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. INTRODUCTION

Cancer, a highly lethal and complex chronic disegmeses a significant global
challenge, causing millions of deaths annually @angacting life expectancy negatively.
Recent reports from GLOB-CAN indicate a rising ademce of 19.3 million cases and 10
million cancer-related deaths worldwide, showingieady increase from 2012 to 2020 (Sung
et al. 2021). Despite significant advances in disgics and therapeutics, cancer remains a
perplexing challenge for both biologists and cliais. While past decades held the dream of
conquering this disease, current research in camegagement has achieved considerable
success. However, many of these breakthroughs aficed to individual patients. For
example, evidence-based guidelines recommend ctdbreancer screening for individuals
aged 50 and older, but those with Lynch syndronfilec¢eng 1 in 280 individuals) face an
elevated risk at a younger age, necessitating & taogeted approach (Yurgelun and Hampel
2018). To fully overcome cancer, new therapeutgragches with enhanced mechanisms are
required. Researchers must not only focus on imgatdveatments but also on methods for
predicting an individual's cancer risk, detectingn@er at an early stage, distinguishing
aggressive from non-aggressive cancers, and mmgtoecurrence and treatment response.
Cancer can originate through various pathways fiieréint cells at varying rates. ldentifying
the clinical, molecular, and genetic events in ¢heathways can lead to the development of
preventive strategies, including the creation ainfarkers that may be observable before
clinical cancer detection.

II. CLINICAL BIOMARKERS

A biomarker is a distinct molecular signature timalicates a physiological condition,
allowing for objective measurement to distinguigltviieen normal and pathological states or
to assess the response to therapy. Biomarkersahaeh history in clinical practice, ranging
from simple pulse rate measurements, blood test$,Xarays to more intricate laboratory
assessments. They encompass various types, inglgeimomic (DNA and RNA), protein,
metabolite, carbohydrate, imaging, and cellular nfadkers, often linked to specific
pathological elements, histological or radiograpproperties, and genetic alterations. An
effective biomarker is tailored for a particularselase state and can be readily quantified
using bodily fluids like serum, saliva, urine, arebrospinal fluid. Molecular markers have
evolved as valuable tools for disease diagnosisleepological studies, and health-related
assessments, spanning diverse fields from cancemftammatory, neurological, and
cardiovascular diseases, owing decades of rese&mhexample, HbAlc serves as a widely
used biomarker for prediabetes and diabetes, Whneactive protein (CRP) is employed as a
biomarker for inflammation (Dorcely et al. 2017).

