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controlled growth of microorganisms, planDepartment of Biochemistry
cells or animal cells to produce variouSt. Joseph’s College for Women(A)
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biofuels, secondary metabolites, vaccines
etc. They provide aseptic condition and
also the optimal conditions for growth and
metabolic activity of organisms Made from
glass, metal or fibre, they help in
bioconversions or transformations and even
bioremediations.  Various types  of
bioreactors are developed to cater the needs
of the industry. Some examples include-

Stirred tank  bioreactors, membrane
bioreactors, fluidized bed bioreactors,
photobioreactors etc. Their sizes depend
upon the scale of production. Effective
bioreactors are the once which
automatically regulate the conditions of
production or transformation and result in
good turnover. Many of them are equipped
with specialized devices that allow
adequate mass transfer, heat transfer, free
flow of media and supporting ports. This
chapter discusses various types of
bioreactors, their design, modification if
any and applications at large.

Keywords: Bioreactors, fermenters, Stirred
tank bioreactors, Air lift bioreactors,
Membrane bioreactors, Packed bed
bioreactors, Photobioreactors, Fluidized
bed bioreactors, perfusion bioreactors

Copyright © 2024 Authors Page|



Futuristic Trends in Biotechnology
e-ISBN:978-93-6252-116-3
IIP Series, Volume 3, Book 17, Part 1, Chapter 5
BIOREACTORS - A CRITICAL REVIEW ON CONSTRUCTION, QOSIDERATIONS AND
APPLICATIONS

. INTRODUCTION

Bioreactors are devices or systems designed tiitdse the controlled growth,
maintenance, and manipulation of biological systesush as microorganisms, plant cells, or
animal cells, in a controlled environment (1-3).eYhare essential tools in bioprocess
engineering for applications ranging from microbi@rmentation to cell culture and
biopharmaceutical production (4-7). These may lermed to as engineered devices that are
designed to provide optimal conditions for growtidanetabolic activity of organisms (8).
Raw materials provided to the organisms range fmoanganic to organic compounds to
complex materials. The end products of the congassiange from Baker’s yeast, Single cell
protein to primary and secondary metabolites (9 $izes of bioreactors can vary widely
based on the specific application, from laboratsrgle reactors with volumes of a few
millilitres to large industrial-scale reactors witblumes of several thousand Liters or more
(1,3,6,10, 11). During the design of these biomacseveral aspects of biotechnological
processes must be given attention which includactien rate, cell growth, process stability,
physical conditions to be maintained etc (12). Arergiew of the following types of
bioreactors will be presented in this chapter.

Stirred tank bioreactors
Air lift bioreactors
Packed bed bioreactors
Membrane Bioreactors
Fluidized bed Bioreactors
Photobioreactors
Perfusion Bioreactors

~No o~ WNE

=

Stirred Tank Bioreactors: Stirred tank bioreactors, also known as stirred taactors
(STRs) or simply bioreactors, are widely used ie fiermentation industry for the
cultivation of microorganisms. They consist of diryrical vessel equipped with an
agitator or impeller that stirs the culture meditorensure uniform mixing of nutrients,
gases, and microorganisms (2). Stirred tank bitoescare versatile and can
accommodate various microbial cultures, making thestaple in bioprocessing (13).

Components of Stirred Tank Bioreactors (figure 1):

* Vessal: The main cylindrical vessel holds the culture mediand microorganisms. It
is typically made of stainless steel or other bropatible materials. The choice of
material for bioreactor vessel construction isicaitto ensure compatibility with the
process, maintain sterility, and provide optimalnditions for cell growth and
bioprocessing.
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Figure 1: Construction of Stirred Tank Bioreactor
(SourceBy GYassineMrabetTal- Own work, CC BYSA 3.0,
https://commons.wikimedia.org/w/index.php?curid=831¥)

o Stainless Sted Vessdls: Stainless steel (typically 316L or 316Ti) is a coamr
material for industri-scale bioreactor vessels due to its corrosion teegie anc
durability. It isalso suitabl for high-temperature and higiressure applicatio (14).

* Glass. Borosilicate glass is used in labora-scale bioreactors due to
transparency, allowing visual monitoring of cultst These are uitable for
applications that require n-reactive, inert surfaces (15).

* Plastic and Polymer Materials: Polycarboate, polyethylene, polypropylene, &
other plastics are used for disposable and suse bioreactor vessels.The
materials offer flexibility, easy disposal, and wedd risk of cros-contaminatio (16).

* Single-Use Materials: Biocompatible polymers, shcas polyethylene, are used
disposable bioreactor bags and lir They eliminatethe need for cleaning ai
sterilization between batct (17).

» Ceamic Materials: Alumina, zirconia, and other ceramics are used
specializedapplications requiring h-temperature resistance and corrosion resis
(18).

» Agitation System: An agitator or impeller is used to mix the cultumedium,
ensuring uniform distribution of nutrients and gasémpellers can have vario
designs, such as Rushton, Smith, or pit-blade impellerdmpellers are crucie
components of bioreactors thaiovide mixing and aeration for optimal cell grov
and bioprocess performan« These are of various types (Figure 2)
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Rushton Pitched blade

Figure 2: Few Impellers Used in Bioreactors

* Rushton Turbine Impeller: These are the classic impeller desigith radial blades.
They povide efficient mixing and aerati and are gitable for various application
including cell culture and microbial fermentat (19).

