Trends in Contemporary Mathematics
e-1SBN: 978-93-6252-646-5
IIP Series, Volume 3, Book 3, Part 9, Chapter 1

CERTAIN REDUCTION FORMULAE FOR SRIVASTAVA-DAOUST

TYPE SERIES

CERTAIN REDUCTION FORMULAE FOR
SRIVASTAVA-DAOUST TYPE SERIES

Abstract

Many of the Physical, Astrophysical,
Statistical, and Mathematical problems can
be solved by wusing the allied special
functions. Specifically, various multiple
hypergeometric ~ series and  reduction
formulae can be applied to solve such
problems. The aim of the present chapter is
to derive certain classes of the reduction
formulae for the Srivastava—Daoust type
doublehypergeometric series. To prove these
reductions, we use one of the extension
results on the Bailey transform developed
and studied by Joshi and Vyas in 2005.We
also obtain some well-known formulae, e.g.
the Kampé de Feériet reduction formula, the
Euler transformation formula and Whipple’s
quadratic  transformation  formula, on
particularization of some reduction formulae.
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I. INTRODUCTION
The Gauss hyper geometric series is
L.ab  a@+Dbb+)2*  a@+D--(@rn-Hbpb+D)--(b+n-1) 2"
c c(c+1) 21 c(c+D---(c+n-1) n!
1)

This series was studied by the famous German mathematician C.F. Gauss [1].

The part a(a+1)---(a + n—1) in “(1)” in terms of Pochhammer’s symbol is denoted by
@, =a(@+dh---@a+n-),D,=n',n=>1 2)

For n=0, the values of (a),is equal to 1. Similar interpretation is for other Pochhammer’s
symbol, (b),and (c),, present in “(1)”.

Thus, “(1)” in terms of Pochhammer’s symbols given by:

;F(a,b;c;z)= i(a)”(b)”i = zF{a' S z},cqu{O} 3

The series in “(3)” is convergent if |z|<1. Eq. “(3)” is convergent if it terminates, i.e., when
a or b are negative integer or zero. However, for |z|=1, it converges if Re(c—a-b)>0and
diverges ifRe(c-a-b)<0. If0O>Re(c-a-b) >-1 z=1, the series “(3)” converges
conditionally, see [2, p. 18].

Also, when a =-mor b=-m where m=0,1 2,...and c=-kwhere k=m m+1... in “(3)” then
the series “(3)” terminates otherwise it becomes meaningless.

The generalization of “(3)” is as given below:

Oy & ) = (al) (a ) Z (a ) :|
F = , 4
”L}l, 5 } 2B, P [(ﬂ) ’ ®
which have arbitrary number of numerator (¢, ) and denominator (s,) parameters.

Note that r and s are either zero or positive integers and the argument z may take any real
or complex value, provided none of the bottom parameters (s,) in “(4)” is zero or negative

integer. This generalized hypergeometric function is convergent or divergent with the
following restrictions:
(i). Converges for allzif r <s; for all |z|<Lif r=s+1 and for |z|=1with
r=s+1 if

Re@ﬂj_ iaj) > 0, (5)

(if).  Diverges foreveryz, z#0, if r>s+1;
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The generalization of “(3)”’can be given by either increasing numerator and
denominator parameters, as we have shown in“(4)”or by increasing the arguments. Such
series are called multiple hypergeometric series, e. g.Appell functions in two variables,
Kampé de Fériet functions, Horn’s functions, Srivastava’s triple hypergeometric series,
Srivastava—Daust series etc. Several authors worked on the reductions and transformations
for these multiple hypergeometric series, see ([3],[4].[5].[6].[7], [8], [9].[10]) and references
therein. The applications of multiple hypergeometric series in solving a vast number of
Physical, Statistical and Mathematical problems can be found in ([11],[12],[2],[13], [14],
[15]) and references therein.

