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Abstract 

 

Vehicle identification and tracking is 

an extremely important function of traffic 

surveillance systems that is necessary for 

efficient traffic management and the 

protection of drivers and passengers. 

Finding and following the path of vehicles 

is the primary goal of this research. The 

goal of this research is to develop methods 

for the automated identification of cars in 

digital photographs and moving pictures. 

One of the numerous uses for Deep 

Learning, which may include fuzzy logic, 

neural networks, and evolutionary 

algorithms, is in the detection and tracking 

of automobiles. The purpose of this project 

is to apply deep learning to the problem of 

vehicle recognition and tracking; the 

primary-stage target detection techniques 

will be YOLOv5 and Single Shot MultiBox 

Detector (SSD). This is the main topic of 

the article. The Single Shot MultiBox 

Detector (SSD) model architecture is then 

employed as the major foundation for 

vehicle detection. Focus loss, in addition to 

the standard SSD, is an optimization 

component that improves feature extraction 

speed. Therefore, the procedure begins with 

a series of training procedures on the photos 

included inside the publicly accessible road 

vehicle dataset. The vehicle recognition 

model is then trained using YOLOv5 and 

SSD algorithms; these two algorithms work 

together to show how effective they are at 

detecting vehicles. Comparing the models' 

detection rates on different cars is the key to 

locating it. The fundamental objective of 

this study is to develop an automated 

technique for detecting and tracking autos in 

both static and dynamic scenes. In the end, 
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the trained network model is applied to the 

analysis of the vehicle camera video, and 

the detection performance is tested 

experimentally. The study's results show 

that the approach may enhance vehicle 

identification success to 97.65%. From 

video and picture inputs, it can reliably 

identify vehicles. 

 

Keywords: Vehicle Detection, Image 

Processing, Vehicle Tracking, Deep 

Learning, Object Tracking. 
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I. INTRODUCTION 

 

Both the vehicle information system and the intelligent traffic system make use of 

automatic vehicle data recognition. Academics have paid a lot of attention to it since the turn 

of the decade, thanks to developments in digital photography and processing power. The 

recognition of vehicles automatically is a cornerstone of many cutting-edge traffic 

management programs [1, 2]. Among them are automated vehicle accident detection, 

automatic traffic density estimates, lane departure warning systems, traffic signal controllers, 

and traffic response systems. The strain on those in charge of managing the population and its 

associated infrastructure grows with each passing year. The global population is expanding at 

a breathtaking pace. There was a subsequent increase in the manufacturing of automobiles 

and other mechanical equipment. But it's crucial to handle new problems like traffic, 

accidents, and other challenges with caution. In order for humanity to continue making 

progress toward their objectives, new discoveries and inventions have had to be developed 

and implemented. Congestion on main thoroughfares and in big cities is a prime example. 

Some of the solutions used to this issue include a traffic signal and a sign. These answers 

seem to be inadequate by themselves. 

 

Decision-making-informing technologies like object identification and tracking are 

currently in development. The goal of this work is to facilitate the use of automated video 

surveillance solutions. These events have been used to solve many different sorts of 

problems. Object recognition and tracking are only two of the many subsystems that make up 

today's state-of-the-art Intelligent Transportation System (ITS). This technology is able to 

recognize a wide variety of vehicles, as well as lanes, traffic signals, and even individual 

models. It may also recognize distinct car manufacturers. Traffic and roads might benefit 

from vehicle identification and categorization, which could reduce the number of accidents 

and assist authorities maintain tabs on infractions. Vehicle recognition in both motion and 

still photographs is a natural ability for humans. Computer algorithms and programs rely 

heavily on the many forms of data. The lack or presence of certain components (such as 

favorable weather or appropriate illumination) might change the difficulty level. Meanwhile, 

there is a bewildering variety of automobile models and body designs available. Video 

objects might be of varying sizes and shapes, which presents a new difficulty when trying to 

recognize them in real time. Scientists have created a number of tools to help them find and 

follow moving things. In their numerous forms, these techniques make use of a wide range of 

algorithms, including fuzzy, neural network, evolutionary, Convolutional Neural Network 

(CNN), and Recurrent Neural Network (RNN). Because of the corporate world's obsession 

with this system or Computer futurist, developments in this area occur often. In order to draw 

conclusions regarding the practical uses of these algorithms, this study compares and 

contrasts fuzzy algorithms, neural network algorithms, and evolutionary algorithms. 