* Pitched Blade Impéller: The Bades are pitched at an angle to improve ver
mixing and gadiquid dispersior These are sed in applications requiring gen
agitation and aeratiof20).

* Doughnut Impeller: The impeller is of toroid: shape with an annular g It enables
gentle mixing with reduced shear stress, suitalislies-sensitive culture (21).

* High-Efficiency Impeller (HE-3): These are @kigned to provide enhanced mix
and gas dispersiamd are uitable for highdensity microbial fermentatio (22).

* Smith TurbineImpéller: They have flat blades with a backwanagved leading ed:
and are used for highiscosity and non-Newtonian fluids (22).

2. Aeration System: An aeration system provides oxygen to the micraagyas. It usually
involves sparging air or other gases into the celtmediunr The aeration system
bioreactors is essential for providing oxygen ttiscand promoting efficient mixing ¢
the culture medium. Spargiris done whichinvolves introducing air or gas into t
culture medium to provide oxygen and facilitate imgx Comnon sparging methoc
include porous diffusers, fi-bubble spargers, and ring spargét8).Aeration systems
influence the mass transfer of gases (e.g., oxygehcarbon dioxide) between the
phase and the liquid phase.Mass transfer coeffgi@me imortant for optimizing oxyge
delivery to cells (24)Aeration system design must account for «up effects, ensurin
consistent oxygen delivery across different biota@asize: (25).

Few more parameters to be considered in aerat®ithar rate of aation and
bubble size and distributiol/Aeration rate and oxygen concentration should métet
oxygen demand and uptake rate of the cells to amoygen limitatiol (26). The size and
distribution of bubbles generated by the aeratigstesn affect massansfer efficiency
and shear stress on cgl&y).

* Cooling and Heating System: Temperature control is crucial for maintaining opi
growth conditions. Cooling/heating jackets or cod#se used to regulate t
temperatur€ooling and heating systems «rucial components of bioreactors t
help maintain optimal temperature conditions fdr geowth and bioprocessir

» Jacket and Cooling System: A jacket surrounding the bioreactor vessel isdilath
a temperatureontrolled fluid (e.g., water or glol) to transfer hee This is used for
maintaining a constant temperature in bioreactateru: (28).
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* External Heat Exchangers: Heat exchangers connected to the bioreactor ateul
temperature-controlled fluids to control the tengpare of the bioreactor contents.
They are used for precise temperature control amdcases where direct
heating/cooling is not suitable (29).

» Direct Heating and Cooling Plates: Heating and cooling plates are directly attached
to the bioreactor vessel for efficient heat transidey provide rapid temperature
changes and precise control (30).

« Thermal Jackets: Insulated jackets surrounding the bioreactor Je$sdp to
maintain temperature by reducing heat exchangetivglenvironment. They are often
used in conjunction with other temperature contmethods (31).

* Cooling Coils and Immersion Heaters: Cooling coils or immersion heaters placed
inside the bioreactor vessel directly affect thapgerature of the culture medium. This
system is used for small-scale systems and spapfitcations (32).

3. pH and Dissolved Oxygen Probes: Sensors monitor pH and dissolved oxygen levels in
the culture medium, allowing for real-time adjustisepH and dissolved oxygen (DO)
are critical parameters to monitor and control iordactors to ensure optimal conditions
for cell growth and bioprocessing.

* pH Measurement: pH sensors, such as glass electrodes, are usewdeure the
acidity or alkalinity of the culture medium. pH donl is crucial for maintaining
optimal enzyme activity and cell growth (33).

» Dissolved Oxygen Measurement: DO sensors, such as polarographic or optical
sensors, measure the concentration of oxygen dessoin the culture medium.
Monitoring DO is essential for preventing oxygemitation and optimizing aerobic
processes (34).

* Online Monitoring Systems and Control Strategies. Advanced bioreactor systems
incorporate online sensors for continuous pH andriéitoring, allowing real-time
adjustments (35). Feedback control systems adjtistnal DO levels using automated
dosing of acid/alkali and oxygen. Proportional-gred-Derivative (PID) control loops
are often used for pH and DO control (36). Regukdibration and maintenance of
pH and DO sensors are essential for accurate nmezasats.

4. Foam Control: Foam can form during fermentation due to the vagsrmixing. Foam
control systems prevent excessive foam from esgapie bioreactor.Foam control
systems are essential in bioreactors to preverdgssike foam formation, which can lead
to cell damage, loss of product, and contaminatidmtifoam agents are added to the
culture medium to reduce surface tension and ssappfeam formation. Common
antifoam agents include silicones, polyethylenegly (PEGSs), and fatty acids (37).Foam
sensors detect the level of foam in the bioreadtagering the addition of antifoam
agents. Controllers automate the addition of aatifo based on sensor inputs
(38).Feedback control systems adjust the additfcentfoam agents based on real-time
foam measurements.Strategies adopted can includ# oontrol, proportional control, or
advanced control algorithms (39). In few Bioreastorechanical foam breakers or foam
knockers are devices that physically break dowmnfdmubbles.They can be integrated
into bioreactors to mitigate foam accumulation (4Bpam behaviour can vary with
bioreactor scale, necessitating adjustments in foamrol strategies.
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5. Sampling Ports. Ports allow for the sampling of culture mediumhenit disrupting the
fermentation process.Sample ports in bioreactoes agrenings designed to allow the
extraction of samples from the culture for monitgrand analysis. They are essential for
assessing parameters such as cell density, md&lmancentrations, and pH during
bioprocesses. The purpose of sample ports faeilitia¢ collection of culture samples
without the need to open the bioreactor, minimizihg risk of contamination.Samples
can be taken for various analyses, including celbility, growth kinetics, and product
concentration (41). They can be designed as sepaated ports or quick-connect
ports.Proper placement of ports ensures representgmpling and minimal disturbance
to the culture (42). They should be designed amsitipoed to maintain sterility and
prevent contamination.Proper sealing and aseptfintgues are crucial (43).Advances in
technology allow for online monitoring and samplimgthout the need for manual
sampling ports. The frequency of sampling anddigath of analysis impact the accuracy
of process understanding and optimization (44).