The utility of the reduction formulae for certain classes of double series is discussed
in several research papers, see([16], [17], [18], [19], [20]) and references therein. They have
shown that certain reduction formulae for multiple hypergeometric series are applicable in
solving astrophysical problems, queuing theory and related stochastic processes, physical and
quantum chemical problems, boundary value problems (heat equation) and in the derivation
of radial wave functions. The reduction formulae for Srivastava—Daoust hypergeometric
functions have been studied and investigated in a number of papers ([21],[22],[23],[24], [25],
[26], [27] and references therein).

In this chapter, we focus on investigating certain Srivastava—Daoust type reduction
formulae. Certain reductions are interesting generalizations of some well-known
hypergeometric functions e.g. the Euler transformation formula, the Whipple’s quadratic
transformation and one of the Kampé de Fériet reductions.

The Kampé de Fériet function with an arbitrary number of numerator and
denominator parameters and two arguments is as follows:

(a,):(0y)i(c,);

pia;k

I:m;n Xr y
(@) (Bn)i (74);
b ] . (6)
o TT@)eTTOD T,
= i=t =1 j=1 Xy
| n lel
rYSZOH(aJ—)r-FS (ﬁj)r (7j)s s
j=1 j=1 j=1
where the convergence condition is,
i) p+g<l+m+L p +k <1 +n +1,
[ x| < oo, |Yy| < oo,
or
(i) p+g=l+m+L p +k =1 +n +1, @)
N 1
IX[P + [y P < g if p>1
max {|x||yl} <1 ifp <
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The Srivastava—Daoust series [2, pp. 26-28], also referred to as the generalized Lauricella
function of several variables is as follows.

X 0" o™ b b™): 6 7.
ren ||| (@000 {000 il 00
D " o [(CC):y/',..,,l// J:[(do'):5'13“';[((1&1)):5(”)]; @®)
o XM X;nn
R Lyt
where
H mlU+ " H(b )m1¢ "’H(bfn))mm")
Q(m,...,m)=- c - (9)

[ W++w>H< R ) (CHON

j=1

For further details on notations and convergence conditions for “(8)”, please refer to
[7] and [9, pp. 157—-158]. Eq. “(8)” reduces to “(6)” when n =2

Note that, in many of the papers concerning reductions or transformations of
Srivastava—Daoust double hypergeometric series, the parameterso, ¢, w and s ’s appearing

in“(8)” to “(9)” are given some particular constant values. For example, see [24]. With the
help of one of the extension results on the Bailey transform (“(10)” and “(11)”), we can
express these parameters in terms of pthat can be assigned any arbitrary integer values. The

results with arbitrary values of these parameters are not available in the literature till date.
Moreover, it is always possible to derive general reduction formulae involving arbitrary
bounded sequence Q(n) of complex numbers in place 5,, provided that the involved series

are convergent. Further, the obvious and straightforward generalizations of the results of this
paper to reductions or transformations of (m+1)fold series to m—fold series can always be

developed after getting the idea of applying Saalschiitz summation theorem used in this
chapter.

One of the two extension results on the Bailey transform [28] due to Joshi and
Vyas [29]is stated as follows:

If
n
= Zarun rVn+rtn+2r pn— er n+r and (10)

= Z5rur nvr+nt2n+r pr— an r+n

then, subject to convergence conditions

Zanyn = Zﬂn5n (11)

n=0 n=0
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where ¢, s, u, ,v,,w,,t, and z_are any functions of ronly and pand p' are any arbitrary

integers. We use two transforms given in “(10)” to derive the reduction formulas stated in
Section 2.

This chapter has three sections. The additional reduction formulae and their
derivations are given in Section 2. The particular cases of certain reduction formula are
discussed in Section 3.

II. REDUCTION FORMULAE FOR SRIVASTAVA-DAOUST TYPE FUNCTIONS
AND THEIR DERIVATIONS

In this section, first we state the reduction formulae for Srivastava—Daoust type
functions and then demonstrate the proof of reduction formulae one by one.

