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Abstract Author

The selection of superior reactiv&uru Prasad. B
materials for the construction of permeablgeld Engineer: Water Resources
reactive barriers—which are widely utilized®epartment
for ground water treatment operations—{Sovernment of Andhra Pradesh
heavily influenced by the findings of batcNijayawada, India.
experiments. As a result, it is necessary igurubpch@gmail.com.

make procedures that make it possible to

assess the performance of a batch reactor.

As a consequence, methods for evaluating
the performance of batch reactors must be
devised in order to design reactive materials
that are more effective under diverse
influent conditions. This chapter
investigates whether an artificial neural
network model could be used to simulate
the results of batch testing utilizing acidic
ground water, a phenomenon that is
prevalent in coastal plains all over the
world. Reaction time, pH, and reactive
specific surface area were selected as the
intended model inputs based on historical
data and the output variables were one or
more of the following, aluminium, calcium,
and iron  concentrations. Utilizing
experimental test data gathered from 20
different nearly cost-free reactive materials,
the suggested neural network model was
constructed. Following training, validation
was conducted using various sets of
performance data that were collected from
the same batch of tests. The ANN model
was also cross-validated using a collection
of split data sets. For the selected ions of
interest, non-linear multi regression models
were also offered for comparison. In order
to select a material as a potential reactant for
the design of permeable reactive barriers
under a variety of input conditions,
simulation results were carefully examined
based on a qualitative understanding of
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batch  processes. Additionally, using
sensitivity analysis, the impact of each
preferred input variable on the chosen
output was carefully assessed and ordered,
demonstrating that the chosen input signals
are the key factors influencing the estimate
of the output. Due to the reactive materials’
existing nonlinear and ambiguous chemical
reaction properties,  ANN models
outperformed non-linear multi regression
models in terms of data simulation.

Keywords: Zero-cost reactive media; Batch
tests; Permeable reactive barrier; ANN
Modeling; acidic ground water modelling;
Passive treatment technologies;
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l. INTRODUCTION

Acidic groundwater is a global issue caused byinkeractions of sulphide minerals
such as pyrite with oxygen and water. This probiemspecially pervasive in coastal plains,
where over 130 million hectares of acid sulfatelssaxist[1]. During the recharge of
groundwater from rainfall, the release of acid frand sulfate soils has caused significant
mobilization of iron and aluminum in groundwater[2], increases the attack on concrete,
steel infrastructure, clog pores of the soil withni flocculates, and kill fish. Owing to the
impacts on environment, the research on acid stépkater has increased [3][4][5][6].

In order to clean up contaminated groundwater,vacddermedas permeable reactive
barrier (PRB) is now often employed. The selectbruitable materials to utilize as reactive
mediums is one of the most crucial factors [7]. Thaterial shouldn't cause any adverse
chemical reactions or byproducts when interactinty @lements of the polluted plume, and
it should be affordably priced for a sufficient jer of time. By bringing the reactive
materials into touch with the acidic groundwaterrotlgh precipitation, sorption,
oxidation/reduction, and other physical, chemiealgi/or biological processes, it is remedied
by bringing the pH level back down. Due to the ctemp series, and parallel chemical
reactions involved in the PRB system, the undedstgnand selection of the novel reactive
media is one of the most important practical tasks.

Adaptive learning, self-organization, and real-tio@eration make artificial neural
networks an appealing mathematical tool for repriesg complex relationships. They fall
under the category of data focused approaches,ewther data are used to determine the
model's structure. When the system's behavior ciean ANN models may generalize the
highly nonlinear data and deliver the required omtes. Because of these appealing
gualities, neural networks are being used more mode in modeling, where complex
physio-chemical processes are common. Numerouarcksss adopted ANNSs in the field of
geo-environmental engineering; virtual soil laborgt experiments [8], porosity and
permeability prediction [9], geotechnical propestid0], settlement of shallow foundations
[11], contaminant prediction [12][13], waste sdiicktion [14], and swelling behaviour [15].