6. Inlet and Outlet Ports. Ports for introducing fresh medium and removingrépmedium,
respectively.Inlet and outlet ports in bioreact@e essential for introducing and
removing substances to and from the bioreactoet Ipbrts are used to introduce fresh
culture media, nutrients, gases, and other subestaimto the bioreactor. Proper design
and placement ensure even distribution and mindisairbance to the culture (45).Outlet
ports allow the removal of waste products, biomass harvested products from the
bioreactor. Design considerations of these porislude preventing cell sedimentation
and maintaining sterility (46). Some outlet ponts dedicated to sampling for monitoring
and analysis purposes.Proper sampling techniguksegnesentative sampling are crucial
for accurate process understanding. During scalelugng Inlet and outlet port design
one should consider scale-up effects to ensureistens fluid dynamics and process
performance (47). Proper sealing and aseptic tqoksi are crucial in designing and
usage of these ports.

7. Applications of Stirred Tank Bioreactors: Stirred tank bioreactors are extensively used
in Pharmaceutical and Biopharmaceutical productionghe production of antibiotics,
enzymes, proteins, and other bioactive compoundghe pharmaceutical industry
(48,49).They are utilized to cultivate microorganss for high-yield production of
enzymes used in various industrial processes(50191Bse bioreactors are used in the
production of various food and beverage industf@sthe preparation of fermented
foods, beverages, and food additives (52,53).8titaek bioreactors are employed in the
production of biofuels such as ethanol and biodli€s€,55). These are also utilized in
wastewater treatment and bioremediation proce$€e$7).

II. AIRLIFT BIOREACTORS

Constructing airlift bioreactors involves specifiengineering knowledge and
considerations. These can be used for the produgtmcessing involving free or
immobilized, cell or enzymes. Inside the reacterfibid id divided into two components, the
riser and the downcomer by riser tube (58). The pmmments of these bioreactors are
discussed below (figure 3).
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Figure 3: Airlift Bioreactor
[11.COMPONENTSOFAIRLIFT BIOREACTORS

1. Riser and Downcomer Functionality: The riser is the vertical column in which ¢
bubbles rise, creating upward liquid flow. The dwomer is a vertical or inclined pi
that allows the liquid to flow back from the topttee bottom of the reactor, completi
the circulation loop (59).

2. Gas-Liquid Mass Transfer and Circulation Enhancement: The riser is where ge
bubbles are introduced into the liquid phase, pitomgogas-liquid interaction and mas
transfer. The downcomer allows the liquid to floack, ensuring continuous circulati
and contact with the gas phase (60). Their configuratemd design influence ti
circulation pattern, affecting mixing and overadlactor performance (61) and have
impact on overall hydrodynamics and mixing behawioluthe bioreactor. While scalir
up the dimensions and design of riser and downcometdhs considered as they aff
the flow pattern and mass trans

3. Gas Supply: Compressed air or other gases are introduced horiser to creat
gasbubbles that drive the fluid circulatiGas suply in airlift bioreactors is critical fo
providing the necessary oxygen for aerobic cultamed promoting mixing. Typically, a
or other oxygemich gases are supplied to create the circulatidigwid in the bioreactol
Some considerations of air ply include:

* Air Supply and Oxygen Enrichment: Compressed air is commonly used as the
supply in airlift bioreactors. Air bubbles introdeet at the bottom of the riser sect
provide buoyancy, driving the upward flow of lig (62)For oxygen-demanding
cultures, oxygerenriched gases (e.g., pure oxygen or ox-nitrogen mixtures) ca
be supplied. Oxygen enrichment enhances oxygemsfaa rates and bioma
productivity (1).
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Gas Sparger Design: Proper sparger design is crucial for efficient-liquid mass
transfer in airlift bioreacto (figure 4) Sparger type and location impact bubble

and distribution (63).The sparger is the comporleat disperses gas into the cult
medium. It isusually located at the bottom of the riser.Spangsign is a critice
aspect of airlift bioreactors as it directly affeaja-liquid mass transfer, mixin
efficiency, and overall reactor performance. \Masigparger types are used in ai
bioreactos, including porous diffusers, frits, and orificesid each type has differe
bubble size characteristics and gas distributiotiepes (64, The location of the
sparger influences the flow patterns and mixingiefficy in the reactor. It also affec
the circulation of liquid between the riser and doamer (66)

Disc shaped sparger Tube shaped sparger

Figure 4: Spargers used in Bioreactors

Gas Flow Rate Control: Gas flow rates need to be controlled to match thgen
demand of the culture and prevent excessive foaniitass flow controllers c
rotameters areatnmonly used for gas flow rate con (65). Gas supply rates wou
be adjusted carefully during sc-up

Bubble Size and Distribution: Sparger design impacts bubble size distribui
which influences gabquid mass transfer. Smaller bubbles generallyl l&a highet
mass transfer rat€67). When large reactor are used they require multipdegers
Computational Fluid Dynamics (CFD) Modelling: CFD simulations can he
optimize sparger design by predicting flow patteaind mass transfer performa in
internal lood airlift reactors with lo-pressure porous plate spargers.

