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. INTRODUCTION

Rothman (2017) notes that Earth survived catalicopvents before the evolution of
life. Changes in atmospheric gases, climate, amdetimergence of photosynthesis were
correlated with the presence of oxygen (Kump, 2008 "Great Oxygenation Event" was a
prerequisite for these rapid events (Lyons et 2014), and cyanobacteria have been
advocated as an ancient terrestrial form of lifacei primordial times (Drews, 2011;
DiGregorio, 2007). The earliest fossil record ofgbacteria dates back 3.5 million years,
during the Precambrian period, and they likely pthya significant role in producing oxygen
in the atmosphere due to their photosynthetic aapeb (Schopf, 2000).

The viewpoint that cyanobacteria are an anciennfof terrestrial life is further
substantiated by well-established algal fossil réso such asEosynechoccus amadeus
Hofmann 1976, the unicellular Cyanobacte@heothece coerulea Geitler nom.rejic.1928,
and silicified fossils ofthe Palaeopleurocapsa genus (Willmer and Rasser, 2022; Knoll,
2008). Additionally, cyanobacteria's wide rangdadérance in toxic environments (Parikh et
al., 2006), exposure to ultraviolet radiation (Siret al., 1996), ability to thrive in Mars-like
conditions (Baque et al., 2013), hot springs (Baast al., 2016), saline and hypersaline
environments (Sorensen et al., 2005a) further bomaie their primordial presence.
Furthermore, their presence in ice-based ecosysfbtakhalanyane et al., 2015; Quesada
and Vincent, 2012) and warmer deserts (Nienow, P6@tke them of particular interest.

Extensive reports have documented the presencki@fgreen algae in the McMurdo
ice shelves of AntarcticaPhormidium frigidium F.E.Fritsch 1912 Phormidium murrayi
(West and G.S.West) Anagnostidis & Komarek.198&| @scillatoria priestleyi West and
G.S.West 1911 are among the strains identified $&d&@ and Vincent, 2012; Vincent, 2000;
Vincent and Quesada, 1994). These strains havetanuwm temperature that is higher than
their existing environment, suggesting they may dogosensitive but not cryotolerant.
Additionally, approximately 250 strains &@hroococcidiopsis sp. have been identified in
desert environments, including the Atacama Des®ttRose desert of McMurdo Dry Valley,
Antarctica, which have been identified as Mars ega¢s due to their environmental
conditions of cold and aridity (Warren-Rhodes et 2006). Mars analogues are simulated
regions on Earth where one or more physiologicatofs are similar to those on Mars
(Leveille, 2014).

The secret behind the adaptations of cyanobaderfestile environments and the
rapidity of these adaptations remain unknown. Nixedess, due to their billion years of
evolution, cyanobacteria are considered to be thegoy ancestors that independently
originated life (Kulasooriya, 2011), which may halwed them to develop adaptability to
a broad range of harsh environments. Terrestggeabre likely the most advanced group of
algae, as their niches often experience frequantuétions in climatic factors like humidity,
light, and temperature, in contrast to the morélstaonditions of aquatic ecosystems. As
such, they possess various biochemical and phygoalbadaptations, including changes in
their structure and pigment pattern (Fritsch, 192&juctions in growth (Warren-Rhodes et
al., 2006), and changes in the cellular composiibmacromolecules (Rindi, 2011). This
review aims to shed light on the mechanisms of igia and adaptation of terrestrial algae
and provide examples of their ability to surviveewen thrive in extreme niches.
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II. THE KEY CAUSE FOR FORMATION OF LIFE ON EARTH

Questions related to the origin of earth is unkesb It's still suspicious among
gravitational theory, gaseous hypothesis, nebulgpothesis, supernova, inter stellar,
planetesimal hypothesis(Halliday A & Canup R, 202Bhe key factor which mediates
adaptation of first evolved life form in the moltemtial days of earth is unaware. This
review put forth a hypothesis for unearthing thg kause for evolution of life on earth. The
very first hydrogen coated thermophilic cyanobaatdrad survived under the extreme
gravitational force, temperature and pressureibéirearth.