In contrast, the structure of the model must beldished before the unknown model
parameters may be estimated using the traditicadéisscal approaches. These statistical
methods are constrained by things like a lack afewstanding of the manner in which the
data are distributed. Unfortunately, due to the glexity of the parallel and series chemical
reactions involved and the lack of a thorough kremlge of multiple processes, the
application of statistical tools to forecast thieefs of PRB reactive materials is confined. In
the present work, neural networks have been praptwsanderstand the acidic ground water
interaction with reactive materials by predictitg ton concentrations. A comparative study
was also presented with non-linear regression nsodéle useful approach to choosing the
unique reactive barrier material that could be usedforecast their behavior without
requiring substantial practical investigation ig tise of ANN models for the prediction of
ion concentrations.
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Il. STRATEGY

1. Experimental Description: This investigation comprised batch testing for usdhe
PRB of 20 alkaline materials, with a focus on neane cost waste materials, such as blast
furnace slag, recycled concrete, flyash, zeolitecbia carrying calcite, limestone, oyster
shells, and material from dredging shells.Througltbe batch experiments (Figure 1),
representative acidic water was collected fromitiggan Peninsula's southeast coast. The
testing was performed at atmospheric pressure amordtory temperature (15-£).
The collected water at the field site was high I{up to 55 g/m) and Fe (up to 20 gffn
and acidic (pH as low as 3; Table 1). The primasjective of batch testing is to figure
out whether the materials are suitable for neuradi acidity and removing Al and Fe
from groundwater. The samples were carefully ctd@éauring the experiment in order
to avoid flow disruption, and the pH was determimigtht away. After O days, 1 days, 7
days, and 28 days, samples were also collecte@rfalysis using inductively coupled
plasma atomic emission spectroscopy. Prior to bemgyzed for significant ions like
calcium, aluminum, and iron, the samples wererétileunder pressure through a 0.45 m
membrane and preserved in high density polyethylertdes in the refrigerator. The
reactive specific surface area of the selected natgavas calculated in the lab prior to

batch trials.
J%: Acoidic water Feed

Baffle - Baffle

Eeactive
material

-

Leachate cutlet

Figure 1: Schematic diagram of batch tank
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Table 1: For training, testing, and validation, batch experments' statistical parameters

Mode of T pH RSSA Al Ca Fe
Parameter .
Operation
(day) (nf/g) | (g/nt) | (g/m) | (g/m)
Minimum | Training 0 3.02 0.40 0 2 0.12
Testing 0 3.02 0.40 0.40 2 0.18
Validation 0 3.02 10.00 0.50 2 0.7%
Maximum | Training 28 12.24 717 55.40 870.,409.65
Testing 28 11.04 700 55.40  258.9(20.00
Validation 28 12.24 717 55.40, 820.6010.12
Mean Training 9.09 7.19 306.19 17.4y  145,62.57
Testing 8.98 7.10 337.68 12.74 78.48  3.36
Validation 8.11 6.54 334.89 18.69 182.204.32
Median Training 4 6.59 120 2.40 39.30 0.89
Testing 7 8.21 600 1.30 29.80 1.41
Validation 1 5.90 120 7.90 38.20 3.3b
Mode Training 0 3.09 600 55.40 2.00 6.45
Testing 1 3.02 600 1.20 6.70 6.5
Validation 1 0 717 0 0 0
Standard | Training 11.44 3.66 303.63 22.26  223/4R.72
deviation
Testing 11.28 2.52 309.33 20.16 78.42  4.82
Validation | 1760 | 3.60 | 337.95 21.16 294.473.37
Kurtosis Training -0.87 -1.72 -1.93 -1.24 4.32 Ol
Testing -0.71 -0.97 -2.03 0.05 -0.86 8.43
Validation 0.30 -0.77 -2.44 -0.89 2.11 -1.12
Skewness | Training 0.96 0.15 0.18 0.79 2.23 0,83
Testing 1.03 -0.65 -0.01 1.37 0.74 2.69
Validation 1.40 0.79 0.28 0.88 1.78 0.48
Count Training 98 98 98 98 98 98
Testing 45 45 45 45 45 45
Validation 9 9 9 9 9 9
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2. Routes of Reactions and Observable Phenomenia: general, oxidation processes with
acidic groundwater are complicated, and often abermof intermediates are generated,
often at varying rates [16]. Different materialgnfovarious kinds of precipitates, and
while some materials may form many of these preaigs, others may not. The
precipitated products in equations 1-4 are antiegbdo occur as a result of calcium
carbonate being saturated in the groundwater assaltrof increased pH and the
interaction of iron and aluminum with water andbzarates [16].

