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A MATHEMATICAL MODEL OF WAVY 

PROPOGATION OF FOOD UNDER THE IMPACT OF 

WALL PROPERTIES AND HEAT TRANSFER 
 

Abstract 

 

Present paper deals with the flow of 

food bolus through oesophagus under the 

influence of elastic, wavy walls and heat 

transfer. Viscous fluid represents food 

bolus and wavy propagation is shown using 

cosine wave expression. Analytical 

approach is used to solve the governing 

equations by assuming Reynolds number to 

be low and the wavelength to be long. The 

closed form solutions are Velocities in both 

directions, Stream function and 

Temperature. Investigations are made on 

velocity, stream function and temperature 

under the influence of physical parameters 

like viscous damping force parameter, 

rigidity, Grashof number, stiffness of the 

wall, and thermal conductivity. Many 

interesting facts were observed graphically. 

One of the important points to be noted is 

that increase in heat source parameter 

results in increase of right bolus size. 

Increase in size of the bolus may lead to 

formation of bubble in oesophagus which 

in turn lead to critical health issues. This 

paper stands as a base for young 

researchers who are interested in the field 

of fluid flow with elastic walls. 
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I. INTRODUCTION 

 

 Peristaltic movement is a form of material transport by a wave propagation of area 

expansion or contraction. This movement of peristalsis has important applications in 

understanding many transport processes through physiological systems under peristaltic 

motion. In the living body peristalsis is involved in transport of many biofluids between 

organ to organ. (Hewson 1774 and Hall et al. 1965) and in small blood vessels (Nicoll 1956).  

Burns and Parks (1967), Hanin (1968) and Shapiro et al. (1969) and several others proved 

that peristaltic movement in biological ducts comes in the form of sinusoidal wave. Many 

biofluids present in living organisms are more likely to be considered as non-Newtonian 

fluids. There are several authors Devi and Devanathan (1975); Shukla and Gupta (1982); 

Srivastava and Srivastava (1984); Usha and Rao(1995), Vajravelu et al. (2005a, 2005b); 

Hayat and Ali(2008); Hayat et al. (2010a, 2010b) etc who investigated  analytically on the 

flow of non-Newtonian fluid in either tubes or channels with wavy effects in to consideration. 

 

 An important fact to be noted is that the movement of food in oesophagus is due to 

peristalsis. Even if a person is upside down the food enters to stomach through mouth due to 

its peristaltic movement. Oesophagus is a long muscular tube begins at the neck opposite to 

the long border of cricoids cartilage and continues from the lower end of the pharynx to the 

cardiac orifice of the stomach.  The swallowing of the food bolus happens due to contraction 

of the oesophagal wall periodically.  Retrograde motion can be noticed due to the process is 

imbalanced. The influence of wall properties on the Poiseuille flow under peristalsis is 

studied by Mittra and Prasad (1973). Mishra and Pandey (2001) analyzed a mathematical 

model for the oesophagal swallowing of a food-bolus. Flow of viscous fluid under peristalsis 

and wall properties was concentrated by Mokhtar and Haroun (2008) and many interesting 

facts were observed. Radhakrishnamacharya and Srinivasulu (2007) investigated on heat 

transfer effects on the peristaltic motion of incompressible fluid with elasticity. 

 

 Heat transfer in living organisms is observed while transformation of biofluids 

between the organs. This bioheat transfer can occur due to acidity, blockages, usage of drugs, 

usage of electrical gadgets, etc. Many living beings in day-today life’s are under many health 

issues faced due to radiations caused by mobiles, laptops, earphones etc. In this regard study 

on heat transfer on living organisms is an essential concept to be noted and further 

investigation are required. Srinivas et al. (2009) concentrated on wavy movement of fluid 

flow in channel with slip and MHD.   

 

With this literature survey it is understood that analysis on flow of food bolus through 

oesophagus with wavy walls and heat transfer is one of hot topics of current research area.  

Closed form technique is considered to solve the governing equations of the incompressible 

viscous fluid in a channel. Impact of various parameters on the solutions can be observed 

through graphical representation, which were plotted using MATLAB software.  
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II. MATHEMATICAL FORMULATION 

 

 Consider peristaltic movement of an incompressible viscous fluid in a channel with 

elastic walls induced by cosine wave trains transmitting with constant speed c along the 

channel walls. 