Molten lava could be a portion of earth’s intercore where rise and decline in
temperature experience at different regions. Irs theterogenous pressure, temperature
condition thermophilic cyanobacteria would havenda habitable environment.

Molecular, biochemical and structural data ofaugnase and hydrogenase enzymes
contributed to the hydrogen metabolism by cyanasact As the cyanobacteria possess key
enzymes of hydrogen production ie is, nitrogenas¢alysing the reduction of nitrogen to
ammonia with simultaneous production of hydrogeptake hydrogenase which take up
hydrogen produced by nitrogenase and bidirectibgdrogenase for the uptake and release
of hydrogen, this particular gas is the life promgtfactor of thermophilic cyanobacteria in
the initial earth(Tamagnini et al., 2002). Theraipossibility of hydrogen to be the primary
light element in the earth’s core (Hallsworth et, &023). The hydrogen gas is a poor
conductor of heat and electricity(Schiller R, 2022) the spongy covering of hydrogen gas is
a protective covering for life in the initial eart®ther than conductivity, hydrogen gas is a
radioprotectant and also non-toxic(Hu et al., 203 spongy covering became a favourable
condition for the growth and survival of cyanobaete Other than hydrogen coating,
additional adaptations that enables survival ohoyecteria is reviewed shortly below.

1 Evolution of Photosynthesis: To commence photosynthesis in the anoxygenic condit
of ancient earth, cyanobacteria utilized molybdensuifur or iron as the electron donor
(Stal, 2012). The presence of mass-independertidnation of sulfur and molybdenum
isotopes in sedimentary rocks is indicative of gm@nic photosynthesis mediated by
these elements (Arnold et al., 2004; Watanabe.e@09). An ancestral bacterium that
oxidizes hydrogen peroxide by bacteriochlorophglhtaining reaction centers may have
been a precursor to oxygenic photosynthesis, gsopeal by scientists (Blankenship and
Hartman, 1998). IMicrocoleus chthonoplastes Thruet ex Gomont 1892, both oxygenic
and anoxygenic modes of photosynthesis have bgwmrted, which could be a living
evidence for the evolution of photosynthesis (Josge et al., 1986; Stal, 2012).

As oxygen started to accumulate in the Earth's spimere, greenhouse gases like
methane gradually reduced (Zahnle et al., 2006toRaand Kasting, 2002). Anoxygenic
photosynthesis can be considered a prerequisiteethrcing toxic gases, changing the
potential of elements in the Earth, and depositirganic carbon. Photosynthetic organic
molecules fixed in the thallus may become a parhwihus when it decays, and the
accumulation of layers of humus and sediments nfigkie contributed to the weathering
of rocks.
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Cyanobacteria display diversity in their adaptatioright, which is attributed to
the functional variation of their photosynthetigimpients. Chlorophyll is the pigment that
becomes photochemically excited at the red limpludtosynthesis, between 680-700 nm
(Lal, 2018). During the early stages of the Eartissory, the sun gradually increased its
brightness (Gudel, 2007). At that time, cyanoba&teray have been exposed to low-
frequency radio waves, infrared radiation, andblesiight outside of the optical range,
specifically 700-760 nm. It is unclear how chlorgpa, b, and c functioned in such low-
intensity light. Perhaps, under these conditiongnobacteria evolved pigments that
absorb long-wavelength and low-energy light, suletdorophyll d and f (Allakhverdiev
et al., 2016).