Impellers or Baffles: Some airlift bioreactors incorporate impellers affles to enhanc
mixing and circulatiorBaffles are commonly used in airlift bioreactors itaprove
mixing, enhance circulation, and promote bette-liquid mass transfeThey help break
the symmetryf the reactor and create swirling flow patteresding to improved mixin
and circulation of liquidContribute to ehanced circulation contributes to better
transfer and more uniform conditic (69). Theyhelp prevent shc-circuiting, where
liquid flows directly from the riser to the downcomeitthvaiut proper mixin which can
reduce mass transfer efficiency. Baffles promotiebaya-liquid interaction, leading t
increased gabquid mass transfer rat and enhancexygen availability for aerob
cultures (70)Their placement, shapangles, and positions can influence fluid dyna
and hence they are to be optimized during scal@ 1.
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5. Cooling/Heating System: Temperature control is essential for maintainingtiroal
growth conditions. Cooling or heating systems may ibtegrated to regulate the
temperature.

6. pH and Dissolved Oxygen Sensors. Sensors are used to monitor pH and dissolved
oxygen levels, enabling real-time adjustments.

7. Applications of Airlift Bioreactors: Airlift bioreactors are a type of bioreactor used f
various applications in biotechnology and industpeocesses. They offer advantages
such as efficient mixing, high mass transfer raaes, relatively simple design.

* Microalgae Cultivation for Biofuel Production: Airlift bioreactors have been used
to cultivate microalgae for biofuel production dt® their efficient mixing and
aeration capabilities. Microalgae can be grownhiese bioreactors to produce lipids
that can be converted into biodiesel (72).

* Wastewater Treatment: Airlift bioreactors are applied in the treatmeritvarious
types of wastewaters, including industrial and i@l wastewaters. They provide
an environment for the growth of microorganismg ttza biodegrade pollutants. This
application is often referred to as the Up flow Arabic Sludge Blanket (UASB)
process (73).

 Fermentation and Enzyme Production: Airlift bioreactors are employed for
microbial fermentation and the production of enzgnaed other bioproducts. The
efficient mixing and oxygen transfer in these bamters can improve yields (74).

* Anaerobic Digestion for Biogas Production: Airlift bioreactors are utilized in
anaerobic digestion processes to produce biogas: fooganic materials. The
anaerobic digestion of biomass in these bioreagjerserates methane-rich biogas
(75).

IV.PACKED BED BIOREACTORS

These bioreactors consist of a bed of packing ma&terhich is made up of glass,
natural materials, glass etc. These are availablaiious sizes and shaped and allow fluids
to flow through. Cell or enzymes are immobilized tin these materials and used for
productions or enzymatic conversions. The nutriemtsubstrate is fed from the bottom of
these bioreactors in a controlled way adjusting/ftate and retention time in these reactors.
The packed bed compartment can be located eithernak or within the reservoir of the
medium

V. COMPONENTSOF PACKED BED BIOREACTORS

1. Support Matrix: The solid support matrix, often in the form of bsar fibres, provides
a substrate for microbial attachment and growthdoked bed reactors, support matrices
are used to provide structural support to the pédked of solid catalyst or adsorbent
particles. These matrices help distribute flow éyemaintain bed integrity, and enhance
mass transfer. The purpose of support matrix is help prevent particle settling,
channelling, and attrition within the packed betiey ensure uniform flow distribution
and enhance overall reactor efficiency (77).Suppwtrices can be of various materials,
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such as ceramics, metals, and polymers, dependiniyeospecific process requirements.
They are available in various geometries, suchngsrsaddles, and spheres (78).

Support matrices influence the hydrodynamics of plaeked bed, affecting
pressure drop and mass transfer. They can promiegiagrand reduce dead zones (79).
Support matrices can enhance mass transfer byirgeatditional surface area for
reactants to interact with the catalyst. They aaprove reactant distribution within the
bed (80).

2. Packed Column: The support matrix is packed into a column or t@aeessel, creating a
bed through which the liquid medium flows.

3. Inlet and Outlet Ports: Ports for introducing the medium and removing tfilient after
passing through the packed bed.

4. Permeable Membrane (Optional): In some cases, a permeable membrane might be used
to contain the support matrix and prevent it frasnaping while allowing liquid flow.

Permeable membranes can be used in conjunctionpaitked bed reactors to
facilitate separation and mass transfer procesBEsnbrane-integrated packed bed
reactors offer advantages such as enhanced séledtivoroved product recovery, and
efficient utilization of catalysts. Permeable mearnes can be incorporated within
packed bed reactors to separate components frome#otion mixture as they enable
continuous separation and reaction processes (8djious types of permeable
membranes can be employed, including polymeric nands, ceramic membranes, and
composite membranes. The choice of membrane matdepends on the process
requirements (82). These allow certain componemtpass through and also improve
separation efficiency in packed bed reactors (83)eésup of membrane-integrated
packed bed reactors requires careful engineeringgiatain performance and efficiency.

5. Few Considerations while Working with Packed Bed Bioreactors:

» The choice of support matrix depends on the apmlicaand the specific
microorganisms being cultured and hence has tamhe darefully.

