SOAP web service is described using WSDL confirming to XML grammar in a

platform-independent, programming-language agnostic and architecture neutral fashion. It

provides information regarding publically available functions, data types, protocol bindings

and URL of associated web service. The concerned WSDL file must be accessible by the

both Client and Server to initiate the web service transaction. WSDL allows the web service

consumer to locate the web service and execute the public function. Client and Server

identify data exchange according to a pre-agreed XML schema. A WSDL file wrapped as a

valid XML document consists of the elements viz. definitions, types, message, portType

and binding.

The definitions element is the root element of a WSDL description file consisting of

references to various XML namespaces used elsewhere in the WSDL document. Remaining

XML elements are wrapped within the definitions element. The types element consists of

description for data types of messages exchanged across the client and the server. W3C XML

Schema compliant type definition is the default approach for type definition within the

WSDL document. The message element consists of a message from the single side i.e. from

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 162

client to the server and vice-versa. It may carry message parts acting as input arguments and

return values. The documentation is an optional element providing human readable service

description. This element can be embedded inside other WSDL elements.

 The portType or interfaces element allows grouping of multiple associated SOAP

operations from anyone of operations viz. one-way, complete roundtrip, wait-for-response or

just-notify. The binding element defines the actual service transport for operation and

message exchange associated to the respective i.e. bound portType in either document style

or RPC style binding. The service element carries URL of the hosted SOAP service along

with the service endpoint i.e. port. Figure 2 depicts WSDL element stack.

Figure 2: WSDL Element Stack.

III. PROTOTYPE DESIGN AND IMPLEMENTATION

Design of a Hybrid, Modular, Scalable and Service Oriented distributed computing

model is presented as a prototype. The architecture comprises of four layers. It has been

termed Hybrid since; it follows a tightly coupled approach at the bottom layers,

simultaneously maintaining loosely coupled approach at the higher layers. These layers are

namely; Resource Layer, Resource Abstraction Layer, Service Layer and Application Layer.

Principal components of this prototype architecture are classified into four distinct categories,

namely; The Resource, The Resource Aggregator, The Service Request Negotiator, and The

Consumer. These components correspond with layers of this architecture respectively as

depicted in figure 3.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 163

Figure 3: The Four-layered Prototype Architecture

Table 1 Consists of Listing of Hardware and Software Used for Prototyping.

Table 1: Summary of Hardware and Software Components

Sr. Layer Hardware

Components

Software Components

1. Resource
Arduino

Microcontroller
Arduino IDE

2.
Resource

Abstraction
Raspberry Pi Python

3.
Resource

Negotiation
Generic Computer SOAP, JAVA, WSDL

4. Application Generic Computer Python, Java, C++

1. The Resource Layer: The Resource layer is the bottom most component of the prototype

architecture. It is modelled for aggregation of geographically distributed sensors sensed

via micro-controllers. For the prototype, Arduino UNO series microcontroller board has

been identified. It allows interfacing various sensors – resources and read from, and

written to values to the same such as reading current temperature etc. This layer being the

underlying one, deals directly with the resources however, the systematic in cooperation

of upper layers actual location, physical implementation and other lower level details

insignificant from the end-users perspective are hidden.

2. The Resource Abstraction Layer: The Resource Abstraction Layer stays between the

lower most Resource Layer and the Resource Negotiation Layer and follows the principle

of state machine. It maintains a tightly coupled sync with the microcontroller at the

Resource Layer. This layer initiates the transaction to trigger the underlying resources via

the Resource Layer through atomic getter and setter instructions as received from the

higher layer. It conveys back the associated values for further processing to the higher

level layer. In order to balance the overhead caused by polling, fixed time intervals are

introduced to maintain the sync. This layer is implemented via Raspberry Pi, – a

singleboard, and affordable computer with a credit card sized form-factor. Tightly

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 164

coupled link between this layer and the bottom layer is achieved using the GPIO (General

Purpose Input Output) feature of this board.