1. Established biomarkers of Cancer: Genomic profiling technologies and selective
molecular targeted therapies represent recent adwaants in cancer management,
underscoring the pivotal role of biomarké@oossens et al., 2015). Cancer biomarkers,
including proteins, DNA, RNA, and metabolites, halreerse roles in oncology, such as
screening, monitoring, risk assessment, diagnosaiyrrence prediction, and prognosis.
They are crucial for customizing treatment pland amanaging drug reactions. These
biomarkers can also classify cell types and aiddase- response studies. They are
categorized into three types: predictive, progmpsénd diagnostic, based on their
application approach (Conley and Taube, 2004).i&red biomarkers offer insights into
a patient's likely response to specific therapsesh as the increased expression of the
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HER2/neu protein predicting trastuzumab responsebigast cancer. Prognostic
biomarkers, on the other hand, provide warningsutlpotential long-term outcomes,
such as cancer recurrence or disease progresstampes include elevated Prostate-
specific antigen (PSA) levels in prostate cancdmo@osome 17p deletions, and TP53
mutations in Chronic myeloid leukemia (CML) patenas well as BRCAL1 and BRCA2
gene mutations. Diagnostic biomarkers, including Bence—Jones protein urine test for
multiple myeloma, carcinoembryonic antigen levels colorectal cancer (CRC)
surveillance, PSA level measurement in prostateeraand CDC 20 usage in diagnosing
and treating relapsed and refractory lymphomajraatisease identification. Cancer often
arises from genetic or epigenetic changes thatteatterations in protein expression due
to post-translational modifications. These changgsct cell progression, apoptosis, and
the secretion of factors affecting neighboring £éMaruvada et al., 2005). Molecular
biomarkers, accessed through genes, genetic atesamRNA, and protein differential
expression, encompass a wide range of biochemitdies, including proteins, nucleic
acids, sugars, small metabolites, and more (Mamuved al., 2005). As a result,
biomarkers are categorized into genetic, transmmpt, epigenetic, proteomic, and
metabolomic types based on their level of molecaliéerations. Genetic biomarkers,
detectable through liquid biopsies and blood samphd in prognosis and cancer
identification. Examples include BRAFV600VE mutatsoin melanoma and ALK gene
rearrangements in lung cancer. Transcriptomic msykiéke KAT2B, PCNA, CDS86,
miR-192-5p, and miR-215-5p in cervical cancer, adlvas RNY3P1, RNY4P1, and
RNY4P25 overexpression in melanoma patients, peowndights into gene expression
patterns (Kori and Yalcin Arga, 2018). Epigenetiorbarkers, such as APC, GSTP1, and
RARP2 promoter methylation for detecting prostate camgeurine, as well as SHOX2
and CDKN2A promoter methylation in lung cancer,cedate epigenetic modifications
(Kori and Yalcin Arga, 2018). Proteins serve asandgiomarkers due to their crucial
roles in cellular function and metabolism. Abnoripaxpressed proteins often underlie
diseases, especially cancer. Detecting proteinecbasarkers requires stringent and
specific techniques, including ELISA, electrocheahicelectrical, and optical methods
(Wu and Qu, 2015). Prominent examples of proteomiairkers include EpCAM, CDA45,
and cytokeratins 8, 18, and 19, which aid in datgatirculating tumor cells (CTCs) and
monitoring patients (Yousefi et al., 2021). Addmadly, proteins like HE4 and CA-125
are measured to assess the risk of ovarian mabgnasing algorithms (Fujiwara et al.,
2015). Metabolomic biomarkers, unique to metabpathways, vary in different cancer
types. For instance, breast cancer patients exhi@treased lysophosphatidyl
ethanolamine (LPE) levels and increased ceramudddewhile lung cancer patients show
reduced choline and linoleic acid in their serumastBc cancer patients may have
elevated 3-hydroxypropionic acid levels and reduggdivic acid levels in their serum.
Nucleic acid biomarkers involve the measuremenDNA and RNA, providing crucial
insights into cancer biology and progression. Whileese biomarkers have been
instrumental in cancer management for years, camreains a complex challenge with
diverse aberrant networks that may offer new pakemdrgets. Beyond aiding clinical
decision-making, cancer biomarkers are closely elihkto deregulated molecular
pathways and cancer etiology, thus validating dpetieatment options. The current
revolution in high-throughput gene sequencing armleased molecular characterization
is driving the analysis of complex cancer mecharigma personalized manner, leading
to the concept of precision medicine (Goossend.eR@l15). This approach recognizes
individual variability, encompassing alterationsDNA, RNA, proteins, and metabolites,
as integral components of prevention and treatrsieategies.
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2. Precision medicine and omics. In cancer, the tremendous variability among pagient
underscores the need for personalized approacheslitidnal biomarkers may lose
diagnostic reproducibility over time, necessitatingbust validation since it needs
availability of specimens, assay platforms and ywtddsign (Goossens et al. 2015).
Precision medicine tailors disease prevention, rdiagg, and treatment to each patient's
unique characteristics taking into account diffeesnin people's genes, environments,
and lifestyles. Omics technologies have becomegiateo precision medicine because
they allow for a deep characterization of an indlinal's biological makeup. By analyzing
a person's genome (genomics), gene expressionsdtipiomics), protein profiles
(proteomics), and metabolic pathways (metabolommslics generates diverse data sets,
making it a promising tool for discovering prectsancer biomarkers.