Acaryochloris marina Miyashita and Chihara 2003, a unicellular cyanodraem,
has been found to have extended photosyntheticieifly by containing 97% of
chlorophyll d and only a small amount of chlorophglin one or two key positions
(Loughlin et al., 2013; Miyashita et al., 2014).i§species has been reported from
various habitats such as coastal basins, Antasatine habitats, epilithic microbial mats
on rocks, and as an epiphyte on red aljafeltiopsis flabelliformis (Kashiyama et al.,
2008; Murakami et al., 2004). Chlorophyll d, with absorption maximum at 711 nm,
allows for photosynthesis beyond the red limit bbfsynthesis (Chen et al., 2010), and
thus can be considered an adaptation of this algderrestrial ecosystems. Similarly,
cyanobacteria such akeptolyngbya strain JSC1, Cyanobacteria strain KC1, and
Halomicronema hongdechloris Chen, Li, Birch, and Willows 2012 carry out oxygen
photosynthesis in the near-infrared region due htirtability to use the red-shifted
chlorophyll f pigment, which has an absorption mfigm 700-760 nm (Gan et al., 2015;
Miyashita et al., 2014; Nurnberg et al., 2018; Tpanet al., 2020).

In cyanobacteria, the differential production ofments is also influenced by
environmental changes. For example, in Halomicran&angdechloris Chen, Li, Birch,
and Willows 2012 and cyanobacteria strain KC1,rdt@ of chlorophyll f to chlorophyll
a increased when cultures grown under white ligktewtransferred to red light, while the
ratio decreased when transferred from far red lighwhite fluorescent light (Chen et al.,
2012; Miyashita et al., 2014). This pigment rembdglprocess can be considered an
adaptation. Chlorophyll d and f are produced frdmophyll a by oxidation, but their
interconversion to chlorophyll a has not yet beescalered (Koizumi et al., 2005;
Zahnle et al., 2006). It is possible that photoptaes such as phytochromes or bacterial
bicomponent signal transduction systems sensealridhanges in sunlight and initiate the
production of chlorophyll d and f.

Chlorogloeopsis fritschii A.K. Mitra and D.C. Pandey 1967 is known for its
predominant level of adaptation through microspsiike amino acids, in addition to
chlorophyll d and f. Halder (2017) reported that tbyanobacterium grows in irregular
superposed packets of colony, which acts as ashadfding adaptation where cells on the
periphery protect the underlying cells, creatingeamironment without visible light. This
adaptation might be necessary for the proper fanctg of chlorophyll d and f, as
reported by Airs et al. (2014). Soil algae are niiledy to be exposed to UV light, ar@
fritschii synthesizes UV light-absorbing pigment in the faxhmicrosporine-like amino
acids, as observed @hlorogloeopsis sp. PCC 6912 (Portwich and Garcia-Pichel, 1999).
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Singh et al. (2010) utilized bioinformatics toolsch as ORF finder and BLAST to
analyze the genes responsible for the biosynthafsisicrosporine-like amino acids
(MAAS). The complete sequences of four specidsabaena sp. PCC 7120A. variabilis
PCC 7937 Synechocystis sp. PCC 6803, an8lynechococcus sp. PCC 6301 - were used
for comparative analysis. The genes of interestewdentified, and their nucleotide
sequences were translated into corresponding aagits using the ORF. A similarity
search for related proteins was then conductedyiAST, and phylogenetic trees were
constructed.

Their analysis revealed that the unique combinatibBHQS gene (YP_324358)
and O-methyltransferase gene (YP_324357) respenfiolthe biosynthesis of MAAs
was present only iA. variabilis PCC 7937, and not in the other three species. dXere
during the phylogenetic analysis, the present stegigaled evidence of horizontal gene
transfer from cyanobacteria to dinoflagellates &indh there to metazoa, which suggests
the evolution of these genes from cyanobacterigthier organisms through the plastidic
line.