FE* + 20H « Fe(OH), (1)
FE' +CO; ~ FeCQ, 2)
Al** +3H,0 - Al(OH),,, +3H;,, 3)
Ca’* +CO; «~ CaCO, (4)

3. Neural Network Approach to Model Leachate Concentréions : The parallel
distributed processor called an ANN, which resemli®logical neurons, has a built-in
predisposition to store and make use of experichektawledge. The selection of
architecture depends on the tasks to be perforiteel.network is made up of an input
layer that takes inputs from the system, a hiddgerl that takes inputs from neurons in
the input layer, and an output layer that takea ffam hidden layers and sends its output
to an outside domain. The general design of theqaiare employed in this investigation
is shown in Figure 2. For the purpose of creatimgaral model, the test is considered as
a batch reactor that responds to different set;ymiits by producing various sets of
outputs. Such a model makes no assumptions abiountkpowledge of the relationship's
structure between the system's input and outputiblas. The suitable values of the
leachate concentrations for the selected reactiwgponents present in the system, at any
provided feed circumstances, really function ag\lBilN model.

A representative collection of learning data mwestieated based on the available
batch reactor experimental findings in order tocessfully train a neural network. This
stage has a significant impact on the accuracyraégss modeling, the applicability of
the network for knowledge generalization, and thelity of the approximation of the
output concentrations.The input vector containsdlvariables-reaction time (T), pH, and
reactive specific surface area (RSSA)-while thepoutmight be any of the three
variables-concentrations of aluminum, calcium, ronidepending on the characteristics
of the reacting system. Depending on the reactizatobn and particular surface area, the
pH is maybe the most promising physical measurenfamitoring the ion concentration in
the leaching process. The chosen output of ion exdnations serves as the study's
primary point of interest.
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Figure 2: Training strategy of feed-forward ANN

It is a standard procedure to separate the datistl two subsets before
performing neural modeling: a training set for dinp the neural network model and an
independent validation set for determining how wviled model performs in the deployed
environment [17]. Only splitting the data into teobsets, however, might result in model
overfitting. To circumvent this, the database iad@mly partitioned into three sets:
training, testing, and validation. Cross-validatid®] [19] [20] is then employed as the
stopping criterion in the present investigation%30f the data are used for validation,
while the remaining 64% are used for training. Tamaining 6% of data are used for
cross validation. To maintain the meaning of thégiMs and avoid numerical overflows,
ANN inputs and outputs were normalized to fall witlthe range of [-1, 1] using the
associated maximum value. The selection of ardhitet parameters can influence
network training and predictions. As the internatwork parameters, a learning rate of
0.5 and the momentum of 0.2 were considered ta,tri@ist and cross validate the
network. The MatlaB source code incorporating the salient featuresribesl above was
used to implement this artificial neural networlst®mn on a personal computer.

4. Non-Liner Multi Regression Model Leachate Concentréions : A multivariate analytic
approach called multi-regression is utilized toefmst an assortment of predictor
variables. The concept of regression analysisitigbe idea of predicting the scores of
one dependent variablefrom the scores of one or several independent Masza;,
€2,..., EmiN @n optimal way.
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Only linear relationships between dependent an@paddent variables can be
used in standard multiple regression to assesgellationship between the variables.
Regression analysis results tend to overstate tlerlying relationship if there is a
nonlinear relationship between the independentdapegndent variables. A short code of
Matlab® was adopted to develop the MRL models fom@nium, calcium and iron ions.

Neural Network Approach to Leachate lon Concentraton Network: The network
weights converge to values during training such #ah input vector yields the desired
output. Through the appropriate modification of Wght matrices, the backpropagation
approach feeds the output faults back into the otwl he output xof each unit from i
to j is used to demonstrate how the generalizeh dele was utilized to change weights
and bias.

Xj = Gw; +h ()

where, ¢is the output of unit j, yis the connectionsweight from unit i to unitlg; is the
bias of unit j.

The output is then passed through a straightforveagchoid function, f(C), to
provide an estimate of the neuron's degree ofiagtivhich is given by,

1

1+¢©

f(C)= (6)

A vector of the net parameters (weights) w has kmdtared during the learning
process to minimize disparities between the outptitized for learning, d, and the
outputs anticipated with the net, C (Eq. 7).