» Proper flow distribution and avoidance of channegll{preferential flow paths) within
the packed bed are crucial for efficient mass feans

» Efficient nutrient and oxygen transfer to microargans within the packed bed is
essential for optimal growth.In packed bed biorea;tnutrient and oxygen supply is
essential for supporting microbial growth and emgyrefficient bioprocesses.
Nutrient supply methods used include continuouslifee intermittent feeding, and
substrate gradients (84). As oxygen supply is vawycial for aerobic processed
appropriate oxygen supply methods include spargmging, and using oxygen-
permeable membranes are used (85, 86). Large seatdors require modified
feeding of nutrients and oxygenation strategies.

* Proper control and monitoring of nutrient and oxygsupply are crucial for
optimizing bioreactor performance. Online sensoié f@edback control systems can
help maintain optimal conditions.
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6. Scale-Up: Scaling up packed bed bioreactors requires cawfnsideration of factor
such as pressure drop, mass transferitations, and heat transiHydrodynamic
conditions affect mass transfer, mixing, and pressirop in packed beds.Maintaini
similar flow patterns and residence times is ciufoa efficient scal-up (71). As the
reactorsize increases, pressure drojross the packed bed can incre Hence proper
design and packing materials selection mitigateessive pressure dr (87).- Mass
transfer limitations can change at larger scales uchanges in geometry and fl
characteristics henceadjustments in (sign are to be don® maintain effective mas
transfer (88) Temperature control becomes more challengingrget scales due to he
generation and dissipatiTherefore dequate cooling and heating systems are impc
for maintaining optimal conditns (89) Larger reactors may require more sophistic
control systems and online monitoring to ensurblstand reproducible operatio

7. Applications of Packed Bed Bioreactors. Packed bed bioreactors have a rang
industrial applications due to their ability to gapt high-density microbial growth an
efficient mass transfeifhey are used for the production of enzymes used inova
industries, such as food, textiles, anwofuels (90, 91Packed bed bioreactors ¢
employed in wastewater treatment for the removgadfutants and organic compoul
(92,93) . Thegre used in the production of biopolymers and laistats with application
in various industries, including pacging (94,95). Theyare used for the conversion
gases (such as methane) by microbial proc (96) and for the production of biog
from organic waste (97).

VI.MEMBRANE BIOREACTORS

These are combinations of membrane processes lik®@fitiration for the treatmer
of waste water and in the activated sludge proddssse bioreactors are widely used for
treatment of Industrial and municipal waste watdiisese are of two configttions- the
submerged membrane bioreactor (figure 5) and tteestream membrane bioreac

—_—  Effluent /
1~ membrane
Bioreactar

Figure5: Submerged Membrane Bioreactor

1. Types of Membrane Bioreactors. Membrane bioreactors (MBRsS) come in vari
configurations which are as follows (2-108):
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» Submerged Membrane Bioreactor (SMBR): Membranes are submerged directly in
the mixed liquor, with the filtration occurring cide the bioreactor. They are suitable
for various wastewater treatment applications.

 External Membrane Bioreactor (EMBR): The membrane modules are located
outside the bioreactor, and the mixed liquor is pachthrough the membranes for
filtration. These are used for situations wherdifmucontrol is critical.

* Anaerobic Membrane Bioreactor (AnMBR): Combines anaerobic digestion with
membrane separation. They are used in wastewatntent for biogas production
and nutrient removal.

 Hybrid Membrane Bioreactor (HMBR): They combine MBR technology with
other treatment processes, such as activated sladgalvanced oxidation. They
enable enhanced treatment efficiency and removspecific contaminants.

» Anaerobic-Anoxic-Oxic Membrane Bioreactor (A20-MBR): Integrates anaerobic,
anoxic, and aerobic treatment stages with membitiregion. These are suitable for
simultaneous removal of organic matter, nitrogel, phosphorus.

2. Components of Membrane Bioreactors:

* Bioreactor Tank: The main tank holds the mixed liquor, which is théture of
microorganisms, organic matter, and treated water.

* Membrane Module: The membrane module consists of permeable membrdnat
separate the treated water from the mixed liquoemidrane materials include
microfiltration (MF), ultrafiltration (UF), nanofitation (NF), and reverse osmosis
(RO) membranes.Membrane bioreactors (MBRs) combialgical treatment with
membrane separation, providing efficient wastewdteatment and solid-liquid
separation (figure 6).

bioreactor membrane

® .
* * I Cleanwater

** =4

g # Solids and
* # . ¥ micro-organisms retained

Dissolved materials

Figure 6: Schematic Description of MBR Process
(Source- https://en.wikipedia.org/wiki/File:MBR_ Shatic.jpg)

3. Various Membrane Module Configurationsare Used in MBR Systems:
* Hollow Fiber Membrane Modules:. These are commonly used in MBRs due to

their high surface area-to-volume ratio.They cansbbmerged in the bioreactor or
placed outside in a side-stream configuration (98).
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* Flat Sheet Membrane Modules. Flat sheet membranes can be arranged in a plate-
and-frame configuration. Plate-and-frame modulevige easy access for
maintenance and cleaning (70)

» Spiral-Wound Membrane Modules: These are used for high-flow applications and
are commonly associated with reverse osmosis mermabrBhese modules are often
used in conjunction with MBRs for advanced treattr{f).

