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. INTRODUCTION

MXenes are the fastest-growing class of two-dinmmai materials with distinct
characteristics and scalable synthesis techniquiesy have gained great scientific interest
[1,2]. Since the discovery of stable 2D atomic oarlsheet graphene, its advantages over
bulk equivalents have prompted research advancenientarious fields. Nanotechnology
experts believe that 2D materials like graphenaclkblphosphorous, stratified double
hydroxides, and transition metal dichalcogenidesehaignificant potential for use in
different industries such as optoelectronics, bidiciee, and energy storage because of their
unique optical, electrical, and mechanical propsrtiResearchers have been exploring the
potential of these materials for many years [3MXenes have variable surface chemistry,
metallic conductivity, and a redox potential simila graphene. MXenes can be utilized for
environmental applications since they often contain-toxic elements like Ti, Si, and N. At
Drexel University, titanium carbide (I0,) MXene was first discovered [8].

In addition, recently, MXenes have found diverseli@ations such as electronics,
biosensing, environmental remediation, water deatbfin, sensors, electrodes, optical
devices, and quantum dots [9,10]. Electrochemiapkcitors (ECs) and metal-ion batteries
are among the most promising electrochemical enstgyage technologies. MXene has
enabled significant advancements in understandiyge-storage processes and creating
innovative, ultra-high capacitance MXene electroftes]. MXenes have gained interest
across scientific fields such as materials scieecwjronmental science, nanotechnology,
chemistry, and physics.

In the 2D domain, MXenes are among the most retranisition metal carbides,
nitrides, or carbonitrides to appear [12-15]. Toerfula for these materials is,MX Tx (n =
1, 2, 3), where M and X represent early transitiggtals, nitrogen or carbon, respectively. In
the same way, we do with surface terminalssiich as -O, -F, or -OH. A few examples of
these transition metals are Scandium, Vanadiumanititn, Tantalum, Chromium,
Zirconium, and Molybdenum. There are three comntacgires for MXenes (bK, M3X5,
and MyX3). MXenes exist in over 200 different stable phasesluding TpCTy, TisCyTy,
Mo2CTy, Nb,CTy, TauCsTx, TiaN3TX, CrTIC,Ty, ZrsCyTyx, andVCTy. In addition, MXene
has excellent surface hydrophilicity and electricahductivity in addition to its 2D layered
structure. It is also possible for MXene to sandwecvariety of cations between its layers.
These outstanding characteristics have drawn ceraite attention in fields such as
electrochemical energy storage, catalysis, gasrpiiiso, gas sensing, etc [16-18]. In this
chapter, we will investigate the fundamentals, praps, fabrication approach, and potential
applications of MXenes through several researdthriis.

II. MAX PHASES: THE PRECURSORS OF MXENES

In the first decades of the 1960s, the MAX phasereviound [19]. According to Fig.
1 [1], MAX phases are hexagonal carbides and meiridith the formula M;AX, (n=1, 2,
3). Generally, "M" indicates transition metals, lghf'A" indicates major group elements
(such as Si, Ge, Al, Ga, In, Tl, Sn, Pb, P, As,&ldl Bi), and "X" represents carbon/nitrogen.
In the Max phase, M-X bonds are stronger than MeAds. It is easier to etch away the more
chemically reactive A layers to obtain,MX,layers, because of their high surface energy
these are typically formed by -F, -OH, and -O gso(ip0]. These ceramic-metal hybrids
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exhibit distinctive properties resulting from theincommon combination of characteristics
[21].