3. Omics approach to biomarker: Cancer biomarker research advances alongside
technology, with omics approaches proving to be gréwl tools for understanding the
complex cellular dysfunctions driving cancer depehent (Alyass et al., 2015).
Molecular changes in cancer occur across varioeedesuch as the genome, proteome,
epigenome, metabolome, and transcriptome, whictcargal for understanding cancer
characteristics. Omics tools, like proteomics, geims, metabolomics, transcriptomics,
and radiomics, are employed to comprehensivelyyaaghese elements. Recent research
has focused on using single omics methods to unaowéecular mechanisms in cancer
development, involving genome scanning, epigendticlies, and investigating mRNA
and protein expression changes. Next-generatiouesetng (NGS) has significantly
improved genomic research efficiency, leading toreéased identification of genetic
factors in cancer. These approaches provide vauabights into cancer genomes and
genes related to tumorigenesis (Roberts et al2)2@enome profiling has the ability to
recognize various molecular subtypes and categopagents, a vital aspect of
personalized medicine. To discover new biomarkers cancer proteomics and
metabolomics, techniques like high-performanceidighromatography (HPLC), nuclear
magnetic resonance (NMR), and mass spectrometry) (di® frequently used
(Alessandro et al., 2005). These biomarkers seav@ws purposes, including prognostic
biomarkers for estimating patient clinical outcomegredictive biomarkers for
categorizing treatment options, and diagnostic lidwers for early detection, all of which
are vital for cancer forecasting and preventionn&able shift is occurring in cancer
treatment, characterized by predictive, preventargd personalized medicine (PPPM),
intricately tailored through single omics approahe

4. The omics platforms. Omics is a contemporary analytical approach widgiplied to
biological samples, encompassing diverse fieldse lilgenomics, proteomics,
metabolomics, transcriptomics, and more, generagrtgnsive datasets focused on
specific biomolecules. Genomics, transcriptomicgytgomics, and metabolomics, in
particular, show promise for pharmaceutical appilices, especially in cancer therapy.
However, the challenge lies in translating compexcs data into meaningful biological
insights. Various terms such as multi-omics, tramses, and integrated omics are used to
describe these approaches, each with distinctptatzessing and interpretation methods.
Omics methodologies heavily rely on integration anterpretation to advance our
understanding of systems biology. Emerging inteiglgary analyses like glycomics
and microbiomics aim to streamline processes anducee costs, facilitating
comprehensive studies across various biological a@ednputational disciplines.
Transcriptomics, proteomics, and metabolomics arenconly employed in the study of
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biological networks. Successful integration of osndata can yield additional insights
into complex biological networks, including infortian on allosteric regulation, protein-

protein interactions, and more. Omics data canrd@d to phenotypic characteristics to
uncover genetic and environmental factors. Cas#iestunvolving rats and bacteria have
demonstrated positive correlations between differemics layers, leading to the

discovery of pathway-wide phenome-wide associatemms trans-ome-wide associations
(Trans-OWAS) (Misra et al. 2019). Repositories likee Cancer Genome Atlas (TCGA)
offer open access to omic data from various cahgers, facilitating data retrieval for

researchers (Fernandez- Lozano et al. 2018). Takkeolge remains in translating multi-

dimensional omics data into biologically relevamdntexts. In the realm of omics,

genomics, epigenomics, transcriptomics, proteormacs, metabolomics are pivotal for
advancing pharmaceutical research, particularbamcer therapy (Figure 1).

5. Genomics. Genomic techniques are primarily deployed to segeiean individual's
genome in order to better understand interindiMidiifferences at both the somatic and
germ line levels through (SNPs) single nucleotidy/morphisms, loss of heterozygosity
variants, copy number variants (CNVs), genomic resayements, and rare variants),
insertions and deletions (INDELs). Researchers hbeen able to sequence the
genome/exome of choice extensively enough defieentiatational patterns of a given
tissue owing to the ultimate progression of segumgndechnology from Sanger
sequencing-based techniques to Next Generation eBequ(NGS)-based massively
parallel sequencing (Chakraborty et al. 2018). Highed and high-throughput NGS
technologies greatly enhances cancer genome amadygl demonstrates the entire
spectrum of cancer gene mutation, which not onlysisd to lead the discovery of novel
targeted drugs, but also has a huge effect on staheling cancer biology and
accelerating approaches for PPPM in cancer (Lu Zhdn 2018). Genomics is
implemented in multiple areas including biotechigglo developmental biology,
diagnostics and therapeutics, pharmaceutical ingugene therapy, disease prevention,
comparative genomics and evolutionary biology.