* Tubular Membrane Modules: These consists of long tubes where membranes are
installed.These modules are less common in MBRamtayt be used for specialized
applications (100)

* Hybrid Membrane Modules. Hybrid modules combine different types of
membranes or configurations for enhanced performaftese modules are designed
to address specific challenges, such as foulirggir solids content (101).

4. Aeration System: Aeration systems in membrane bioreactors (MBRs) plarucial role
in supplying oxygen to support microbial growth arthance membrane fouling control.
Modes of aeration used include diffused aerationarse bubble aeration, and
microbubble aeration. Microbubble aeration is offgeferred for its enhanced oxygen
transfer efficiency and reduced membrane fouling2f1 Fine bubble aeration systems
when used they can create smaller bubbles, wmblareee mass transfer and oxygen
utilization. And contribute to efficient oxygen trsfer (103).

 Membrane Module Integration: Aeration systems need to be integrated within the
membrane modules to ensure uniform oxygen distdbut Bubble size and
distribution impact fouling control (98).

 Membrane Fouling Control: Proper aeration helps control membrane fouling by
preventing excessive deposition of solids on thenbrane surface.Adequate aeration
maintains shear forces that prevent fouling (101).

* Pump and Filtration System: A pump system draws the mixed liquor through the
membrane module, and the filtration system separtite treated water from the
biomass.

* Permeate Collection: The treated water, known as permeate, is collected
removed from the system.

5. Sludge Discharge: Excess biomass, known as sludge, is removed fnenbibreactor to
prevent excessive accumulation. This is a crugpeat of membrane bioreactors (MBRS)
to maintain proper solids retention time, preverdessive accumulation of biomass, and
ensure efficient operation. Various methods ared use sludge discharge in MBRs,
including intermittent or continuous withdrawal, agity settling, and hydraulic
backwashing.Proper sludge discharge prevents slbdgdup and membrane fouling
(104). Sludge discharge frequency and duration ldhbe optimized based on reactor
size, solids concentration, and process requiresnent

6. Consideration in Membrane Bioreactors (105):

« Membrane Selection: The choice of membrane material and pore sizerikgpen
the desired separation efficiency and the chanatitey of the wastewater.
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* Hydraulic Retention Time (HRT): The HRT determines how long the mixed liquor
stays in the bioreactor, affecting treatment edficiy.

* Aeration Rate: Proper aeration is necessary to maintain the Bsncancentration
and ensure effective treatment.

* Fouling Control: Membrane fouling, the accumulation of solids on thembrane
surface, must be managed to maintain system peaforen

7. Applications of Membrane Bioreactors. MBRs have diverse applications in various
fields due to their ability to combine biologicakatment with membrane separation.
They are widely used for municipal and industnehstewater treatment, offering
enhanced effluent quality and smaller footprint paned to conventional treatment
methods (98).MBRs can be used for water reclamati@hdesalination, producing high-
quality water for various non-potable and portadgplications (109). They are used in
bioconversion processes for the production of lmdpcts, enzymes, and biofuels from
various feedstocks (110).MBRs are used in the toatibeverage industry for wastewater
treatment and the recovery of valuable byproduttd)(These reactors are also employed
for the removal of pharmaceuticals and personak garoducts from wastewater,
contributing to environmental protection (112).

VII.FLUIDIZED BED BIOREACTORS

These reactors are like packed bed reactors, gatite bed of smaller size particles.
These reactors overcame the disadvantage of pdwmk@deactor in that, the problem of
clogging, high liquid pressure drop, channellingl dred compactions are prevented. They
allow use of high concentration of biocatalyst gomith no limitations to free cell count
(113). Constructing fluidized bed bioreactors imed specific engineering knowledge and
considerations (figure 7).

Gas bubble\

Solid particle.__| g

Figure 7: Fluidized Bed Bioreactor
(Source- https://en.wikipedia.org/wiki/File:Fluidid Bed_ Reactor_Graphic.svg)
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1. Components of Fluidized Bed Bioreactors (114-116):

» Reactor Vessal: The main vessel holds the solid particles (suppmtrix) and the
liquid medium containing microorganisms.

» Gas Distribution System: An arrangement to introduce gases (usually amnfthe
bottom of the reactor to create fluidization ofidgarticles.

» Support Matrix: Solid particles or carrier materials provide aface for microbial
attachment and growth.

* Aeration System: Aeration provides oxygen and mixing within the atea,
facilitating mass transfer and microbial activity.

e Pump and Filtration System (Optional): If needed, a system to recirculate the
liquid medium through the reactor and filter théusint.

Most of the aspects were dealt in detail in padbedi reactors

2. Applications of Fluidized Bed Bioreactors: Fluidized bed bioreactors find applications
in various fields due to their efficient mixing, lanced mass transfer, and ability to
handle a wide range of materials. They are usedtHertreatment of industrial and
municipal wastewater, offering efficient removal pdllutants and nutrients (117,118).
They are employed for the bioremediation of contertad soils, sediments, and water
bodies (119).Fluidized bed bioreactors are utilized the production of biohydrogen
through anaerobic fermentation processes (120)y Tdre employed in biorefinery
processes to convert biomass into valuable prodiketbiofuels and biochemicals (121).
Fluidized bed bioreactors are used for coating wocapsulating particles, such as
pharmaceuticals or agricultural inputs (122).

3. Variationsin Fluidized Bed Reactors (77, 123-125) :

* Bubbling Fluidized Bed Reactor: In this configuration, solid particles are fluid
by upward-flowing gas bubbles. Gas and solid pladiare in intimate contact,
allowing for efficient heat and mass transfer.