EW=13 (e -df)’ @)

[E=
RESULTS AND DISCUSSION

Selection of Suitable Hidden NeuronsThe appropriate number of neurons in a hidden
layer was established by trial and error by mettalti analyzing various combinations
of neurons in the hidden layer in the absence ¢f drict criteria. The network may
memorize information and perform well during traigias the number of neurons in the
hidden layer of the network rises, but the netwaiky not be able to generalize as the
problem becomes more complex. The performanceeohétwork improves generally as
the number of hidden neurons decreases. So, im twdimd a solution to the problem, a
study is done to determine how many buried neuafiest the network's performance.

Figure 3 shows the mean absolute error betweeprdgicted and experimental
concentrations of selected ions along with epoghsitreasing the number of neurons in
the hidden layer from 1 to 11.As the number of nesradds to the network the epoch
size increases with higher error values. Using fbidden neurons, the number of
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iterations is less with its prediction error is fiat from that of the network coupled with a
smaller number of connection weights. Thus in ttesent work 4 hidden neurons, single
hidden layered feed forward back propagation ndiwoe 3-4-1) is adopted, and the
designed optimal network is shown in Figure 4 with process description given in

Table 2
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Figure 3: Impact of hidden layer neurons on the RMS error

Table 2: Each layer's input, hidden input, and output in a reural network

Neuronsp

Performed task resent| Layer Neuron’s input Output from neurg

K

3 Input [x;j=1,2....K Ci=x,j=1,2,..K

lon . k —
=% 1 Cwi+ Ci= 1/{1+exp(-
concentration| 11 | Hidden 122.1 Qvl\</u by, JJ:1{2 k|0(>$)}
ji=1,2,....

(Al/Ca/Fe)

1 Output| x;=XX1Cw;+ by |C%=x°
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Figure 4: The designed ANN architecture for estimation oéstdd ion concentratis

2. Prediction of lon Concentration: The performance measure values of the comg
models for aluminium, calcium, and iron ions arewh in Tables 3a and 3b. Assembili
the data, developing the network object, trainihg tnetwork, and simulating tl
network's reaction to novel inputs are all phadeth® training operation.The predict
and actual ion concentrations for the training exhibit a very strong correlation®>
0.99), with the RMSE errors for the metals aluminuwalcium, and iron comprisir
1.0588, 19.9523, and 0.3258, respectively. Figh-7 show that practically all trainir
data points fall on the 1:1 line. The ne model is able to memorize the r-linear ion
concentration to the numerous driving signals afliacwater with reactive media, .
evidenced by the strong correlation between theemxy@ntal and predicted leach:
concentration of reactive materials v varying pH and time periods.
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Figure 5: Correlation between experimental and predictedmihium concentrations
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Figure 6: Correlation between experimental and predictea@i@al concentrations
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Figure 7: Correlation between experimental and predicted d@ncentrations

Table 3a: Performance measures of neural network intelligencand regression models

Root mean squate error Mean sum square of the error

Nou-lmeat Non-lmear

Ton Artficta] Neural Network multiple Artifycta] Neural Network multiple
G S

Teing | Tene | O | Tod | Tod | Teiwine | Tesig | O | T | Tod

- = | validation - = | validation

R L0388 | 13353 | 13227 | 12356 | 73044 | 11212 | 24195 | 23187 | 18917 | 376749
s 199323 | 225272 | 177374 | 208283 | 1316876 | 398.0962 | 3074734 | 3146143 | 420280 | 173416283
2 03238 | 04199 | 03303 | 03365 | 27008 | 01081 | 00763 | 01091 (01511 12042
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Table 3b: Performance measures of neural network intelligencand regression

models
Average relative etror restmate
lm Non-lmer
Ion Atifical Neura Network E”l Atiiial Neurd Network mltle
it egression
femfassion
Tone | Tsne| O | Tod | Tod |Teigie| Teie | OF | T | Tod
- = | validahon - = | validation
A | ose oo | s | ostes | ames | osem | osew | oon | osme | U3
— . R B O T
ca | 2o | vtees | ooset | s | 265 | oseto | ostse | osem | oo
R | o3vtd |os| oot | osees | M| osess | osens | oo | osm |

3. Generalization of lon Concentration: The closeness of the points to the equality line
(Figures 5-7) and the high values 6f(0.9939, 0.9156, 0.9903) along with low values of
MSSE (2.4195,507.4734,0.1763), RMSE(1.5555°@t5272 g/my, 0.4199 g/n), and
MAE (1.1306 g/mi, 20.01 g/m, 0.2876 g/m) and the displayed concentrations of
aluminium, calcium, and iron, which range from 018555.40 g/m3, 2 to 258.90 g/m3,
and 0.18 to 20 g/m3, respectively, clearly illustrahe accuracy of the neural
models.Pursuant to the performance results, bamiagation neural networks are
capable of predicting ion concentrations of reactivaterials, which are to be employed
as sorbing material in the permeable reactive &afor treating acidic groundwater, with
an adequate degree of accuracy.