A MAX phase has high thermal and electrical conigitags, excellent machinability,
and no corrosion resistance, in contrast to a autim@al ceramic which has a low density, a
high hardness, and no corrosion resistance [2282H8]AX step has three parts, according to
Fig. 2 [25], 211 for n=1, 312 for n=2, and 413 fox3). There is a large number of MAX
phases in the space groufsi®Pss/mmc, which is a two-unit unit space group. Thesé u
cells consist of layers of A elements sandwicheivben layers of MX octahedral layers,
with X atoms occupying the octahedral spaces betee= M atoms [25].
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Figure 1. Constituent elements of MAX, MXenes and their ioédation ion. Reproduced
with permission[1]. Copyright 2019, ACS Nano

[11.PROPERTIES OF MXENES

A few things to keep in mind the kind of MXene presor used, the etching process,
the intercalation method, and the sonication freqyeall affect MXene optical, electrical,
thermal, mechanical, and magnetic properties showkig. 3. There are numerous and
adaptable interactions on the MXene surface dudecelectrons linked to transition metal
atoms.

1. Optical Properties: Gogotsi Y. et al. [26] pointed out that there tHdi research on the
optical characteristics of MXenes. The researctiemsonstrated a transmittance of 91.2%
for the 5 nm thick THC,Ty film, and it can absorb light in the Ultravioleis/range from
300-500 nm [26]. Zhang C. et al. [27] studied tiirt MXenes concentration in solution
determines how much of it is absorbed, whether @dlaidal form or as a thin film. It is
the thickness of MXene thin films that causes amaase in absorption when it comes to
thin films. At 550 nm, T4C,Tx MXenes in pure and intercalated forms have
transmittances of 77% and 90%, respectively [27ang/ et al. [28] investigated the

Copyright © 2024 Authors Page 220



Futuristic Trends in Chemical, Material Sciencebl&o Technology
e-ISBN: 978-93-5747-824-3
IIP Series, Volume 3, Book 6, Part 2, Chapter 6
BASICS, PROPERTIES, FABRICATION, AND POTENTIAL APRCATIONS OF MXENES

existence of the functional groups (-O, -F, and }@H the surface affects the optical
characteristics of MXenes. 30, MXenes can function from infrared to ultravioleght
because -F and -OH have low in-plane absorptioffific@ats. The in-plane absorption
coefficients are greater for naked and -O funcliaed MXenes. MXenes are hopeful
candidates for flexible transparent electrode apgibns considering their optical
transparency and metallic conductivity in the Misibegion, but their strong reflective
properties in the ultraviolet area suggest antaulblet coatings. Lastly, it demonstrated
high light-to-heat conversion efficiency (100%), et is helpful for biological
applications [28].
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Figure 2: Crystal structure of MAX phases 211, 312, and 41t3.{(3). Reproduced
with permission [25]. Copyright 2017, Elsevier

2. Thermal Properties: For storage and use in solutions and thin filmss iessential to
comprehend the thermal stability of MXene. The ihedr stability of MXenes was
discovered to be substantially influenced by bdtleirt chemical makeup and the
environment by combining thermogravimetric and masgsectrometry analyses.
According to Toulouseian research, although haeaitgxagonal structure, 3U,Tx (Tx =
OH or F) is still stable at 800 °C, and its hexaastructure in the Ar structure is still
there even at 500 °C. Thermogravimetric investayetishow that EC,Tx, which turns
into TiC in an argon (Ar) atmosphere, has a sulbstaweight rise at temperatures
exceeding 800 °C. IC,Tx MXene is partly annealed in an anatase ;Ta@nosphere at
200°C and fully annealed in a rutile Ti@tmosphere at 1000°C. It is possible to create
TiO, with a variety of crystal structures and morphasgby adjusting the annealing
temperature, the pace at which MXene is heatedfl@tength of the oxidation process.
The final result is a wide range of MXene-basedritigand derivatives. Due to their
high surface energy and usual thermodynamic méitistaMXenes with exposed metal
atoms on their surface frequently spontaneouslgin&iin air [30, 31].
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Figure 3: Properties of MXenes