2 Stress Avoidance M echanisms: During pioneer establishment on earth, they migivieh
evaded stress conditions initially through avoidantechanisms rather than resisting it.
Phototaxis and gliding movement, the formation atrobial mat, individual thallus
separation within algal mat are few stress avoidanechanisms exhibited by the
majority of cyanobacteria in the order Oscillattesa

* Phototaxis and Gliding Movement: Cyanobacteria are capable of phototaxis.
Synechocystis sp. PCC6803 has a captivating phototaxis mechanigray exhibit
positive phototaxis movement towards light souréermgas negative phototaxis away
from deleterious ultraviolet light (Chau et al., 130 Kim, 2017)driven by type IV Pili
(Z. Chen et al., 2020) and further assessment gtiplogy or evolution behind
phototaxis have pointed out either it may be chedngethe direction of gliding
movement as iPhormidium uncinatum Gomont ex Gomont 1892 (Carlos Tamulonis,
2011) or an inherent ability of all cells in théeclrome to sense light likAnabaena
variabilis Kutzing ex Bornet and Flahault 1886 which bendrttr&ghome to U-shape
in the direction of sunlight.(G. Choi et al., 2012)

Locomotion of cyanobacteria those lacking the fliagis confusing! Though
flagellar movement is impossible, instead they glwh the surface. The fact that
gliding rate could be influenced by wavelength (KR017) and the direction of light
(J. S. Choi et al., 1999) calls into question trechanism of gliding. This mechanism
in Oscillatoria princeps Vaucher ex Gomont 1892 that “gliding is produced by
unidirectional waves of bending which act againgistrate thus displacing trichome”
(Halfen Lawrence & Castenholz, 1970)whereas oneodlchof thought is
polysaccharide extrusion through junctional poreegponsible for this movement in
Phormidium uncinatum Gomont ex Gomont 1892 arghabaena variablis Kutzing ex
Bornet and Flahault 1886loiczyk & Baumeister, 1995)

» Biofilim or Microbial Sheath: One of the common stress avoidance mechanisms is
communal living of members of different taxa intorécrobial film or mat usually
appear as certain laminated structures, few ofr theports in extreme climatic
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conditions are Arctic (Quesada et al., 1999), sa(tBorensen et al., 2005b) and rice
field (Sinha & Hader, 1996). Microbial mat of uniicéar algae is reported in
hypolithic rocks and caves (Stal, 2012) but filatoes colonial form like
Microcoleus chthonoplastes Thuret ex Gomont 1892 become dense entangled mass
on intertidal zone (Stal et al., 1985). Microbiahtnmanifest them firmly on exposed
surface in spite of wave energy. SimilarGrinalium epipsammum Winder, Stal &
Mur 1992, a terrestrial cyanobacteria of filamestdabit, is reported from moving
sand and sand dune. Microbial crust@épipsammum safeguard sand dune from
erosion; (Mikhailyuk et al., 2019). IRivularia periodica obenluneschloss,1991
shows tan coloured laminations on rocks, their tcwentributes to biologically
introduced calcification. The extra polymeric salpstes and sheath morphology
changes with climate, so variation in calcificatipattern observed in different
climates (Willmer & Rasser, 2022).

Cyanobacterial members have their own preferrethesian this mat. For
example, algal mat from mangrove sandy soil, inclwha top layer of brownish
colouredLyngbya aestuarii Liebman ex Gomont 1892 and lower layer inhabitgd b
Microcoleus chthonoplastes Thruet ex Gomont 1892, where former produce
ultraviolet (UV) absorbing pigment that is scytonenand latter get protected by
virtue of overlying thallus (Karsten et al., 1998)dividualist thallus separation also
observed in algal mat of Mc Murdo Iceshelf AntaatiOscillatoria priestleyi West
and G.S.West 1911, may be regarded as stress svoaeng to their gliding
locomotion even to low concentration of ultravio{etV) A and ultraviolet (UV) B
and they may migrate to depth of mBhormidium murrayi (West ad G.S.West)
Anagnostidis & Komarek 1988 are reported in theanpayers of this algal mat. They
are nonmotile but nevertheless they are resistahigh energyadiation (Quesada &
Vincent, 1997). In short, cyanobacteria in teriaktrabitat evolved to be in microbial
mat for evading desiccation, ultraviolet (UV) liglmd so on.