3. The Service Layer: The Service layer acts as a fabric across the proposed infrastructure.

It augments platform independence, architectural neutrality and programming language

agnostic behaviour across heterogeneous hardware to the proposed distributed computing

ecosystem over TCP/IP. This layer broadcasts available services and undertakes implicit

negotiation with attached resources abstracted through the underlying Resource

Abstraction Layer. Loosely coupled link between the Service Layer and Resource

Abstraction Layer is implemented using TCP/IP network. This approach lets the Service

Layer to hide actual implementation of underlying layers from the consumers.

4. The Application Layer: The end user accesses the computing resources through this

layer. However, the underlying layers hide the actual resource location and its associated

network address offering location transparency to the system. The Application Layer

comprises of client utilities to incorporate with the Service Layer. Since, the backbone of

the prototype distributed computing infrastructure is built over the web services; the client

can request access, consume and subsequently releases the computing resources

marshalled through the service stub advertised by the Service Layer. This layer maintains

loosely coupled approach with the undeerlying Service layer over TCP/IP network. It can

be implemented on the variety of hardware, platforms and programming languages, as it

needs a mere working network connectivity with the Service Layer computer. The hybrid

setup i.e. loosely coupled connectivity at the higher level layers and tightly coupled

connectivity at the lower level layers represent a Service Oriented distributed computing

architecture providing transparent access to services.

The model with respective hardware – when prototyped with associative layers

appears as shown in figure 4.

Figure 4: Components Corresponding to Layers

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 165

5. Implementation: For the prototype ecosystem, the Arduino board is connected as slave

with Raspberry Pi GPIO (General Purpose Input Output) connectivity. The I2C (Inter

Integrated Circuit) bus master slave protocol is selected over the other alternatives, being

limited number of USB ports (two) on the Raspberry Pi board itself. I2C carries two wire

lines viz. SDA (data) and SCL (clock). The I2C approach allows multiple (up to 128)

devices as slaves to be connected. The Wire.h Arduino library enables the Arduino board

to communicate with I2C bus. The Raspberry Pi single board computer at the Resource

Abstraction Layer carries 17 GPIO pins allowing interaction with other devices. Amongst

these pins, GPIO2 and GPIO3 pins act as I2C data (SDA) and clock (SCL) respectively.

However, the difference of working voltage ratings i.e. Raspberry Pi at 3V and Arduino

at 5V is addressed through a logic level converter. Arduino I2C and Raspberry Pi I2C

pins are bridged through the logic level converter as per the schematic as shown in the

figure 5. Figure 6 represents the actually implemented system.

Figure 5: Schematic I2C Bridge for the Prototype

Figure 6: Actual Implementation of the Prototype

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 166

The Raspberry Pi singleboard computer natively supports Python, the general purpose

programming language. Two Python libraries are used to implement the Resource

Abstraction Layer; the smbus library for interfacing GPIO I2C components on the Raspberry

Pi board and Suds (Jurko’s Fork) library for negotiation with SOAP Web Services. The

smbus library allows to read from and write to I2C GPIO of the Raspberry Pi with the

functions read_byte() and write_byte() respectively using predefined I2C address of the

SLAVE device (0x04 Arduino Pin 4 in the cases).

The Service Layer acts as the heart of the entire prototype ecosystem using a

document oriented, SOAP Web Service. It augments this system with the capability to

negotiate with the resources and access the same in a stateless, loosely coupled, platform

independent, architectural neutral, programming language agnostic fashion over HTTP

protocol. SOAP Web services are used to implement the Service Layer in Java on the Eclipse

IDE. The Service Layer is powered by the Apache Tomcat application container on Microsoft

Windows platform along with Apache CXF, the Open Source SOAP Services framework.

 SOAP can be implemented either by writing a WSDL as a starting point of

development and generation of associated the Java code or implementing a Java code and SEI

(Service Endpoint Interface) as a starting point and generation of associated WSDL

accordingly. The latter A Service Endpoint is a network accessible stub which allows the

stakeholders (i.e. the Service Provider and Service Consumer) of the SOAP Web Service to

communicate by exchange of machine processable messages in from of XML. The latter

approach is considered for the prototype development. The Application Layer allows the end-

user to access the service. The client code can be written in any language supporting SOAP.