3. Mechanical Properties: Regarding the MXenes mechanical characteristicstid@®eThe
study is mostly concerned with mathematical confpuria. There have been several
theoretical research on graphene and other 2D ralsténat resemble graphene, but some
of these works are theoretical and experimentakstigations on the mechanical
properties of MXene material [32]. Because M-C adeN bonds are among the
strongest, mechanical features of MXenes have gitjueinterest of researchers. Several
studies have validated the mechanical propertias. ioteworthy that as the number of
layers increases, the young modulus of MXene caraid nitride decreases [33]. For 2D
materials, evaluating their mechanical propertesains difficult, despite that numerous
mechanical testing methods exist for the charaagon of bulk materials. Two-
dimensional nanomaterial mechanical properties w@mmarily measured via
nanoindentation, which involves delivering forcethie center of a 2D material film with
an AFM tip. A monolayer Young Modulus of 333 = 3®&was recently obtained using
this method [34,35].

4. Magnetic Propertiess Among the MXene phases, LT, and CgNT, exhibit good
magnetic order over long distances compared with;Tg which shows significant long-
range ferromagnetism. Magnetic properties of MXare reduced or eliminated by the
activated functional groups. In the MXene familyptdimensional layers exhibit a wide
range of magnetic properties. MXenes 2D;Chi and TgN, are predicted to be
antiferromagnets, while 2D &2, CpN, T&C, and CgC, are predicted to be
ferromagnets that may dissociate from their MAX s#[36]. Because MXenes phases
are possible to have different magnetic charatiesishan MAX phases, studies made it
possible to assess their magnetic characteristm® widely. Several antiquity-related
substances have been predicted to possess magmatients, including 1Cs, FeC,
TisCN, ZnC, CrC, TisNy, ZrsC, and TpN. Finally, a unique analysis should be
conducted for each MXenes and functionality grolpe magnetic properties ofsUNT
and TyC3Tx are lost when functional groups are added, wasepCT, and CsNTx with
-OH and -F groups maintain their magnetic propsrid¢ ambient temperatures, and
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Mn,NTy is magnetic regardless of surface termination. f@ported magnetic moments
have yet to be confirmed by experiments; they aset on computer forecasts. This is
explained by the poor control of surface chemistng the insufficient production of

MXene molecules [37-40].

IV.FABRICATION OF MXENES

Materials science and nanotechnology have beetlygregacted by MXene since its
discovery in 2011. Theoretical calculations predmbre than 100 different MXene
compositions and more than 40 MXene structures bleady been created in the laboratory
from top-down approaches or bottom-up approache&rds can be made biocompatible by
modifying their surface functions. To get a betidea of the achievements made in the
synthesis and modification of MXenes, we can hgjitlisome outstanding reviews [41,42].
The preparation of MXenes is given below in Fig42].

1. Top-down Strategy: A top-down MXene is produced by selectively remagvihe A
atomic layer from the precursor while leaving the.M, layers intact. Due to the
nominal oxidation state of the A atom in MAX (faxample, AP in TisAIC,), the etching
process involves oxidizing it to another state hsas A" or Sf*. The strength of the M-
A bond in comparison to the M-X bond, as well aseotfactors such as the Gibbs free
energy of by-product formation, affect the etchmegction's Gibbs free energy, which
determines the ability to remove the A elementhia tase of HF etching of Al-based
MAX phases. In general, exfoliation involves oxidat of the A element, followed by
conversion into soluble by-products via ligatior8]4The most traditional and popular
top-down approach to making MXene is HF etchinger€hare two distinct steps in the
interaction between MAX and HF during the etchimggess. Using BAIC, MAX as an
example, TJAIC; is fully devoid of Al atoms after being submergada 50% (w/v) HF
solution for two hours at room temperature. As sulte TkC, is produced [44]. The
reaction between hydrofluoric acid solution angAIC is as follows:

TisAIC, + 3HF = AlR + 3/2H, + TisC; 0]
TisCo+ 2H,O0 = TECH(OH), + Hy (i)
or
TisC + 2HF = TiCF + H, (iii)