6. Epigenomics. Epigenomics involves the systematic examinationegérsible epigenetic
modifications, a widely adopted approach worldwilleencompasses alterations in gene
expression resulting from modifications to a ceD8IA or histone proteins without
changing the underlying DNA sequence (Wang and @2418). Notable epigenomic
signatures include DNA methylation, acetylatiorstbne modification, and the precise
positioning of nucleosomes. These signatures cawvesas potential biomarkers for
various diseases, including cancer. Gene expressegulation, particularly the
modification of expression 88gene, is a prominent focus in modern omics rebkearc
across diverse fields. Modified epigenomic altemai can lead to clinical phenotypic
variations. The complexity of cancer, characterizgd extensive variations in the
expression of multiple genes, is further compoungiedactors such as germline genetic
factors, somatic mutations, and epigenetic contioitsuthat can influence these changes.
Single-cell gene expression analysis allows for desessment of cell-specific somatic
mutations on gene expression in individual cellsigenomics employs techniques like
Chromatin Immunoprecipitation Sequencing (ChIP-saaj DNA methylation analysis
through whole-genome Dbisulfite or array-based secug. ChIP-seq, a crucial
epigenomic tool, is utilized to identify DNA-bindinsites for transcription factors (TFs)
and histone proteins, potentially validating thes l@omarkers with comprehensive
genome-wide profiles. DNA methylation analysis iwes digestion assays and bisulfite
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sequencing of DNA, where methylation-sensitive d@ndensitive restriction enzymes are
used forgenomic DNA digestion. Cytosines are converted tacili during bisulfite
treatment, preserving the methylated cytosine. gbeerated DNA is then analyzed
through techniques such as PCR, MALDI-TOF masstsp®etry, or microarrays. To
further advance these analyses, various bioinfacmabls, such as Biopearl, Biojava,
Biopython, and machine learning approaches, ardasmg (Bayon et al. 2016). Whole-
genome analyses, known as Genome-Wide AssociatiahieS (GWAS), aim to identify
the impact of Single Nucleotide Variants (SNVs)ahenotypic traits, while Epigenome-
Wide Association Studies (EpWAS) are designed twestigate the influence of
epigenomic variations.

7. Transcriptomics: Transcriptome encompasses all RNA molecules, imatuagnRNA,
rRNA, tRNA, and non-coding RNAs, produced in cellgflecting genetic and
environmental influences (Yan et al. 2015). Trapsomics profiles an organism's
complete RNA set, which plays diverse roles in utal functions. Two primary
transcriptomics techniques are microarrays and RBduencing (RNA-seq), with RNA-
seq gaining prominence due to its independence fsdor organism information and
lower sample requirements. It involves RNA-basedicesmcomprising steps such as
sample collection, RNA extraction, clonal amplifica, library preparation, and
sequencing (e.g., pyrosequencing). Subsequent larkhvolves cleaning, screening,
alignment (reference-based or de novo), variaringalannotation, functional prediction,
and pathway analyses (Misra et al. 2019). RNA-sdtpeces sensitivity by targeting
specific RNA, requiring fragmentation, conversiam ¢complementary DNA (cDNA)
using reverse transcriptase and PCR amplificat®eguencing can be single-end or
paired-end, with the latter facilitating more asbées and alignments for gene
annotation. Nanopore sequencing is an emergingaddtiat bypasses amplification but
is still developing. Bioinformatics tools like Fa@@nd FastQC analyze raw RNA-seq
data for sequence quality, contamination, k-memntifieation, and errors. Alignment
software aligns transcript sequences to a referganeme, followed by quantification at
the gene, exon, or transcript level. Data normabmaand statistical analysis, using
software like EdgeR, Cuffdiff2, Limma/Voom, or DEgk reveal differential gene
expression. Validation is often conducted throudghCR for target and control gene
expression (Conesa et al. 2016).