 

ℎ   𝜉  , 𝑡   =  𝑎 − 𝜙  cos2  
𝜋

𝜆
  𝜉 − 𝑐𝑡                                                                                         (1)         

 where a is half width of the channel, c is wave velocity, 𝜆  is wave length, ℎ  is 

transverse vibration of the wall, 𝑡   is time, 𝜙  is amplitude of the wave, and 𝜉  is axial 

coordinate. 

 The equations governing the flow of Food bolus in a channel with temperature is 

given by  

𝜌  
𝜕

𝜕𝑡 
+ 𝑢  

𝜕

𝜕𝜉 
+ 𝑣  

𝜕

𝜕𝜂 
 𝑢 =  −

𝜕𝑝 

𝜕𝜉 
+  𝜇  

𝜕2𝑢 

𝜕𝜉 2
+

𝜕2𝑢 

𝜕𝜂 2
  +  𝜌𝑔𝛼  𝑇 − 𝑇0                                        (2) 

 

𝜌  
𝜕

𝜕𝑡 
+ 𝑢  

𝜕

𝜕𝜉 
+ 𝑣  

𝜕

𝜕𝜂 
 𝑣 =  −

𝜕𝑝 

𝜕𝜂 
+  𝜇  

𝜕2𝑣 

𝜕𝜉 2 +
𝜕2𝑣 

𝜕𝜂 2                                                                      (3) 

 

 
𝜕𝑢 

𝜕𝜉 
+

𝜕𝑣 

𝜕𝜂 
= 0                                                                                                                             (4) 

 

𝜌𝑐𝑝  
𝜕

𝜕𝑡 
+ 𝑢  

𝜕

𝜕𝜉 
+ 𝑣  

𝜕

𝜕𝜂 
 𝑇 =  𝐾  

𝜕2𝑇

𝜕𝜉 2 +
𝜕2𝑇

𝜕𝜂 2   +  Φ                                                                    (5) 

 

 where Φ is constant heat addition/absorption, K is thermal conductivity, 𝑐𝑝  is specific 

heat at constant pressure, T is temperature, 𝛼 is coefficient of linear thermal expansion of 

fluid, g is acceleration due to gravity, 𝜇  is fluid viscosity, 𝑝  is pressure, , 𝜂  is transverse 

coordinate, 𝑣  is transverse velocity, 𝑢  is axial velocity, and 𝜌  is fluid density. 

 

Temperature defined at centre of the channel and at the wall of the channel are as below  

           𝑇 = 𝑇0 at 𝜂 = 0 , 𝑇 = 𝑇1 𝑎𝑡 𝜂 = ℎ                                                                                  (6) 

 

 where 𝑇1 is the temperature on the wall of peristaltic channel and 𝑇0  is the 

temperature at centre is line. 

 

 The equation governing the motion of the elastic wall can be considered as 

  𝐿∗ ℎ  =  𝑝 − 𝑝 0 

 

 where 𝐿∗ is an operator, which is used to represent the motion of stretched membrane 

with viscosity damping forces such that 
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𝐿∗ =  −𝜏
𝜕2

𝜕𝜉2 +  𝑚1
𝜕2

𝜕𝑡2 +  𝐶 
𝜕

𝜕𝑡
  

 

Continuity of stress at 𝜂 = ℎ  and using momentum equation, yield 

 

  
𝜕

𝜕𝜉 
𝐿∗ ℎ  =

𝜕𝑝 

𝜕𝜉 
=  𝜇  

𝜕2𝑢 

𝜕𝜉 2 +
𝜕2𝑢 

𝜕𝜂 2   +  𝜌𝑔𝛼  𝑇 − 𝑇0 − 𝜌  
𝜕

𝜕𝑡 
+ 𝑢  

𝜕

𝜕𝜉 
𝑣  

𝜕

𝜕𝜂 
 𝑢                            (7) 

 

 Here 𝜏 is the elastic tension in the membrane, 𝑚1 is the mass per unit area, C is the 

coefficient of viscous damping forces. 