 

Increases in disposable money and standard of life have made private car ownership 

more accessible to the general public. As a result, more and more drivers approach their 

vehicles with fresh eyes and lofty goals. This has led to an increase in public unease over 

autonomous car technologies. More and more automobiles on the road have made travel 

easier and more difficult at the same time. It's becoming harder to get where you need to go 

as traffic rises, and this increased demand has piqued the interest of many in the idea of 



Futuristic Trends in IOT 

e-ISBN: 978-93-6252-596-3 

IIP Series, Volume 3, Book 4, Part 2, Chapter 4 

IMPROVING THE EFFICIENCY OF  

IMAGE PROCESSING WITH DEEP LEARNING FOR VEHICLE DETECTION AND TRACKING 

 

Copyright © 2024 Authors                                                                                                                       Page | 208 

intelligent transportation. Recent years have seen explosive growth in computer vision thanks 

to the widespread adoption and use of deep learning. Autonomous cars, face recognition 

systems, and picture segmentation are just a few examples of the many real-world uses of 

computer vision technology [1-3]. Their ability to distinguish between vehicles is crucial to 

the success of autonomous cars and other kinds of intelligent transportation. As a first step 

toward completely autonomous and intelligent transportation systems, this research employs 

a deep neural network to recognize and track moving autos. 

 

II. RELATED WORKS 

 

Vehicle detection technology is analogous to target detection technology. Both 

vehicle detection and target detection aim to accomplish similar core goals, which may be 

broken down into the locations and types of targets. Historical data-based algorithms, deep 

learning-based algorithms, YOLO-based algorithms, and path-following algorithms are the 

four primary categories of vehicle identification algorithms. 

 

1. Traditional Vehicle Detection Algorithm: Manual design of the target's attributes is 

essential to both conventional vehicle detection methods and conventional target 

detection approaches. The knowledge-based recognition algorithm is one such method; it 

is able to identify a vehicle by its distinct outline, as well as by its lines, shadows, and 

other edge elements. Therefore, we can determine the car's location in the picture by 

comparing the grayscale values of the shadow below it to those of the surrounding pixels 

that make up the vehicle body. That way, we can see vehicles and accomplish our 

mission. The algorithm then makes a final determination as to whether or not the 

automobile has been located. Despite its detectability, this method will be very light 

dependent. This is because the quality of the lighting will greatly affect the tonal range of 

its picture. It's important to remember that any object of a similar size and form will 

produce a similar shadow to that of the automobile. This imprecision renders the 

approach unsuitable for uses that need high precision. In addition to detecting brake 

lights, artificially constructed vehicle elements may aid in car identification. If you want 

to identify an automobile, you might try keeping an eye on its brake lights. However, the 

detection impact you'd get from doing so would be too little because of the substantial 

limits given by the influence of light. While the previous knowledge-based detection 

method accomplished its detection job by relying on the vehicle's inherent qualities, it 

struggled to satisfy the task's criteria owing to its limits and a poor detection recognition 

rate. 

 

Conventional techniques of vehicle detection also make use of a vehicle 

identification system predicated on a very simple application of machine learning. This 

system can identify vehicles based on their individual characteristics thanks to the 

integration of a vehicle-centric algorithm and a machine learning algorithm [4-6]. While 

the use of SVM and HOG features into shallow machine learning has the potential to 

improve detection accuracy, there are several downsides that must be considered. Even 

while this technique boosts detection accuracy by simple cascade, it also uses a larger 

model for detection, which requires more calculations overall. Even when using a shallow 

machine learning technique, feature selection is necessary to get the highest possible 

accuracy in vehicle recognition. The substantial modeling work required to simulate 



Futuristic Trends in IOT 

e-ISBN: 978-93-6252-596-3 

IIP Series, Volume 3, Book 4, Part 2, Chapter 4 

IMPROVING THE EFFICIENCY OF  

IMAGE PROCESSING WITH DEEP LEARNING FOR VEHICLE DETECTION AND TRACKING 

 

Copyright © 2024 Authors                                                                                                                       Page | 209 

complex and ever-changing traffic circumstances is a primary cause for the delay in its 

development. Traditional techniques for identifying automobiles include frame difference 

approaches, streamer methods, and background modelling methods [7, 8]. These methods 

are among the most popular in use today. There are a number of other ways to detect 

vehicles. There are a variety of factors, such as lighting and weather, that might affect the 

accuracy of the identification results produced by such an algorithm [9, 10]. This makes it 

difficult to adapt to the ever-changing reality of traffic on the roadways and hampers the 

demands of real-time vehicle identification. It also makes it harder to avoid collisions 

with other cars. Therefore, it will be an extremely difficult task to satisfy all of these 

prerequisites simultaneously. 

 

2. Vehicle Detection Algorithm Based on Deep Learning: Vehicle detection is effective 

in the same manner as target identification using deep learning is. Even though one- and 

single-stage target detection are more popular, two-stage detection might be considered if 

a suitable site suggestion cannot be given after the first. In a one-step procedure, a single 

network analyzes input pictures, detects targets, and returns both a bounding box and a 

categorization label. To correctly identify a target, we use a pair of networks: one that 

makes area recommendations based on the input pictures, and another that forwards those 

recommendations to a classifier for labeling. 