8. Proteomics: Transcriptomics platforms are limited in their #lgiko reveal the functional
aspects of gene expression, as not all RNAs trengio proteins, and some undergo
post-translational modifications. To address tpimteomics has emerged, focusing on
identifying and quantifying the entire protein cemt to find disease biomarkers.
Traditional proteomics techniques include chromeatphy and western blotting (Dalal et
al. 2020). Recent advancements have introducedgwhoand targeted approaches,
allowing for the quantification of collective pratesamples. Mass Spectrometry (MS) has
played a pivotal role in enhancing sensitivity atada analysis in proteomics, even with
smaller sample sizes. This technique can detectlesubifferences in amino acid
sequences, protein abundances, post-translatioodifications (PTMs), PTM sites, and
more. Proteomics workflows involve sample collegfigrotein extraction, enzymatic
digestion into peptides, liquid chromatography (L&pactionation, followed by Mass
Spectrometry for protein and peptide identificatiand quantification. Bioinformatics
analyses, such as network and pathway analysesalsmeconducted. LC methods,
particularly 2DLC and multi-dimensional LC (MDLC3re commonly used for proteomic
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fractionation/separation. Stable isotopes (e.gRA® and TMT labeling) paired with
2DLC enable proteome component characterizationd@e al. 2009). Various MS types,
including MALDI-TOF and Fourier transform ion cytton resonance (FTICR), are
effective for identifying protein expressions, PTMariations, and species (Mao et al.
2013). The data analysis process includes congerdiww LC-MS/MS files to mzML peak
lists, followed by analysis using databases sucMwsmatch, Pepitome, and MS-GF+
(Ma et al., 2011). IDP3 is then used to convernitfied spectral files into IDPicker 3
SQLite Database@dpDB) files and gather these idpDB files. Additadly, Swissprot
fillers MS data raw files against the human proteatatabase using the Sequest HT
algorithm. Classification systems like PANTHER, @@notation, and ingenuity pathway
analysis (IPA) are employed for data mining, fuoieéll analysis, and pathway analysis of
identified proteins (Dalal et al. 2020).

9. Metabolomics. Metabolomics combines various omics fields like @uarts,
transcriptomics, and proteomics to assess an aesliphenotype. It focuses on small
molecular weight metabolites, the end products ammex biochemical processes,
ranging from 50 to 1500 Dalton. The metabolome emmasses the total collection of
metabolites in a biological sample related to maliain (Dalal et al. 2020). Metabolomic
analyses involve quantifying small metabolites likgds, sugars, amino acids, nucleic
acids, drugs, and steroids in various sample typekyding cell lines, tissues, biofluids,
and different environmental conditions. Techniqeesh as NMR spectroscopy and
chromatography coupled to mass spectrometry (LCamkbGC-MS) are employed based
on the specific application and instrumentationuregments. Data analysis includes
preprocessing, statistical analysis, pattern reitiogn and the use of databases like
METLIN, HMDB, and KEGG. Metabolomics analysis stageonsist of experiment
design, sample collection, metabolism quenching,tabwite extraction, optional
chemical derivatization, analytical techniques (BfSNMR), and data analysis involving
filtering, alignment, statistical analysis, impudat, annotation, and network/pathway
analysis. Each step may vary depending on the nasezbjectives, data type, and
instrumentation used (Misra et al. 2019). Whilegl#romics approaches provide valuable
insights, they are insufficient for understandingmplex diseases like cancer, which
involve intricate biological interactions. Incorading multi-omics data is crucial for
unraveling the intricate molecular signatures ahauigenic networks and discovering
new biomarkers and drug targets.

[H1.MULTI-OMIC APPROACH AND DATA INTEGRATION

Extracting meaningful correlations and real intéoats from vast omics datasets is a
computationally challenging task due to non-lingateractions and collective effects in
biological systems. Differentiating genuine biokai signals from random noise and
irrelevant analytical systems poses difficultiesghHddimensional datasets exhibit variations
in gene, protein, and metabolite expression acnudividuals, organs, tissues, and cells,
further complicating data extraction. There are iots methods for integrating
multidimensional omics data, often focusing on rtiates to identify genomic determinants
of phenotypic features and distinguish driver frpassenger mutations (Yu and Zeng 2018).
Two integration approachesexist: bottom-up and top-down. The bottom-up approach
consolidates various data types first and then mignintegrates distinct clusters, while top-
down techniques combine all data types simultadgpadowing for data integration and
dimensionality reduction together. Data integrationethods encompass regression,
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exploratory, predictive, unsupervised, semi-suged; or supervised analyses. Unsupervised
models derive deductions from input factors withemarked response variable (Huang et al.
2017). Various algorithms, such as multivariate yd&an network-based, fusion-based,

correlation-based, and similarity-based methods beaemployed for data integration. Figure