 

 Introducing the following non – dimensional quantities, 

𝜉 =  
𝜉 

𝜆
  , 𝜂 =  

𝜂 

𝑎
 , 𝑡 =  

𝑐𝑡 

𝜆
 , 𝑢 =  

𝑢 

𝑐
 , 𝑣 =  

𝑣 

𝑐𝛿
 , 𝛿 =  

𝑎

𝜆
 , ℎ =  

ℎ 

𝑎
 , 𝜙 =  

𝜙 

𝑎
 , 𝑃 =  

𝑝 𝑎2

𝜇𝑐𝜆
 , 𝜓 =  

𝜓 

𝑎𝑐
 ,  

 

𝑄 =  
𝑄 

𝑎𝑐
 , 𝑅𝑒 =  

𝜌𝑐𝑎𝛿

𝜇
 , 𝐺𝑟 =  

𝑔𝑝𝛼 𝑎2 𝑇1− 𝑇0 

𝜇 2𝑐
 , 𝜃 =  

𝑇− 𝑇0

𝑇1− 𝑇0
 , 𝛽 =  

𝑎2Φ

𝑘 𝑇1− 𝑇0 
 , Pr =  

𝜇𝑐𝑝

𝑘
                (8) 

 

 where  Pr  is Prandtl number, 𝛽   is dimensionless heat source/sink parameter, 𝜃  is 

dimensionless temperature, 𝐺𝑟 is Grashof number, 𝑅𝑒 is Reynolds number, 𝑄  is volume flow 

rate, 𝜓  is stream function and 𝛿 is wave number. 

  

 in equations (1 – 8), we finally get  

ℎ 𝜉, 𝑡 =  1 − 𝜙cos2𝜋 𝜉 − 𝑡                                                                               (9)        

𝑅𝑒  
𝜕

𝜕𝑡
+ 𝑢 

𝜕

𝜕𝜉
+ 𝑣 

𝜕

𝜕𝜂
 𝑢 = −

𝜕𝑝

𝜕𝜉 
+  𝛿2 𝜕2𝑢

𝜕𝜉2 +
𝜕2𝑢

𝜕𝜂2   +  𝐺𝑟𝜃                                                  (10)   

𝑅𝑒𝛿3  
𝜕

𝜕𝑡
+ 𝑢 

𝜕

𝜕𝜉
+ 𝑣 

𝜕

𝜕𝜂
 𝑣 = −

𝜕𝑝

𝜕𝜂
+  𝛿4 𝜕2𝑣

𝜕𝜉2
+ 𝛿2 𝜕2𝑢

𝜕𝜂2
                                                         (11)                                               

𝜕𝑢

𝜕𝜉
+  

𝜕𝑣

𝜕𝜂
= 0                                                                                                                        (12) 

𝑅𝑒 𝑃𝑟

 𝑇1− 𝑇0 
  

𝜕

𝜕𝑡
+ 𝑢 

𝜕

𝜕𝜉
+ 𝑣 

𝜕

𝜕𝜂
  𝜃 𝑇1 − 𝑇0 + 𝑇0 = 𝛿2 𝜕2𝜃

𝜕𝜉2 +
𝜕2𝜃

𝜕𝜂2 + 𝛽                                     (13) 

𝛿2 𝜕2𝜃

𝜕𝜉2 +
𝜕2𝜃

𝜕𝜂2 +  𝐺𝑟𝜃 − 𝑅𝑒  
𝜕

𝜕𝑡
+ 𝑢 

𝜕

𝜕𝜉
+ 𝑣 

𝜕

𝜕𝜂
 𝑢 =   𝐸1

𝜕3

𝜕𝜉3 +  𝐸2
𝜕3

𝜕𝜉𝜕 𝑡2 + 𝐸3
𝜕2

𝜕𝜉𝜕𝑡
    ℎ       (14) 

𝜃 = 0 𝑎𝑡 𝜂 = 0, 𝜃 = 1 𝑎𝑡 𝜂 = ℎ                   (15) 

 

 

III. CLOSED FORM SOLUTION 

 

 Assuming Reynolds number to be low and the wavelength to be long, equations (9 -

15) becomes 

 

ℎ 𝜉, 𝑡 =  1 − 𝜙cos2𝜋 𝜉 − 𝑡                      (16)   
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𝜕𝑃

𝜕𝜉
=

𝜕2𝑢

𝜕𝜂2  + 𝐺𝑟𝜃                    (17) 

 
𝜕𝑃

𝜕𝜂
= 0                          (18) 

 
𝜕𝑢

𝜕𝜉
+  

𝜕𝑣

𝜕𝜂
= 0                             (19) 

𝜕2𝜃

𝜕𝜂2
+ 𝛽 = 0                     (20) 

𝜃 = 0 𝑎𝑡 𝜂 = 0, 𝜃 = 1 𝑎𝑡 𝜂 = ℎ                  (21) 