 

R-CNN with slow, medium, and quick speeds R-CNN is a common technique for 

two-stage target identification [11, 12]. After producing a predetermined number of 

targets based on regional suggestion, the most notable feature of this technique is the use 

of a convolution neural network to deal with prospective targets. In order to accomplish 

sparse sampling, (ER-CNN first takes the original picture as input and uses candidate 

areas. Once potential areas have been located, a convolutional neural network (CNN) 

collects features, and a support vector machine (SVM) assigns labels. With R-CNN, 

detection accuracy has dramatically increased while the algorithm's bounds have become 

much more reasonable [13, 14], making it the de facto standard in target detection. Yet 

there are also several obstacles; the detection rate issue being the most pressing of them. 

To do this, the network extracts characteristics from an enormous set of candidate 

locations without any outside assistance. As a result, the network must use resources 

doing several redundant computations, which in turn raises calculation costs. Between the 

convolution layer and the full connection layer, the SPP-net inserts a spatial pyramid 

pooling mechanism. It's a method for training a neural network. By performing feature 

extraction from input photos just once, this method may provide photographs with 

consistent dimensions. Before the network can do any detection, it must first use region 

suggestion to choose suitable areas, then use CNN to extract Roi feature information, and 

lastly perform category determination and position adjustment. The feature map 

eliminates the need for convolution by providing a direct source for all Roi feature 

information, leading to a more effective network. 

 

By further optimizing the SPP network, Fast R-CNN is able to replace the support 

vector machine (SVM) in classification with multi-task loss. That's why it's possible to 

train the network for both classification and frame regression. Since traditional 

approaches to constructing bounding boxes include the usage of a central processing unit 

(CPU), this limits the maximum running speed of the system. Prior to the development of 
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the Faster R-CNN technique, full target identification was possible using the Faster R-

CNN algorithm. In order to find these possible places, the system employs an RPN 

network. Both the freshly generated candidate regions and the CNN then employ the 

convolution layer for classification. Using region mapping and spatial pyramid pooling, 

faster R-CNN produces a large number of candidate regions for a target and then extracts 

features from those regions. Finally, CNN can recognize many distinct target features at 

once. Faster R-CNN [15, 16] is an improved version of Fast R-CNN that speeds up region 

formation by using the properties of an RPN network. To begin, it checks to verify 

whether the candidate box contains the proper characteristics for the detection aim using a 

multi-task loss function. If this is the case, the procedure moves onto the next step. This 

will allow us to assign a name to the detected item. 

 

3.  Vehicle Detection Using YOLO (You Only Look Once): Initially, YOLO [17] 

approached object identification as a regression issue inside a single neural network. The 

method's rapid adoption as the de facto standard in object detection is a direct result of its 

stellar performance. Consistent development since YOLO's inception has resulted in five 

generations of the architecture: YOLO [18], YOLOv2 [19], YOLOv4 [20], and YOLOv5 

[21]. The original YOLOv1 combined the three processes of feature extraction, object 

localisation, and classification into a single operation. Even though it had a high mAP, 

this network was SOTA when measuring mean average precision. The foundation of the 

first incarnation of the YOLO architecture were layers of convolutional and then maxpool 

activation functions. The network is now adaptive to picture resolution thanks in large 

part to the elimination of the fully-connected layer that existed at the very end of 

YOLOv1. The third iteration, dubbed YOLOv3, builds upon the foundation laid by its 

predecessors. Two prior generations, ResNet [22] and the feature-pyramid network (FPN) 

[23], served as inspiration for this new generation's architecture. Fast models such as 

YOLOv3, Faster-RCNN [24], single shot multibox object detection (SSD) [25], and 

Center Net [26] may achieve comparable mAPs on the COCO-2017 dataset. Every one of 

these configurations works with YOLOv3 to get the mAPs. But it does its job 17 times 

quicker. For this reason, we looked at using both YOLOv3 and YOLOv5 as the basis for 

our methods. Even though YOLOv4 performed well, we opted to switch to YOLOv5 

since it had the same architecture and had a smaller model. The second part of this article 

will go into research that has employed such designs while keeping tabs on moving cars. 