2 illustratesseveral tools used for multi-omics data integration

1. Multivariate methods: Unsupervised multi-omics data integration often kyg joint

non- negative matrix factorization (NMF), which isplnon-negative matrices into two
component matrices without negative elements. Taéchnique projects various data
types onto a shared coordinate frame, facilitagrgmination. For instance, integrating
microRNA, mRNA expression, and DNA methylation daaTCGA ovarian cancer
samples with NMF revealed new signaling pathwagrattons and patient subtypes
(Zhang et al. 2012). Another method, JIVE (Joind &mdividual Variation Explained),
decomposes variations in datasets into three tgomg:variation shared across datasets,
specific structured variation within datasets, agsdidual noise. While JIVE provides
more precise evaluation of common characteristicsan be affected by outliers. In
glioblastomas, JIVE combining miRNA and gene exgims data improved tumor type
identification (Lock et al. 2013). MoCluster empsoynultivariate analysis to detect
similar patterns across diverse omics datasettowietl by a clustering algorithm to
identify distinct clusters. This approach identifienicrosatellite instability-high tumors
and three novel subgroups of colorectal cancernigprporating mRNA, protein, and
methylation data (Meng et al. 2016).

Statistical methods: The Bayesian algorithm accommodates different sadsa with
varying dispersions and associations. iClustegbstantial clustering technique, employs
a Gaussian latent variable model to integrate plalgenetic traits (Shen et al., 2009). It
focuses on obtaining diverse sample clusters aadtifging associated characteristics.
Integrating copy number variants and gene expresgimfiles using unsupervised
clustering identified novel breast cancer molecidabtypes with unique therapeutic
implications (Curtis et al. 2012). iClusterPlus, amproved version, performs model-
based matrix factorization integration. It decomgsoseach omics data type into
component and loading factors, revealing gene chenatics and latent cancer
subgroups. iCluster+ is effective for tumor classaifion and biomarker discovery in
cancer genomics, such as MYB and PCML1 in leukemia&cotin, BAP1, and XPC in
small-cell lung cancer (Mo et al. 2013). Howevet, réquires parameter tuning,
substantial computations, and lacks statisticahiBggance assessment for selected
variables (Mo et al. 2018). The Bayesian Conse@ustering (BCC) approach focuses
on Finite Dirichlet mixture models to explore clrst within individual datasets and
integrate them (Lock and Dunson 2013). IntegraBaegesian analysis of genomics data
(IBAG), a supervised multiblock technique, assestiescal associations between omics
data from various platforms and identifies biomaskénked to clinical outcomes. It
combines clinical data, survival statistics, andastomponents to uncover methylation-
regulated genes related to patient survival inldgistoma samples (Wang et al. 2013).

Network-based integration: iOmicsPASS enables supervised integration of DNAyco
number, mRNA, and protein expression data to coastinterconnected subnetworks
using a modified closest shrunken centroid techmifpr accurate phenotypic group
prediction in breast cancer. It effectively handigsta heterogeneity and identifies
molecular signatures defining distinct phenotymtegories. iOmicsPASS treats network
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data as undirected graphs, simplifying interactsmore calculations, and reduces the
number of predictive features. It is suitable fonai sample sizes (Koh et al. 2019).
NetICS prioritizes cancer genes by integrating idigadata sources on a directed modular
interaction network. It identifies mediators betwedifferentially expressed genes,
predicting downstream expression changes. Datg@ads include somatic mutations,
gene expressions, DNA copy number variations, nhatiloy patterns, and miRNA
expressions. NetlCS ranks genes near upstreamamustieam differentially expressed
genes and aggregates proteins using a robust ggrkgation approach. It outperforms
other network-based algorithms in prioritizing cangenes across multiple cancer types
(Dimitrakopoulos et al. 2018).

4. Similarity based integration: Similarity-based methods, like SNF (Similarity Wetk
Fusion), build separate networks for each omica tigie and iteratively update them to
enhance inter-data type similarities, creating mpasite network. SNF operates in the
sample space, merging mRNA expression, DNA metioylatand miRNA expression
data to identify cancer subtypes with distinct stalcharacteristics (Wang et al. 2014).
It's effective for identifying cancer subtypes at for biomarker discovery. Multiple
Kernel Learning (MKL) is ideal for integrating muydte high-throughput data sources, but
it's underutilized in genomics due to the lack w@ingardized protocols and benchmark
datasets. An unsupervised version of MKL called iRatigzed Multiple Kernel Learning
Locality Preserving Projections (rMKL-LPP), devedapby Speicher and Pfeifer, reduces
dimensionality for sample clustering and data asialylt combines multiple kernel
learning with a graph embedding framework algorithmMKL-LPP is versatile,
suitable for small datasets, and accepts sequence matrices and numerical data as
inputs. It aligns with previous clustering resuhsglioblastoma multiforme, integrating
methylation, gene expression, and miRNA expresdata (Menyhéart and Gyffy 2021;
Speicher and Pfeifer 2015).