3. Morphological and Biochemical Adaptation

* Adaptation in the Cell Envelop: May be before the evolution of oxygenic
photosynthesis, the absence of ozone layer mighe faced cyanobacteria to adapt
extreme ultraviolet (UV) radiation by making up aique cell envelop. Even today,
sustenance of these adaptations has contributedthstanding the ultraviolet (UV)
radiation on the terrestrial habitat where toleeatw desiccation is the only mean to
survive. The colonization of terrestrial algae ilwes frequent encounter to harsh
environment so thicker the envelop they produceeb#teir adaptation to desiccation
Cell wall characteristics of both gram-positive aghm-negative envelope meld
together in cyanobacterial envelop (Bertocchi gtl#190). According tqHoiczyk &
Baumeister, 1995), cell wall of gram-positive baietés multi layered with thickness
ranging from 20 to 40 nm where as in gram- negaiaeteria peptidoglycan layer is
relatively thin ranging from 2 to 6 nm. THehormidium uncinatum Gomont ex
Gomont 1892 cell envelop thickness ranges from d33% nm andOscillatoria
princeps Vaucher ex Gomont 1892 has a diameter of more I6@mm. Even though
cyanobacteria possess cell wall thickness sinlayram positive bacteria, the former
has a composition which is similar to gram-negabeaeteria as it possesses an outer
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membrane and also lacks a typical component of grasitive bacteria, that is the
teichoic acid (Silhavy et al., 2010); (Hoiczyk & kiel, 2000).

Lipopolysaccharide outer membrane, a unique featfregram-negative
bacteria is found in cyanobacteria. It is a stragpuble track structure with uniform
width of 6 to 8 nm inPhormidium uncinatum Gomont ex Gomont 1892 (Hoiczyk,
1998). In addition to cyanobacterial o antig&mechococcus PCC6716 they also
contain carotenoids, unusual fatty acids such &es glroxy palmitic acid which are
anchored to underlying peptidoglycan (Schraderlet1881). Carotenoids protect
cyanobacterial cell from high light intensity, pediarly ultra violet (UV) range.

Cyanobacteria synthesis diverse external carbolg/dttauctures in response
to different environment stimuli to retain cellulaater. (Plude et al., 1991) reported
pectin like polymer composed of 83% galacturoniitl aynthesized bylicrocystis
flos-aquae C3-40. Similarly,Phormidium uncinatum Gomont ex Gomont 1892 and
Nostoc commune Vaucher ex Bornet& Flahault, 1886 sheath contaitulode like
homoglucan fibrils cross linked by minor monosacites (Hoiczyk, 1998) ; (Inoue-
Sakamoto et al., 2017). Occurrence of differenteexell wall layers with specific
function had reported inPhormidium uncinatum Gomont ex Gomont 1892
Cyanobacteria has an adaptation in switching tpelysaccharide biosynthesis to
different environment stimuli.

In Nostoc commune Vaucher ex Bornet & Flahault,1886 production of
scytonemin and an oligosaccharide happens on elified exposure to UV Aand UV-
B (Ehling-Schulz et al., 1997). ultraviolet (UV) ikduces scytonemin biosynthesis
whereas ultraviolet B induces Oligosaccharide mgoase like amino acids so they
suggest the existence of distinct photoreceptasdignals biosynthesis of these two
pigments. Cell envelop ofNostoc carneum C.Agardh ex Bornet & Flahault 1886
possess reducing or antioxidant activity (Husseirale 2015).N.commune which
contain aromatic pigments like scytonemin (Protetal., 1993) and oligosaccharide
mycosporine like amino acids in the external smdaylr (Nazifi et al., 2015).