D+111
G+1.0;0

{[%11,1],[2:p+1,p]:[a:1];[k—a—z:1]; ]
X, X
[gg: 11, [k:p+1pl:—;—;

(12)
d,, k-2, A(p;z),A(p+1;k-a);
:D+2p+2FG+Zp+1 Xl
e, A(p+1:K),A(p;k —a);
I [dy:11],[z: p+1 pl.[v:21]: ——;
e [06: LA, [k:p+1 p]: L+v+z—-k:1];—; R
dy, v, k—z, A(p;2), (13)
= F,
D+2p+2° G+2p+l gG' A(p+l,k),A(p—1,k—V),
APV p(
1+v+z—k; (P=D* (p+D)°* |
D+1'1‘1|:[dD A, [w:p=-1p]: [a:1];[j—a-w:1]; }
FG+1:6;b . X, X
[96:11, [i:p-Lpli-; = (14)
dp, j—w, A(p;w+a),A(p-1;w);
— E X1
D+2p " G+2p-1 gG,A(p—l,W+a),A(p,j),
bi200 [dy:11], [w: p-1, pl.Iv:2,1]:—;—;
G+11;0 . . —% X
[06:L1, [j:p-1 pl:[l+v+w—j:1];—
(15)
dp, Vv, =W, A(p—1,w), A(p+1;,w+V); (p-1P"*(p+1)"*
= Di2p+2 Foiz p+l -X 2p :
Js, A(P; J), A(pW+Y), 1+v+w—j; P
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D+1.0;0
G+1:2;,0

[ [dy 11, [z: p+2, p+1] —-; }
X, X
[9¢:L1). [j:p-L pl:[h:2], [2+z-j-h:1];—;

dy, A(p+1;2),A(p+1;h+j-1),

“D+3p+ I:+ +
G3"Zlge,A(p;j),A(p;h+1—1),A<p;1+z—h), (19

A(p+1;1+z-h); X[(pﬂ)pﬂ]s |
2+z-h-j,h; p°

[dp:11], [z:p+3,p+2]:——;
o230 X, X
[9¢:L 1, [j:p-1,p], [f:22):[2+2—j—v:1];—;
le A(p+2!Z)lA(p+2! f +J_1)1
:D+3p+5 FG+3p+4 N . (17)
Oe, A(P+1; f+j-1),A(p;1+z-f),A(p;)),A2; f),
A(p+1;1+z-f); ((p+2)p+z ]2
X| ——— | |.
2+72-f—|; 2p®
[dy:11],[z: p+2,p+1):— [f+ j—z-1:1];
Fovsna _ -X, X
[9c: L4, [i:p-Lp) [f:21]:=—;
{dD, A(p+1;2),A(p+2; f+j-1), (18)
= D+3p+3 FG+3 p+2 . .
Oe: A(P; §), A(p+1; f + j-1),
A(p;l+z-1); ) (p+2)°
A(p-1:1+z—f), A@2; ); 2(p-p** |
5100 [dp 11, [z:p+4,p+3]:=—; .
S 1ge LA [is p=L pl [ : 20 [24+2— j— F:20]i—;—;
dy, A(P+32),A(p+2; f +]-1), (19)