5. Fusion-based integration: Pattern Fusion Analysis (PFA) is a unique compaoiei
technique that uses adaptive optimization to idgmiegrated "sample-patterns” among
diverse genomic profiles. PFA extracts biologicalignificant sample-patterns in a low-
dimensional spatial domain and quantifies the valieeach data type or sample in
supporting phenotype-specific global sample-pasteth can identify clinically distinct
subgroups in glioblastoma, non-small cell lung esnand clear cell carcinoma samples
from TCGA with higher prognostic efficacy comparéal clustering techniques like
iCluster and SNF (Shi et al. 2017). However, PFAgt identify new biomarkers or
provide insights into tumorigenesis mechanisms.

6. Correlation-based integration: Canonical Correlation Analysis (CCA) is a technidoie
assessing the correlation between gene expressidnneethylation data, providing
insights into tumorigenesis mechanisms. CCA comsidadividual features while
accounting for collective variable impacts (Linadt 2013). While useful for estimating
survival in cancer, it has limited utility in mol@ar subtyping and biomarker
identification (El-Manzalawy 2018). Computationathniques for biomarker discovery,
like MuTarget and matrix-based methods, harnesselations between genetic
abnormalities and modifications. MuTarget links sbigy mutations and gene expression
data, aiding biomarker and therapeutic target d&mgo (Nagy and Girffy 2021).
DriverNet identifies correlations between mutatioaed gene expression through
influence graphs, revealing interacting gene pastfrem known pathways (Bashashati et
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al. 2012). Multi-Omics Factor Analysis (MOFA) idéms drivers of clinical
heterogeneity across multi-omics data, capturingogical and technical variation. It
distinguishes shared and unique axes of heterdgemgihancing prognostic relevance
(Argelaguet et al. 2018). The field of using mutrics techniques for identifying genetic
changes as drivers is rapidly evolving, with canbatlmark gene lists aiding in
connecting driving events to significant signatur@denyhart et al. 2016). These
approaches offer diverse strategies for multi-datagration and clinical relevance in
cancer research.

IV.MULTIOMICSIMPLEMENTATION IN CANCER

The emergence of high-throughput and cost-effectmelti-omics approaches,
including genomics, epigenomics, transcriptomicsd aproteomics, has significantly
advanced our understanding of cancer initiatiorggpssion, and treatment. Gradually
methods like Cox-nnet, DeepProg, and two-stage m@wt- were developed to meet
the challenges of integrating the humongous dat@rg¢ed through multi omics approaches
(Garmire 2020). These methods have been instrumentaacquiring comprehensive
knowledge about cancer at various molecular lewdtinately leading to more efficient
treatment strategies. For instance, in the studyHblowatyj et al. (2020), connections
between PPARG visceral adipose tissue expressidplasma/serum markers in colorectal
cancer patients were revealed, potentially infogninerapeutic strategies. In diseases like
prostate adenocarcinoma, which require a multi-erajgproach, researchers have identified
tumor suppressor genes and gene mutations. PCDg#heaabsent in 23% of cases, has been
associated with other molecular changes, providiaigable insights into prognosis (Ren et
al. 2016). Multi-omics analyses have been instrualén numerous cancer studies, including
melanoma (Zhang et al. 2020), breast cancer (Sagtdral. 2018), pancreatic ductal
adenocarcinoma (Chaudhary et al. 2018), and mdresd studies have identified predictive
biomarkers, offered insights into disease progoessand explored potential therapeutic
avenues (Kwon et al. 2015, Zhu et al. 2017, Yoskéat al. 2017). While single-level omics
approaches have provided valuable insights intacerabiology, multi-omics analyses are
indispensable for understanding the complex intemas between molecular variations and
phenotypic manifestations. Multi-omics data intégwa allows for a comprehensive view of
genetic variants, environmental factors, and iatgc biological system interactions,
contributing to prognostic and predictive studiélserapy response investigations, and
translational research (Menyhart andé@8fy 2021). Integrative multi-omics data provide a
detailed perspective on tumorigenesis, enablintebpatient selection for targeted therapies
and the optimization of clinical treatment stragésgiAs technological barriers are overcome,
multi-omics techniques continue to advance canegearch, offering substantial benefits to
cancer patients worldwide.