» Circulating Fluidized Bed Reactor: Solid particles are entrained in a fast-moving
stream of gas, creating a circulating loop of soletween the riser and downcomer
sections. They are often used in processes likdastion and gasification.

» Spouted Bed Reactor: It features a central gas injection that creatésgh-velocity
gas jet, causing the solids to circulate in an Ermegion and is used for mixing, heat
transfer, and chemical reactions.

» Jet-Fluidized Bed Reactor: In this configuration, gas jets are introducedrfrthe
bottom, creating localized fluidization zones.sltuseful for exothermic reactions and
heat-sensitive materials.

* Internally Circulating Fluidized Bed Reactor: It combines features of bubbling and
circulating fluidized bed reactors. It providestbetcontact between solids and gas,
suitable for endothermic reactions.
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VIIT.PHOTOBIOREACTORS

Photobioreactors are specialized bioreactors dedigfor the cultivation of
photosynthetic microorganisms, such as microalgaecganobacteria, under controlled light
conditions. These bioreactors provide optimal ligixposure, temperature, and nutrient
supply to enhance the growth and productivity @fsth organisms for various applications
including biofuel production, biomass generatiam] anvironmental remediation.

1. Components of Photobioreactors ( Figure 8)

PVC cap

TransparentPVC pipe
\

Microalgae -

Air bubbles = | L ]
. Air+1.5% CO2

Bell end reducer

Weightand air stone

Valve | | ——» Harvest
microalgae

Figure 8: Basic Construction of Bioreactor

 Light Source and Light Distribution System: The light source provides the
necessary energy for photosynthesis. In outdootesys sunlight is used, while
indoor systems may employ artificial light sourcesch as LEDs. The light
distribution system ensures even light exposureutnout the culture to prevent
shading effects and promote uniform growth (126).

» Cultivation Vessel: The cultivation vessel holds the microalgal cultaral is usually
transparent to allow light penetration. It can comevarious shapes, including
tubular, flat-panel, or bubble column designs (127)

* Mixing and Aeration System: Mixing ensures uniform distribution of nutriergad
prevents sedimentation of cells. Aeration provitles necessary carbon dioxide and
oxygen exchange for photosynthesis and respirti?8).

 Temperature Control System: Microalgal growth is temperature-sensitive. A
temperature control system maintains the desiregpéeature range for optimal
growth and prevents temperature fluctuations (129).
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Nutrient Supply and Monitoring System:Nutrients like nitrogen and phosphorus
are essential for microalgal growth. The nutrieop@y system delivers these
nutrients in appropriate concentrations, and maonigosystems ensure that nutrient
levels remain within optimal ranges.

pH Control System:Maintaining a proper pH level is crucial for miclgal growth
and biochemical reactions. pH control systems hegulate the pH by adding acids
or bases as needed (131).

Harvesting System:When the microalgal biomass reaches the desireceatration,

a harvesting system is used to separate the celis the culture medium. Various
methods, such as centrifugation, filtration, amtt¢ulation, can be employed.

2. Typesof Photobioreactors:

Tubular Photobioreactors. Tubular photobioreactors consist of long transparen
tubes where the photosynthetic microorganisms iacalated (figure 9). They can be
arranged in a horizontal or vertical configuratidmght is typically provided using
natural sunlight or artificial light sources. Tuulphotobioreactors are often used for
large-scale cultivation due to their scalabilit2§).

‘ >

4

.
T
2

7' -
L]

"

:

Figure 9: Tubular Photobioreactors
(Source- By IGV Biotech - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=25G79)

Flat-Panel Photobioreactors. Flat-panel photobioreactors consist of transparent
panels illuminated by sunlight or artificial ligfffigure 10). They are suitable for both
laboratory and small-scale outdoor cultivation. Sébioreactors offer precise control
over light intensity and can be stacked to increagivation capacity (127).
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Figure 10: Flat Panel Bioreactor
(Source- By IGV Biotech - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=25G78)

* Bubble Column Photobioreactors:Bubble column photobioreactors consist of a
vertical column in which microalgae are suspendgdding air bubbles. The bubbles
provide mixing, aeration, and light exposure. Tlaag suitable for photosynthetic
organisms that can tolerate mechanical stress ddnyskeubbling (128).

» Bag Photobioreactors. These use plastic bags or transparent contaioensltl the
microalgal culture. They are easy to set up anthlsié for small-scale applications or
research purposes. Bag photobioreactors offer d-eflestive way to grow
microalgae (132).

» Panel Photobioreactors. The bioreactors consist of flat panels that anmatiouously
rotated to ensure uniform light exposure on baodlesiof the panels. This design helps
maximize light utilization and biomass productiv{ty33).

* Applications of Photobioreactors: Photobioreactors have a wide range of
applications due to their ability to cultivate pbsynthetic microorganisms efficiently.
They are used to cultivate microalgae and cyanebadbor the production of biofuels
like biodiesel, bioethanol, and biogas (134).Phateactors are used to produce
microalgae rich in nutrients, antioxidants, and gei8 fatty acids for nutraceuticals
and functional foods (135, 136). They find theiplgation cultivate microorganisms
for the production of pharmaceuticals, enzymes, aather bioproducts
(126).Photobioreactors can be used to capture cadomxide emissions and treat
wastewater by utilizing microalgae's ability to m@me nutrients
(137).Photobioreactors integrated into buildinghfeyes can contribute to indoor air
quality and reduce carbon dioxide emissions (138).
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I X.PERFUSION BIOREACTORS

Perfusion bioreactors, also known as continuoms-fbioreactors, are systems in

which fresh culture medium is constantly suppliedhe bioreactor while spent medium is
simultaneously removed. This setup allows for thentinuous growth of cells or
microorganisms, making them particularly useful &pplications that require stable and
prolonged cultivation. Important features of thBsereactors include:

1.