:D+3p+7FG+3p+6 . i .
LG, A2;1),A(P; )AQR; 242 =), A(p+1; T+ j-1),

A(P+21+z-1); (4 2)2pd(py3)d
X :
Alp+L1l+z-f); 2 p"(p+1)*"H
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{[dD 14 [z:p+L pl:=;[h+ j-z-11]; ]
Foms _ -X, X
[gG :11 1]1 [J p—l, p] [hl]r -
(20)
dy, A(p;2),A(p+1;h+ j-1),A(p;1+2-h); (p+1)™"
= D+3p+1 G+3 =X = |-
" ge A APIh+ DN A(P-L1+2-h);  (p-D°
Dl_o_{[doilll]v[ﬂp|p—1]i—;[j—Z—u:1],[u:1]; }
Fe-100 _ X, X
[9¢:L 1, [J:p-Lp]:=—
(21)
B do, A(P=1;2),A(p; j-u), A(p;u+2); v
T D+3p-1" G+3p-2 gG|A(p,J)YA(p—]_,J—u),A(p—l,u+Z), (p_l)pfl .
D [dD :111]1[W: p_lv p],[V:Z,l]:—;—;
S ~X, X
CM9s 11 [k p, p-1] =L+ v+w—k:];
dp, v, A(p+1;w+v), A(p—-1;w),
= D+3p G+3pl{ (22)
gG’ A(prk)v A(p;W+V)1A(p_2;k—V),
A(p-1;k-V); X(p_l)z(p—l)(p+l)(p+1)
1+v+w—k: (p-2)"7p* '
[[dD 11, [w: p-1,plL[v:21]: [k —-v-—w1];—; }
Foioo X, X
[96:11], [k:p+1 p]:=—;
(23)
dp, v, A(psk=V), A(p-1;w), A(p+1;w+V);
= D+3p+l' G+3 X|.
? ’ Os, A(p+L:k), A(p;w+Vv),A(p-1;k-V);
. [[dD 11, [w: p-1 p)i[k—e-w-1:1];—; ]
ey —X, X
[9c:11 [k:p-1 p-2]:—;[e:1];
(24)
dy, A(p;k+e-1), A(p-1;w),A(p-1;1+w—e); p?
=pi3p-2 Mei3p-3 = |
’ "1 0, A(p-1;k), A(p-2;1+w—e), A(p-Lk +e—1),e; X(p—z)p
- [d;:1,1], [3a:3,1): ——; X
X
" |[9e:L1: [h:1), [%+3a-h:1];—; 4 }
(25)

dy, 3a,2+3a-2h,2h-3a-1;
T D+3' G+2 gG, h, %+3a—h;
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1. Derivations of the results (12) to (25): To obtain the reduction formulae “(12)” to “(25)”
listed in Section I, we set different expressions fore,,s, u, ,v,,w,.t. and z,in“(10)”, which
yields y and, closed form for g when the Saalschitz summation theorem [28, p. 243,
“(II1.2)"] is applied. The final results are obtained with the help of “(11)”.Note that, D
and G are positive integers, while pand p'are arbitrary integers.

e Choosing
n k_ _ n
a, = (a)nnlx , 0, = ( an|z)n X L2, = E;;" and p=p'in “(10)” and using “(11)”, we get the
reduction “(12)”.
H (_X)n Xn (Z) : 13 2 : 113 2
e Selecting ¢, =—————,u,=—,z,=-—" and p=p'in “(10)” and using “(11)”,

(I+v+z—k) nt" " " " (k)
we obtain the reduction “(13)”.

e Letting
Q, = (a)nnlx ,u, = (i _a;'W)” X W, = ((VJV))” andp=p'in “(10)” and using “(11)”, we get
the result “(14)”.
1 _ (_X)n _ Xn _ (W)n _ T 99 .
e Selecting «, STl Uy = Wy = 0, v, =(v), and p=p'in “(10)” and using
“(11)”, we obtain the reduction “(15)”.
e Selecting «, = X u X W= z,=(z),and p=p'in “(10)” and

(2+z=h=j) (), nt" " " " (j)°
using “(11)”, we obtain the result “(16)”.
Choosin X X oy o () and  pr=p+2in
) R e N TR (R
“(10)” and using “(11)”, we obtain the reduction “(17)”.

: —x)" f+j-z-1) x" :
e Lettinge, :ﬂ, u, :M, W, :_i, v, :L, z,=(z) and p'=p+lin
n! n! (1), " (f), "
“(10)” and using “(11)”, we obtain the result “(19)”.
e Selecting an:X—n,u X =Ly - ! z,=(z), and p'=p+3in

ntt ol (), " (2+z=f—j) (f), "
“(10)” and using “(11)”, we obtain the reduction “(20)”.

1 _(_X)n _(j+h—Z—1)an _ 1 _ " . 113 ’
e Letting «, =)t u, = . , W, G z,=(z),and p'=pin “(10)” and

using “(11)”, we obtain the result “(21)”.