𝜕2𝜃

𝜕𝜂2 +  𝐺𝑟𝜃 =  𝐸1
𝜕3ℎ

𝜕𝜉3 +  𝐸2
𝜕3ℎ

𝜕𝜉𝜕 𝑡2 + 𝐸3
𝜕2ℎ

𝜕𝜉𝜕𝑡
                    (22)  

 The boundary conditions will become  

 𝜕𝑢

𝜕𝜂  
 
𝜂=0

= 0                                                                          (23) 

 𝑢 𝜂=ℎ = 0                                                                             (24)   

 𝑣 𝜂=0 = 0                      (25)    

From (17) we get 

𝜕3𝑢

𝜕𝜂3 +  𝐺𝑟 
𝜕𝜃

𝜕𝜂
= 0                                                                                                                   (26) 

Equation (22) gives 
𝜕2𝑢

𝜕𝜂2
+  𝐺𝑟𝜃 =  𝐸1

𝜕3ℎ

𝜕𝜉3
+  𝐸2

𝜕3ℎ

𝜕𝜉𝜕 𝑡2
+ 𝐸3

𝜕2ℎ

𝜕𝜉𝜕𝑡
                                           (27) 

The closed form solution for equations (17) and (20) with the boundary conditions (21),(23) 

and (24) is  

𝜃 =  
𝜂

ℎ
+  

𝛽

2
 ℎ𝜂 − 𝜂2                                                                                                              (28) 

  𝑢 =  𝜋2𝜙  𝜂2 − ℎ
2  𝐸3 sin2𝜋 𝜉 − 𝑡 − cos2𝜋 𝜉 − 𝑡  

−  𝐸1 + 𝐸2  4𝜋cos𝜋 𝜉 − 𝑡 sin𝜋 𝜉 − 𝑡   

+
𝐺𝑟

6
 
𝛽

4
  ℎ4 − 2𝜂3ℎ + 𝜂4 −

1

ℎ
 𝜂3 − ℎ

3   

                                                                                                                                               (29) 

Using equation (29) and the boundary condition (25), we get transverse velocity as 

𝑣 = −𝜋2𝜙𝜂  
𝜂3

3
− ℎ

2  4𝜋𝐸3sin4𝜋 𝜉 − 𝑡 −  𝐸1 + 𝐸2 4𝜋2  cos2𝜋 𝜉 − 𝑡  

− 2𝜋2𝜙ℎ𝜂
𝜕ℎ

𝜕𝜉
 𝐸3cos4𝜋 𝜉 − 𝑡 +  𝐸1 + 𝐸2 2𝜋 sin2𝜋 𝜉 − 𝑡  

−
𝐺𝑟

6
 
𝛽

4
  4ℎ4𝜂 −

2𝜂4

4
 −  

𝜂3

3ℎ2 + 2ℎ𝜂  
𝜕ℎ

𝜕𝜉
 

                      (30) 

Stream function can be obtained by integrating eqn (29) and using the condition 𝜓 = 0 at 

𝜂 = 0.  It is given by 
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𝜓 = 𝜋2𝜙𝜂  
𝜂3

3
− ℎ

2  𝐸3 sin2𝜋 𝜉 − 𝑡 − cos2𝜋 𝜉 − 𝑡  

−  𝐸1 + 𝐸2   4𝜋cos𝜋 𝜉 − 𝑡 sin𝜋 𝜉 − 𝑡    

                            +
𝐺𝑟

6
 
𝛽

4
  ℎ4𝜂 −

𝜂4ℎ

2
+

𝜂5

5
 −

1

ℎ
 
𝜂4

4
− ℎ

3𝜂                                                       (31) 

 

IV. RESULTS AND DISCUSSIONS 

 

 The governing equations are solve in closed form and impact of physical parameters 

over velocity, temperature and stream function are noticed with the help of graphs plotted 

using MATLAB  in Fig(1)-(11).  From Fig.(1) and (2) it is noticed that velocity increases 

with raise in thermal conductivity β and Grashof number Gr in the oesophagus.  