V. CHALLENGESIN INTEGRATED OMICS

Integrating a wide range of omics data poses boticeptual and practical challenges
in day-to-day omics data analysis. Key challengesurrent integrated omics techniques
include sample preparation, normalization, tramsfdron of multiple omics datasets,
integration issues, data archiving and sharinga diaerpretation, and the complexities of
clinical translation in multiomics approaches. Nuous studies have emphasized the
complexities of proficiently preparing samples anwdcessing data from diverse sources in
individual omics research, spanning microorganigstests, and animals (Misra et al., 2019).
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With multi-omics, sample size becomes a criticalstmaint, further exacerbated by the need
for unified extraction techniques capable of simmgétously extracting proteins, nucleic
acids, and metabolites without significant loss.cieaomics platform has its unique
normalization and transformation techniques dueh®® diversity of information within
datasets. For example, a zero value is interprdiffdrently in different omics datasets,
representing non-expression in RNA-Seq-based triggme data but merely missing data in
proteomic or metabolomic datasets. In many casedtjple omics datasets may not fully
overlap, and measures derived from one omics methay not be well correlated with those
from other approaches. Consequently, individualosntechniques provide an incomplete
picture of the complex pathophysiology of complesedses. Additionally, combining data
from multiple sources complicates the identificatiof false positives within integrated
datasets, requiring careful consideration of apgrea to address this issue. Effective data
archiving is crucial for the robustness of indivadlemics and integrated omics data, aligning
with the principles of Findability, Accessibilitynteroperability, and Reusability (FAIR)
(Wilkinson et al., 2016). While numerous public alzdses exist for archiving individual
omics datasets, there is a lack of standardizedbdaes that enable users to submit and
retrieve integrated omics data from a unified répog or interface. Sharing data, especially
in large multi-omics studies, can enhance resowaceessibility for further training,
exploration, and post-publication analyses. In&tipg and managing vast, multifaceted
networks is computationally and time-intensive, dading a deep understanding of the
biological system under investigation. Despite tirewing number of potential cancer
biomarkers discovered across various omics levidls, development of new cancer
biomarker- based diagnostics has been limited. fraeslational process faces several
challenges, contributing to the gap between bioeradiscovery and clinical adoption (Maes
et al., 2015). To translate biomarker discovery iotinical assays, collaborative efforts
among academic researchers, clinicians, and indasprerts are essential to establish clinical
significance, validation procedures, and studygitesiBuilding such interdisciplinary teams
can be resource- intensive and remains a signtfi¢amdle in translational research
transformation techniques. For instance, a zeroeval treated differently in different omics
datasets. It is intercepted as non-expression f@ transcript in RNA-Seq-based
transcriptome dataset while it can be merely mgssiata for proteomic or metabolomic
dataset. Multiple omics datasets may not alwayslapeand measures derived from one
omics method aren't necessarily well associateld thidse derived from other approaches. As
a result, different omics techniques individuallyegan incomplete data of the complicated
pathophysiology of complex diseases. Furthermooephining data from several sources
makes it more difficult to account for false pog in the integrated datasets. The approach
to deal with false positives in different omics akdts has a major impact on the outcomes.
Data archiving is very essential for robustnessingiividual omics and integrated omics
data, including adherence to Findability, Acces#ihi Interoperability and Reusability
(FAIR) principles (Wilkinson et al. 2016). Althoughany public databases are available for
archiving individual omics datasets, there aretandard databases which let users to submit
and retrieve three or more integrated (LOpez deutdat et al. 2019).

VI.CONCLUSION
Despite extensive research, only a handful of nuddecdiagnostic tests have made
significant progress towards clinical use sincertléscovery a decade ago, while many

others have been deemed research failures. Tossdtlrese disparities, there is a pressing
need for robust regulatory standards to identisseas, and validate these biomolecules.
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Once validated, these biomolecules can functionliagnostic, prognostic, predictive, and
therapeutic markers, significantly impacting patientcomes through early tumor detection,
tailored targeted therapies, and personalizednrerat approaches.
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4. Figureto Legends

* Figure 1. Schematic representation of work flow of differerics platforms in
cancer research for biomarker discovery.

 Figure 2: Schematic representation of methods used for rmoaglics data
integration showcasing work flow for biomarker digery in cancer.
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