Scytonemin also has sun screening action in bleergalgae (Rozema et al.,
2002), and is isolated exclusively from extracalfidheath of cyanobacteria (Wada et
al., 2013). Scytonemin is produced from intermediabmpounds of shikimate
pathway so this protective compound most likelybeo appeared later in evolution
(Derikvand et al., 2017); (Simeonov & Michaelia®18). N.commune colonies can
be desiccated even for 87 years (Cameron, 1962)jhes& attached on sun-exposed
faces of rocks are darker in colour because ofoseyhin. The pigment profile of
cyanobacterial crust isolated from desert sampleported that scytonemin
concentration was elevated 2 to 6 times than cploiba and lutein was also higher
than chlorophylla (Abed et al., 2010). In cyanobacteria, ultravicdetadiation and
scytonemin production are not distinct events,eabioth of them occurred as a single
cascade of events (Soule et al., 2016); (Pathak ,e2019). Efficacy of scytonemin
present inChlorogloeopsis sp. strain 0-89-cgs is proven after photobleacitingth
high ultraviolet-A radiation. Though radiation ibited photosynthesis and detained
growth in this terrestrial cyanobacterium, depositof scytonemin on cyanobacterial
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sheath accustomed photosynthesis and growth, theronbng resistant to
photobleaching in due course(GarBighel et al., 1992).

o Salinity and Osmotic StressBlue green algae are diverse with respect to the
mechanism they evolved in stress condition esggciahder salinity and the
accompanying osmotic stress. Halophilic archaea badteria adapt to saline
condition by salt in strategy that is accumulatidriarge number of inorganic ions in
the cytoplasm (Rodriguez-Valera, 1993). Biomolesub¢ these evolved strains are
resistant to denaturation and they carry out tphisiological function even under
high ion concentration (Bayley & Morton, 1978)(Madl& Oren, 2003)

Most organism including cyanophyceae evolved saltstrategy. This strategy has
got different interpretations. One of the explamagi is that they accumulate osmo-
protectant initially and in the latter phase inargaions are transported across
electrochemical gradients into cytoplasm (Pade &géfaann, 2015). Other
explanation is that, the excess ions in the cysplare excluded by dint of N&I
pumb, Na H" antiporters, CIH" antiporters and NaATPases. InAphanotheca
halophytica Fremy 1993 Synechocystis sp.PCC 6803A. marina justify exclusion of
ions from blue green algal cells (Fukaya et al.09(Elanskaya et al., 2002)
;(Tsunekawa et al., 2009) ;(Wang et al., 2002)(Bro®976; Weinisch et al., 2018).
Regarding salt out strategy, cyanobacteria exchadieions from the cytoplasm prior
phase and simultaneously accumulate compatibléesolu

The Compatible solute concept was proposed by Bi@sown, 1976). These
low molecular compounds can be considered as thmiclal chaperone of cells under
multiple stress factors such as ultraviolet (UMJiaéion, dehydration, high and low
temperature, salt and pH. Cyanobacteria underesatiess in accordance with their
compatible solutes had been assembled into theeggfReed et al., 1986): low salt
tolerant species such ABstoc sp. PCC 7120 accumulating sucrose and or trehalose,
moderate salt tolerant species similaSyoechocystis sp. PCC 6803 which synthesis
glucosyl glycerol and third halophilic strains likehalophytica which prefers glycine
betaine (Erdmann, 1983); (Erdmann et al., 19923dé% Hagemann, 2015) (Fulda et
al., 1999).