 

 
Figure 1: Velocity Profiles for different β      Figure 2: Velocity Profiles for different Gr 

                (𝐸1 = 0.7, 𝐸2 = 0.5, 𝐸3 = 0.1                  (𝐸1 = 0.7, 𝐸2 = 0.5, 𝐸3 = 0.1, 𝑡 = 0.5, 
               𝑡 = 0.5, 𝐺𝑟 = 2, 𝜂 = 0.5)                                          𝜂 = 0.5, 𝛽 = 2)  
         

 

In the presence of stiffness (𝐸2 ≠ 0)  and viscous damping force (𝐸3 ≠ 0)Fig. (3) 

shows the impact of rigidity parameter.  Graphs tells that raise in rigidity parameter leads to 

raise in velocity. In the presence of 𝐸1 𝑎𝑛𝑑 𝐸3 impact of 𝐸2  on velocity is observed in Fig. 

(4), which shows that velocity and 𝐸2 travel in the same direction. 
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Figure 3: Effect of 𝐸1 on velocity 𝑢              Figure 4:  Effect of 𝐸2 on velocity 𝑢  

(𝐸2 = 0.5, 𝐸3 = 0.5, 𝐺𝑟 = 2, 𝛽 = 2,                (𝐸1 = 0.5, 𝐸3 = 0.5, 𝐺𝑟 = 2, 𝛽 = 2, 
 𝑡 = 0.1, 𝑥 = 0.5)     𝑡 = 0.1, 𝑥 = 0.5) 
 

 

 

 Fig. (5) speaks about the variation of 𝐸3on velocity by fixing other parameters. It says 

that velocity and 𝐸3 travel in opposite direction. 

 

            Impact of thermal conductivity  𝛽 on velocity is depicted in Fig. (6). From this figure 

it is clear that velocity and thermal conductivity pass parallel.  

 

 
 

Figure 5:  Effect of E_3 on velocity u   

(E_1=0.5,E_2=0.5,Gr=2,β=2, t=0.1,x=0.5) 

 

 
 

Figure 6: Temperature profiles for different 

β 
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Peristaltic movement of the elastic wall creates interest to study on trapping, where in 

wave frame the streamlines split to trap a bolus. Influence of thermal conductivity is studied 

on trapping through Fig. (7). It is noticed that increase in thermal conductivity will increase 

the size of the bolus in right side of the channel and decrease the size of the bolus in left side 

of the channel. 

 

Fig. (8) reflects the impact of  Grashof number on trapping. As Gr increases the size 

of the bolus decreases in left of channel and increases in right of channel.  The effect of E_1 

on trapping can be seen in Fig.(9). We notice that the size of the bolus increases with increase 

in E_1.  Fig. (10) shows the influence of E_2 on trapping. One can observe that the size of the 

trapped bolus decreases with increase in E_2, stiffness of the wall. The effect of E_3 on 

trapping is shown in Fig. (11). It is concluded that increase in E_3  result in decrease in size 

of the left bolus and increase in right bolus.  Furthermore, it is observed that more trapped 

bolus appears with increase in E_3. 

 

V. CONCLUSIONS 

 

 By analysing viscous fluid flow in a channel with elastic walls and heat transfer the 

following conclusions are made. 

 

1. The axial velocity increases with the increase in β,Gr,E_1,E_2.  Further, the axial velocity 

decreases with increase in E_3. 

2. The coefficient of temperature increases with increasing values of thermal conductivity. 

3. The volume of the trapped bolus increases with increase in E_1.  Moreover, more trapped 

bolus appears with increase in E_1. 

 

 
 

                               (a) 

 

 
  

                                  (b) 
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                                       (c)    

Figure 7 : Effect of  β on Trapping (a) β=0 (b) β=4 (c) β=8 

(E_1=0.7,E_2=0.5,E_3=1,t=0.1,Gr=2) 

 

 

 
 

(a) 

 
 

                                (b) 
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 (c) 

Figure 8:  Effect of  Gr on Trapping (a) Gr=0 (b) Gr=2 (c) Gr=4 

(E_1=0.7,E_2=0.5,E_3=1,t=0.1,β=2) 
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(c) 

Figure 9 :  Effect of  E_1 on Trapping (a) E_1=1 (b) E_1=1.5 (c) E_1=2 

(Gr=2,E_2=0.5,E_3=0.5,t=0.1,β=2) 

 

 
(a) 
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(c) 

Figure 10:  Effect of  E_2 on Trapping (a) E_2=0.1 (b) E_2=0.5 (c) E_2=0.9 

(Gr=2,E_1=0.5,E_3=0.5,t=0.1,β=2) 
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(c) 

Figure 11:  Effect of  E_3 on Trapping (a)E_3=1 (b) E_3=1.5 (c) E_3=2 

(Gr=2,E_1=0.5,E_2=0.5,t=0.1,β=2) 
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