The same etching technique is used to prepare M#enes, including TICTy,
V,CTy, and M@CTx. Handling and disposal of HF are hazardous umexaf its great
toxicity and capacity to infiltrate through skimsdue, and even bones. The usage of HF
has been greatly reduced or eliminated throughdthelopment of numerous ways to
improve the etching process. According to Alhabelale there is a risk of creating
hazardous HF when using the in situ approach taterésC,Tx over a 24-hour etching
time [45]. It was found that as little as 5 wi% HBEn still be used to manufacture
TisC,Tx. In 2014, Ghidiu et al. etched the conductive Ytl@lisC,Tx) by replacing the
highly corrosive HF with fluoride salts such as NakF, and LiF. To achieve
delamination, large organic compounds dissolveddimethyl sulfoxide (DMSO) or
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tetramethylammonium hydroxide (TMAOH) are utilizedongside NHHF, or HF,
followed by sonication. The amount of LiF and HCsed determines whether
delamination of T4C, Ty intercalated with Li+ using HCI-LiF can be dongwor without
sonication. The in situ technique offers the adagetof creating a larger interlayer space
between water, which reduces their interaction wWwitKene compared to direct HF
etching [46].

2. Bottom-up Strategy: Instead of starting with bulk material, bottom-upethods use
molecular material as a starting point. The trarmsmaMXene films were created by
selectively removing the A-element in the firsttoot-up synthesis of MAX film. In this
first work, they used direct current (DC) magnetsputtering to deposit thin films of
TisAIC, onto a TiC layer (which served as an incubatigredawhile maintaining an
ultrahigh vacuum and a temperature of 780 °C. Tparent, conductive IC,T« epitaxial
films with well-maintained metallic conductivity dm to 100 K were produced after the
aluminum layer was removed using HF or Jjif, [48].

This approach can be used to create Mxene-derivadtgm dots (MQDs) from
microscopic precursors of inorganic and organic poamds. Bottom-up methods have
several benefits, including better control over streicture and characteristics of quantum
dots (QDs), increased atomic use, and faster fomalization. Previous investigations
have provided a solid foundation for preparing @otup MXene synthesis. The
production of large- scale products requires simpighly efficient precursors with
excellent crystallinity, low toxicity, monodispeigi moderate reaction conditions, and
high yields. MXene is most likely to be developex rmeet incremental application
requirements using one-pot bottom-up methodologiethe future because they have
simpler operating conditions than top-down appreadd9].
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Figure 4: Preparation of MXenes by intercalation method. Bdpced with
permission [42]. Copyright 2021, Springer
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V. APPLICATIONS OF MXENES

1. Energy Storage: Because of the depletion of fossil fuels and tleeaased consumption
of energy, there has been a growing interest irageband conversion systems, as well as
renewable energy sources such as supercapacitdrbatteries [50]. Although energy
storage was the earliest and most investigatedcapiph for MXenes, MXenes have
shown significant potential in different types daher applications. Anasori et al. [48]
present a detailed assessment of the majority oen&X energy and nonenergy-related
applications researched thus far. First-princigigisulations are an important tool in the
search for prospective applications due to thest @nd time efficiency compared to
experimental efforts. MXenes are 2D layers that@amain ions of varying sizes and are
useful for non-lithium ion batteries, as electradaterial choices are currently limited.
Some oxygen-terminated MXenes have theoreticallsbipes in Mg, Ca, Na, K, and Al-
ion batteries. It's worth noting that Nand other ions are predicted to create an extra
metal layer, doubling the capacity. Furthermorayide range of functional capabilities
can be achieved with MXenes due to their structaral chemical diversity, as well as
their ability to tune their surface chemistry. Thiskes some of them suitable for anodes,
while others are suitable for cathodes [51,52].