4. Validation of lon Concentration: Prior to the usage of a developed model, there is a
need to establish the validity of the results inem@ates. The chosen data sets have
demonstrated fairly good correlatiorf & 0.9942; ega 0.9959; = 0.9892). The
network was able to provide nearly ideal solutibmshe coIIectlon of problems with
which it was trained, as shown by the anticipatatlies for the concentrations of iron,
calcium, and aluminum (Figures 5-7).

To examine the overall performance, a comparattueyswas made between
experimental, neural network, and regression modglshown in Figures 8-10. The r
values are 0.88, 0.58, and 0.34 times less thasetbb the regression models, and the
corresponding RMSE errors are 6.05, 6.40, and 3& more for aluminium, calcium,
and iron ions, respectively. This reveals that ANN model performs rather well over
the whole range of relevant observed ion concaatrat For aluminum, calcium, and iron
concentrations, respectively, the regression agpesaonly seem to function well in the
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Figure 8: Variation of selected input parameters on outgutrnium concentration
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Figure 10: Variation of selected input parameters on output toncentration

5. Effect of Neutralization Ability on lon Concentration: It can be observed from Figure
11, at nearly 3 pH the aluminium ion concentrai®in the range of 42 to 58 g/mwhen
acidic groundwater interacts with materials. As tb&periment progressed, the

neutralizing

ability of the materials increased riejeasing the calcium ions (Figure 12)

and decreasing the aluminium ion concentratiorha leachate. It could be due to the
formation of aluminium hydroxide precipitates [1@). addition, the formation of iron

carbonates
leachate (F

and iron hydroxide might have increadbedpH of the materials in the
igure 13). The regression model wasait to perform for higher ion

concentrations in the study.
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Figure 13: Effect of pH on Iron concentration

6. ANN Model Equation for the Selected lon Concentratns (G,) Based on generalized
Neural Network: The benefit of neural networks is that, after tiragn they can be
utilized as a quick and accurate tool to estimiageconcentration of ions without the need
for additional batch tests. The drawbacks, on tierohand, include a lack of theory to
aid in their development and a limited capacityléscribe how they employ the facts at
hand to come up with a solution. The general magtieal form of equation as per the
ANN relating the batch experimental inputs anditimeconcentrations can be written as,

|

© N
Concentration of iorC, = f[ZiK:oWki f(ZV\/i.(h’.Xj +b,) + bo]
j=0
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where h is the number of neurons in the hiddenr|a@eis the normalized £
value (in the range of -1 to 1), f is the so-calsativation function, is the bias at the
output layer, w is the connection weight between the eighth hiddger neuron and the
single output neuron,jlis the bias at the'hhidden layer neuron, iwis the connection
weight between the"iinput variable and the"hhidden layer neuron, The range of the C
value as determined by Eqg. (8) is [-1, 1], and themsds to be denormalized as,

Cp = Cp model(Cp max— Cp min) + Co min
9)

where, G = Predicted model selected ion concentration {9/ mogel= The

model output;  Emax = The maximum selected ion concentration @/rand G min=
The minimum selected ion concentration (§)/m

7. Proposed ANN Model Paramets Sensitivity AnalysisThe sensitivity of neural network
performance to the selected inputs was investig@tgzerceive how changes in an input
variable affect the output variable.Figure 14 shdwsv sensitive the concentration of
selected ions was at each of the selected inpathpsters, and how they would affect the
changes. As expected, T, pH, and RSSAare the musbrtant factors affecting the

concentration of ions with an average relative ingace equal to 32.21, 36.75, and
31.04%, respectively.