° Takingan=%,Un=(U)n(J_u_Z)nX ’an 1 ’ Zn:(z)nand p':p—lin 66(10)79 and

n! (i),

using “(11)”, we obtain the result “(22)”.
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e Selecting ¢ :(_X)n,u = X W =(w) , z =i,v =(v).and p'=p-1in
"ol T (L+v+w—k) nt" " (k)" "
“(10)” and using “(11)”, we obtain the reduction “(23)”.
. K—v-w) X" n .
e Taking «, =w, u, . w, =(w) , z, =i,vn =(v). and p'=pin “(10)” and
n! n! " (k), "
using “(11)”, we obtain the reduction “(24)”.
1 (k +e_W_1) (_X)n Xn l . 13 b3
= n = = = e— I: —2
e Lettinge, " R ORD w, =(w) , z, o) and p'=p-2in “(10)

and using “(11)”, we obtain the result “(25)”.

B
4 Uy =, t,=(3a) in “(10)” and using “(11)”, we
(h) (3+3a—hj n! n n

n{ 2 ) :

obtain the reduction “(26)”.

e Choosing «, =

1. PARTICULAR CASES OF INVESTIGATED RESULTS

The reductions stated in previous section i.e. “(12)” to “(25)” have arbitrary variables
p, Dand G. By assigning different integer values to these variables p, D and G, we obtain the
well-known results, e.g., the Kampé de Fériet reduction formula, the Euler transformation
formula and the Whipple’s quadratic transformation formula as recorded in [2, p. 28, “(34)”]
and [30, p. 60] and[31, p. 633, “(E.4.3)”], respectively, are obtained.

1. Choosing p=0 in “(12)”, a Kampé de Fériet reduction formula [2, p. 28, “(34)”] follows.
2. Selectingp=D=G=0 in “(13)”, the well-known Whipple's quadratic transformation [31,

p. 633, “(E.4.3)”] follows.

3. The “(12)” is a generalization of both the Euler transformation[30, p. 60] and the Kampé
de Fériet reduction given by [2, p. 28, “(34)”]which follows respectively, when
p=D=G=0andp=1.

4. Eq.“(15)” is a generalization of both Whipple’s quadratic transformation[31, p. 633,
“(E.4.3)”]and Horn’s H, reduction:

H, [v, wil+w+v—j, j; —x, x]

V, j-w, A(2;w+V); (26)
—4x |,

:4F3 . .
1+w+v—j, w+v, j;

which follows respectively, when p=D=G=0 andp=1 D=G=0.
5. Whenp=D=G=0 in “(16)”,the Whipple’s quadratic transformation given by [31, p. 633,

“(E.4.3)”] follows.
6. The “(20)” generalizes and unifies the Horn's H, reduction as mentioned in part “(iv)” of

this section and the Kampé de Fériet reduction mentioned in[2, p. 28, “(34)”], which
follows when p=1,D=G=0 and p=0, respectively.

Copyright © 2024 Authors Page | 198



Trends in Contemporary Mathematics

e-1SBN: 978-93-6252-646-5

IIP Series, Volume 3, Book 3, Part 9, Chapter 1

CERTAIN REDUCTION FORMULAE FOR SRIVASTAVA-DAOUST
TYPE SERIES

7. The “(21)” generalizes the Kamp¢ de Fériet reduction mentioned in [2, p. 28, “(34)”],
which follows whenp=10r p=0.

8. Choosingp=D=G=0in “(23)”, the Whipple’s quadratic transformation given [31, p.
633,%“(E.4.3)”] follows.

9. When h=a +§ in “(25)”, we obtain a Srivastava—Daoust transformation due to [21, p.

21].Note that, the Gauss theorem cannot be applied in the right side of “(3.1)”, see [21, p.
24] since convergence conditions of Gauss theorem are violated.

Further, for D=G =0, “(25)” also generalizes the Bailey's cubic transformation given by
[32, p.190] for ,F,(X).
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