Sucrose and trehalose considered as a general mstestant to desiccation
and salinity, inN. muscorum on the top of sucrose and trehalose, proline over
accumulation enhanced salt tolerance (A. K. Singlale 1996), in hyper saline
species in addition to glycine betaine, secondangpatible solute such as glutamate
betaine reported (Mackay et al., 1984). Genergiynes which codes for the enzyme
that synthesise these compatible solutes have idesatified however none of the
genes which codes for trehalose and glucosyl giydeave detected iMicrocystis
aeruginosa andProchlorococcus sp. (Klahn et al., 2010); (Pade & Hagemann, 2015).
We presume either there may be some multifunctienayme that exhibit pleiotropy
under salt stress or else there may be some resdiy® phytochrome, cryptochrome
or bicomponent signalling to initiate biosynthesissompactable solutes not included
in the genome.
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There seems an immense disparity betwggechococcus and Synechocystis
species in terms of osmo protectant and adaptatisiress condition though both of
them are unicellular cyanobacter@nechocystis accumulate glucosyl glycerol and is
halotolerant (Marin et al., 1998) can with standvated concentration of salinity
whereasSynechococcus accumulate proline and is regarded as salt shosk®ih
(Fulda et al., 1999). Under majority of the stresadition Synechoccus up-regulate
the respiratory genes and down-regulate the photisiic one. On the contrary, both
set of genes are downregulated in the latter @it al., 2014).Physiology and
adaptation of cyanobacteria varies with speciesedhsense compatible solutes has a
cascade of action that varies with species.

[11.CONCLUSION

The ability of cyanobacteria to transform the BRartatmosphere through the
production of oxygen is a remarkable feat that freaged the way for the evolution of life as
we know it. Moreover, the study of cyanobacteria patentially provide insights into the
possibility of life beyond Earth. Through reseamid experimentation, it has been shown
that some strains of cyanobacteria are capablerefving in extreme conditions similar to
those found on other planets. The potential apjdicaf cyanobacteria in terraforming other
planets and supporting life in space exploratiorthier highlights their significance in the
field of astrobiology. Overall, the study of cyamaakeria and their adaptations provides an
interesting avenue for both biotechnology and sgx@doration

V.DISCUSSION

The study of cyanobacteria has been limited dubedack of resources available for
the analysis of their phylogenetic evolution. Wathly 35 completely sequenced genomes out
of approximately 2,500 species, more exploratido genome-level analysis is necessary to
identify significant genes that result in the disti shikimate pathway and mutant
development (Nicolaisen et al., 2010). However,infeymatics applications have the
potential to facilitate this research and provigsight into the metabolic processes of
cyanobacteria.

The ability of cyanobacteria to thrive in outelaep has significant implications for
the search for extraterrestrial life. The first EXPE-E mission demonstrated the viability of
vegetative cells of Chroococcidiopsis sp. undecspacuum and extra-terrestrial ultraviolet
spectrum (Cockell et al., 2011; Billi et al., 201Eurther research has been conducted on the
desert strain of Chroococcidiopsis in simulated $vianditions on Earth (Warren-Rhodes et
al., 2006) and in the Biofilm Organisms Surfing &pgBOSS) and Biology and Mars
Experiment (BIOMEX) of the EXPOSE-R2 mission of Ras(Baque et al., 2013). These
developments suggest that interplanetary transpuaitsettlement of life beyond Earth may
be possible through the lithopanspermia theory. éi@w, further research is needed to
understand the climate of other planets and howal dgptechnology can contribute mutant
strains of microalgae that can survive in thesalitmms.

In addition to facilitating the search for extmrestrial life, the study of

cyanobacteria also has practical applications. @Genscale metabolic models can be
constructed with a completely annotated genome esexgu of cyanobacteria, providing
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insight into all the possible biosynthesis thatuscwithin the species (Ducat et al., 2011).
Mathematical models can then be used to predicalmoét rates and behaviour, allowing for
the development of more efficient and effective téebinological applications of
cyanobacteria.

Inshort, the study of cyanobacteria has the piatettt significantly impact both our
understanding of life beyond Earth and our abiliby develop practical applications in
biotechnology. With further exploration of genonesdl analysis and the use of
bioinformatics, we can gain insight into the metab@rocesses of cyanobacteria and
develop models that predict their behaviour. Thimimation can then be used to develop
more efficient and effective biotechnological apations of cyanobacteria.
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