40
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N N w
o ol o
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Figure 14: Strength of input signal on output
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8. Non Linear Regression Models for Selected lon Cono#&ations: A dependent variable
and numerous independent variables can be relate& imultivariate way using
regression. The multivariate regression model coeffts for dependent leachate ion
concentrations are presented in Table 4 and them@ransive multivariate regression

model for dependent leachate concentrations isxdiye

C =)+ a, (T) +BiI(pH) +1(RSSA) + al; (T)? + B1; (pHY
+71i (RSSAJ + a2, (T)(pH)*B2 (T)(RSSA)+12 (pH)(RSSA) (10)

where, T is interaction time (day), pH is the logln ion concentration, RSSA is the
reactive specific surface area(g).

IV. SUMMARY ANDCONCLUSIONS

Owing to the advantages of simplicity in experinaion and ease of use in the
selection of almost cost-free superior reactiveemals for the design of permeable reactive
barriers, which are widely used as passive treatni@nground water treatment operations,
batch experimental results were used in this chaptith the help of batch reactor data,
neural network-based simulation models for predgctthe ion concentration in acidic
groundwaters were created and tested for applitab$ensitivity analysis was used to
evaluate and rank the effects of each desired iwgudable on the chosen output, indicating
that the chosen input signals are the importaribfadnfluencing the output estimate.

Table 4: Multivariate regression model coefficients for depedent leachate ion
concentrations

Modellon
Concentration Model coefficients

C A o B ¥ al Bl 1l ol 2 1l
Al 107048 -1.3996 | 229693 | 00034 | 00203 | 11931 |-242ed3 | 00738 | 00002 | 0.0019
Ca 229997 100136 |-103.1703 | 03872 | 02867 | 97983 | 00003 | 0.1934 | 00017 | 00147
Fe §992 | 03718 | 05268 | -0.0036 | 00040 | 00242 |384e06 ) 00220 | 29103 | 0.0004

C = lon concentration (g/fn

C, (@/m?) =107.9481 - 1.3996(T) - 22.9693(pH) + 0.0034(RSSA)

+0.0203(T) ? +1.1931(pH) ? - 0.00001 (RSSA) ?
+0.0738(T) (pH) + 0.0002(T)(RSSA) + 0.0019(pH) (RSSA)

(10a)
C,, (@/m?®) =229.9974+10.0136(T) -103.1703(pH) + 0.3872(RSSA)
-0.2867(T) 2 +9.7983(pH) 2 - 0.0005 (RSSA) 2
—0.1934(T) (pH) + 0.0017(T)(RSSA) — 0.0147(pH)(RSSA)
(10b)
Page | 117

Copyright © 2024 Authors



Futuristic Trends in Construction Materials & Citahgineering
e-ISBN: 978-93-5747-992-9
IIP Series, Volume 3, Book 5, Part 2, Chapter 2
SELECTION OF ZERO-COST REACTIVE MATERIAL FOR
PERMEABLE REACTIVE BARRIERS: NEURAL NETWORKS ADOPTRILITY

C.. (g/m*) =8.992- 0.37181(T) - 0.92682(pH) - 0.0056355RSSA)

+0.0040127(T)2 + 0.0242(pH)? + 3841e- 006 (RSSA)?

+0.021968(T) (pH) + 2.9138e- 005(T)(RSSA) +0.00039641pH)(RSSA)
(10c¢)

Based On the Study the Following Primary Conclusios Can be Drawn
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* The artificial neural network model (3-4-1) creaiadhis way uses interaction time
frame, pH, and reactive specific surface area toegdize the desired ion
concentrations. All the statistical results camfithat neural networks are precise
tools in the quantitative study of reactive materia the complex acid groundwater
system. Hence the ANNs can be used as a prelimiassgssment tool for acid
sulphate soil remediation.

* An increase in hidden layer neurons improves ndtvparformance up to a certain
degree, but after that, generalization ability ohic concentrations drastically
decreases.

* The ion concentrations of interest obtained fromasem reactive materials by ANN
technique shows a good correlation with batch tgSts 0.9964, 7= 0.9702, and’r=
0.9872), leading to the conclusion that ANN is &etapplicable for complex
problems than regression method$ #£r 0.8753, ¥ =0.5590, and r =0.3359) for
aluminium, calcium and iron ions, respectively.

* The structure and parameters of the model are elédgt ANNs purely based on the
data. There is no need to formulate any assumpbtiorssmplify the problem in this
instance. As new data comes available, ANNs cam [adsupgraded to produce even
better results by showing additional training exap
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