Due to their high metallic conductivity, MXenes, ripeularly TisC,Tx, are
frequently utilized in supercapacitor applicatieagacilitate rapid electron transfer. It has
been discovered that MXene, a 2D material, carestaergy through electrochemical or
spontaneous interconnection by metal ions [53].iM@urdsorption in MXenes, ions
diffuse to shallow and deep adsorption sites. Assalt, they are initially accommodated
at the particle's edges at low adsorption sited then at deep sites in the particle's center.
This results in high ion adsorption activation. @haff your energy. lons rapidly adsorb
at low absorption locations with MXenes, makingnthtéhe best alternative for precise
charge storage quantification and improved ratefopmance. Additionally, cation
intercalation can affect the interlayer water cahtén MXene nanosheets. These
nanosheets precipitate in a partially hydrated ferith kosmotropic ions such as Kig
Li*, and AP*. On the other hand, chaotropic ions like TE#nd C$ can successfully
dehydrate MXenes. During the process of extracingd inserting ions from aqueous
media, there are frequent changes in C-value.dtbeen observed that the deformation
behavior generated by different ions in MXene igedent from that of interlayer gap
extension in graphite. The interlayer spacing betw&:C,Tx (MXene) nanosheets can
be minimized by using cations with high charge ahdrt ionic radius for interpolation
while using cations with high ionic radius and laharge will lead to interlayer
expansion of MXene [54].

2. Biosensors: Electrochemical sensors are the most commonly usiedensors for
analysis. This type of sensor offers various achges for application in biomaterial
detection due to its ability to measure observabdetrochemical properties based on the
properties of the target material that preferelytiakact with bio-receptors [55].
Biosensing has gained much interest as a gooddoahalyzing specific biomolecules in
a different types of applications. The investigatiof direct electron transfer (DET)
between electrodes and enzymes is crucial for rgaknediator-free electrochemical
biosensors [56, 57]. The DET between electrodes emmymes is limited, however,
because proteins' electroactive centers are bdeeg within their protein structures, and
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the ekctrode's electrolytes often kill electrode surfpoaeins. Nanomaterials have be
used to immobilize enzymes on electrode surfaceséocome this problem. Due to th
outstanding electrical characterist high biocompatibility, andhigh surface :ea,
MXene-based materials have shown pror as biosensing nanomaterials].

3. Energy Harvesting: Solar energy is considered a hopefyption to meet our ener¢
needs in the future because of its exceptionalachearistics. It is ecologically friendl
unlimited, and safe. Therefore, technologies tfzat directly convert solar energy ir
electrical energy are receiving a lot of ation. MXene, a twadimensional material, h:
the potential to be used in solar c. Three types of materials can be applied t
electron/hole transport layers, ctrodes, and other materials [5Because 1:C,;Tx is the
representative member of the lene group, it offers appropriate flexibility, owtsting
electrical conductivity, and high transmittance sadar cell electrode This section
discusses the use of;Th Ty electrodes in sequencing solar cells mac dye-sensitized,
perovskite, silicon, andrganic materials. MXenes can serve not only as bulkerials
for electrodesut also as additives in solar cell compon [60].

VI.FUTURE SCOPE

sl L ONQterm stability

sd L OW tOXicity

md Feasible synthesis methods

Figure 5: FutureDirections of MXenes Research
VII.CONCLUSION

MXenes are a novel 2D material family winumerous applications in sensing
energy. This chapter discussed MXenes' bc-up and top-dowssynthesis methodologie
as well as their distinctive features and poss#pplications. Researchers in environme
science, biomedical engineering, carsion, catalysis, and energy storage are all isted
in transition metal carbides and nitrides. Moleculao-dimensional MXene nanoparticl
are predicted to lay the groundwork for a new gatien of revolutions in chemical scien
physical scienceand Materials Science in the near future. MXene l&own outstandin
performance in energy storage, sensors, and sygaitars, indicating that this new class
2D materials has promising applications in -generation energy storage and conver
devices.
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