Continuous Nutrient Supply: Perfusion bioreactors provide a constant suppgly o
nutrients to the growing cells, maintaining optimatrient levels and preventing nutrient
depletion. This feature is crucial for the sustdigeowth of cells over extended periods
(139).

Provide Stable Environment: By continuously removing waste products and
maintaining a consistent environment, perfusiorrdaotors offer a more stable culture
environment compared to batch systems. This shals#in lead to improved cell growth
and product yields (140).

Higher Cell Densities: The continuous removal of inhibitory metabolitewak cells to
be cultured at higher densities without reachingcttevels. This is particularly valuable
for applications that require high cell densitissch as the production of therapeutic
proteins (141).

Reduced Metabolic Variability: Continuous cultivation minimizes the fluctuations i
metabolite concentrations that are commonly obskenmvdatch cultures. This can lead to
more consistent and predictable production of n@dit@s or bioproducts (142).

Long-Term Experiments and enhanced productivity:Perfusion bioreactors are suitable
for long-term experiments, such as studies invgi\sfow-growing or sensitive cells, as
they can be maintained in a controlled environnf@néxtended periods (143).

Enhanced Productivity: The continuous nature of perfusion bioreactors kesabigher
productivity for cells or organisms that requireesific growth conditions. This is
especially relevant in industries such as pharnta@ds and biomanufacturing (144).

Components of Perfusion Bioreactors (figure 11):

s

Perfused =
medium

e m

Figure 11. Perfusion System Representation
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8. TheFollowing arethe Components of Perfusion Bioreactors (145, 146 ):

e Culture Chamber: The main vessel where cells or microorganismsatered and
media is continuously circulated.

* Media Ddlivery System: Pumps and tubing are used to deliver fresh medaathe
culture chamber at a controlled rate.

* Cdl Retention System: Devices such as filters, membranes, or screeamreells
within the culture chamber while allowing media lkeange.

 Waste Removal System: Used media and waste products are removed from the
culture chamber and collected for further processin

* Sensors and Control System: Sensors monitor key parameters like pH, dissolved
oxygen, and cell density, while the control systeagulates media flow and other
conditions.

9. Considerationsin Perfusion Systems (147):

» Cdl Retention: Choosing an appropriate cell retention systenssemtial to prevent
cell washout while ensuring efficient media exchang

* Media Composition: The composition of the media needs to be caretidiytrolled
to provide optimal nutrients and maintain cell \ii&p

» Scaling Up: Scaling up perfusion bioreactors requires conattanrs for maintaining
uniform media distribution and controlling shearcies.

10. Applications of Perfusion Bioreactors based on their construction: Perfusion
bioreactors come in various variations to suit edéght cell types, applications, and
process requirements.

 Tangential Flow Filtration (TFF) Perfusion Bioreactors. These utilizes a
membrane filter to separate cells from the cultaeglium, allowing continuous media
exchange while retaining cells. They are commordgduin the biopharmaceutical
industry for monoclonal antibody production (148).

* Hollow Fiber Perfusion Bioreactors. Cells are cultured within hollow fiber
membranes, allowing continuous perfusion of mediaone side and waste removal
on the other. These are suitable for high-densiliyoulture and bioproduction (149).

* Microcarrier-Based Perfusion Bioreactors: Cells are attached to microcarriers,
which are continuously circulated in a culture ws3hese are used for scalable
production of adherent cells and stem cells (150).

» Single-Use Perfusion Bioreactors: Utilizes dispésatbmponents to minimize the
risk of cross-contamination and simplify cleanifdiese are gaining popularity in
biopharmaceutical manufacturing (151).

* Dual-Perfusion Bioreactors: They utilizes two separate perfusion loops for ined
delivery and waste removal, allowing enhanced cbndwver nutrient supply and
waste removal (152).

11. Applications of Perfusion Bioreactors in General: Perfusion bioreactors find

applications in various fields due to their abilioyprovide continuous and controlled cell
culture conditions. They are widely used for thedoction of therapeutic proteins,
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monoclonal antibodies, and other biopharmaceuti@d¥ They are used to expand and
differentiate stem cells for regenerative medici{i®3) and tissue engineering for
transplantation and regenerative medicine (154xfuBion bioreactors are used for large-
scale expansion of cells for cell-based therapaelsimmunotherapy (155).

X. CONCLUSION

Bioreactors are the vessels which are being used several years for the production
of many important biomolecules of medicinal andusitial importance. The production of
high- value products has gained its important whi design of bioreactors that are carefully
engineered to suit the need of the cells or enzymeeyy used, their nutritional requirement,
oxygen and pH requirements etc. Today Bioreact@sraiegrated and automated that enable
continuous monitoring of the process of productmmversion or transformation. Their scale
varied from few milli liters to gallons and eachngoonent of it is carefully fabricated to
contribute to better production formation. They &eing used for microbial, plant and
animal cell in various research labs. One has tmsh the appropriate bioreactor that suits
the needs of the reaction or the cell for conversictake place.
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