The prototype implements client using Python programming language.

IV. CONCLUSION AND FUTURE WORK

While existing implementations remain framework dependent and heavyweight

causing challenges to design, learn, collaborate and modify the infrastructure, the prototype

demonstrates decentralized control, platform independence, architectural neutralism and

programming language agnostic and transparent access behaviour. It allows the end-user to

query, use and release the resources aggregated through heterogeneous hardware without

knowing about the underlying geographical location and technologies. The prototype design

can also be used for IoT (Internet of Things) by allowing sensors and actuators to be remotely

sensed and managed.

Secured implementation over single sign on (SSO) credentials and a trusted certificate

authority, a Service Layer portal for effective deployment of services and monitoring,

implementation of RTC (Real Time Clock) at the bottom layers for time stamping of resource

utilization and an application layer portal that allows the end-users to identify occupied and

available resources according to their location and nature are some of the potential future

thrust areas to consider.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 4, Chapter 3

 SCALABLE SERVICE ORIENTED DISTRIBUTED COMPUTING ARCHITECTURE : A

PROTOTYPE DESIGN AND IMPLEMENTATION

Copyright © 2024 Authors Page | 167

REFERENCES

[1] J. Holland, ―A Universal Computer Capable of Executing an Arbitrary Number of Subprograms

Simultaneously‖, Proc. East Joint Computer Conference, Vol. 16, pp. 108-113, 1959.

[2] I. Foster, C. Kesselman and S. Tuecke, ―The Anatomy of Grid: Enabling Scalable Virtual Organisations‖,

International Journal of Supercomputer Applications, 2001.

[3] Madhu Chetty and Rajkumar Buyya, ―Weaving Computational Grids: How Analogous Are They with

Electrical Grids?‖, Computing in Science and Engineering (CiSE), Vol. 4, Issue 4, IEEE CS Press, USA,

July-August 2002

[4] I. Foster, ―What is Grid? A Three Point Checklist‖, Argonne National Laboratory & University of

Chicago, Grid Today, 2002.

[5] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, November). Cloud computing and grid computing 360-

degree compared. In 2008 grid computing environments workshop (pp. 1-10) IEEE.

[6] Booth, D. (2004). Web services architecture. W3C note.

[7] The Web Services Description Language, version 2.0. See http://www.w3.org/TR/wsdl20

[8] Banzi, M., & Shiloh, M. (2014). Make: Getting Started with Arduino: The Open Source Electronics

Prototyping Platform. Maker Media, Inc..

[9] Mills, B. I. (2005). Theoretical introduction to programming. Springer Science & Business Media.

[10] Semiconductors, N. X. P. "I2C-bus specification and user manual." Rev 6 (2014).

[11] Arduino Wire Reference‖, https://www.arduino.cc/en/reference/wire (2015).

[12] Bi-Directional Logic Level Converter Hookup Guide‖https://learn.sparkfun.com/tutorials/bi-directional-

logic-level-converterhookup-guide (2015).

[13] Raspberry Pi Reference‖ https://www.raspberrypi.org/products/raspberry-pi-2- model-b/ (2015).

[14] Raspberry Pi, FAQs‖, https://www.raspberrypi.org/help/faqs/ (2015).

[15] smbus Python I2C Library‖, https://pypi.python.org/pypi/smbus-cffi (2015).

[16] Jurko’s Suds SOAP fork‖, https://pypi.python.org/pypi/suds-jurko/0.6 (2015).

[17] Apache CXF: An Open Source Service Framework. http://cxf.apache.org/ (2015).

[18] Apache Tomcat Application Container, http://tomcat.apache.org (2015).

[19] Developing a Service with JAX-WS, http://cxf.apache.org/docs/developing-aservice.html, (2015).

http://www.w3.org/TR/wsdl20