In this research, we focus on MOT tracking systems that can operate with a single camera 

and identify many targets in a single video frame. Any reader with a curiosity may 

discover these techniques in the writers' previous works. This form of tracking relies on 

precise detection and the lack of occlusion [27], since a single camera can only catch one 

side at a time. With the identification difficulty that these components generated, deep 

learning models that can recognize objects even when they have partial occlusion have 

improved. Even if the item is partly concealed by a bigger one, modern CNNs can still 

generate an accurate prediction of it. Many deep learning networks, such as Faster-RCNN 

[20], SSD, and YOLO, have been used in the context of real-time MOT. To facilitate the 

development of a real-time method for monitoring autos, this research compares the 

efficiency of YOLOv3 and YOLOv5 in order to handle multiple video streams on a single 

GPU [28]. 
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4. Vehicle Tracking: In this research, we focus on MOT tracking systems that can operate 

with a single camera and identify many targets in a single video frame. Any reader with a 

curiosity may discover these techniques in the writers' previous works. This form of 

tracking relies on precise detection and the lack of occlusion [27], since a single camera 

can only catch one side at a time. As a result of the identification problem that these 

factors introduced, deep learning models that can recognize objects even when they have 

partial occlusion have improved. Even if the target item is partially obscured by another, 

modern CNNs can nevertheless provide an accurate forecast of its position. Examples of 

deep learning network deployment in the context of real-time MOT include YOLO, SSD, 

and Faster-RCNN [20]. 

 

 

In order to find a series of images that best matches an object, conventional 

tracking systems often begin by recognizing objects in the first frames and then scanning 

the surrounding environment for characteristics that correlate to those objects. 

Conventional detectors including contour-based target identification [29], the Harris 

corner detector [30], symmetric integral and fluctuating transform (SIFT), and feature 

point-based approaches [31,32] all suffered from the same problem of false detection. 

Better performance was achieved, however, by using DL models to identify the objects 

first, and then going to match features through the traditional tracking approaches. We 

use DeepSORT, a tracking methodology, in combination with low-confidence track 

filtering, to implement the strategies presented in [33] for tracking through detection. This 

meant that the default DeepSORT algorithm produced less false positives. Using 3-D 

constrained multiple kernels, [34] recently described a method for following objects 

recognized by a YOLOv3 network. The use of Kalman filters made this possible. The 

development of more sophisticated tracking algorithms has led to a notable improvement 

in object tracking accuracy in recent years. However, these methods need a large amount 

of computing resources to execute. In this study, we propose a straightforward approach 

to object-centroid tracking as a means of monitoring the detection efforts of YOLO-based 

DL networks across several lanes of traffic in real time. Furthermore, this study evaluates 

the differences between YOLOv3 and YOLOv5's performance in an attempt to develop a 

real-time system for monitoring cars that can handle several video streams on a single 

GPU by using multi-threading algorithms [35]. 

 

III.  PROPOSED METHODOLOGY 

 

This study's authors suggest investigating the vehicle-recognition and tracking 

technique using deep learning. In this study, we use first-stage target recognition methods 

such the Single Shot MultiBox Detector (SSD) and YOLOv5 algorithms. The Single Shot 

MultiBox Detector (SSD) model architecture is then employed as the major foundation for 

vehicle detection. The fundamental objective of this study is to develop an automated 

technique for detecting and tracking autos in both static and dynamic scenes. The suggested 

procedure consisted of three separate actions. To begin with, YOLOv5 takes N frames at set 

intervals to search for and locate vehicles. To gather and evaluate characteristics of objects, 

we next utilize K-means clustering and the KLT tracker to follow the corner points as they 

travel over N-frames. The article concludes by detailing a dependable method for assigning 

vehicle trajectories to each of the highlighted bounding boxes. This method ensures that the 
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labels applied to the trajectories of individual vehicles are unique from one another. You can 

view a diagram of the suggested solution architecture in Figure 1. Next, we'll provide a high-

level overview of the most important aspects of the proposed method for detecting, tracking, 

and counting the number of cars. 

 

 
 

Figure 1: Architecture of vehicle detection and tracking model 

 

1. Vehicle Detection: Recent years have seen a rise in the usage of deep learning-based 

tactics to improve detection results. Examples of such techniques are the You Only Look 

Once v5 (YOLOv5) [25], the Single Shot MultiBox Detector (SSD) [20], and the region 

proposal techniques [11, 27]. In contrast, the authors of [14] used tracking data to help 

with the identification and a background removal based CNN to reach a promising 

outcome. Despite using a convolutional neural network–based pixel classification 

technique for the detection, there is still room for improvement in terms of processing 

time. The YOLOv5 object identification technology is open-source and free to use. One 

of its most attractive qualities is how quickly it can differentiate between different parts of 

the same picture or video stream. With the Single-Shot Multi-box Detection (SSD) 

technique, a single forward pass of the calculating feature map is sufficient for accurate 

object identification. Although accuracy may degrade, it may theoretically function on 

real-time video feeds. Both YOLOv5 and SSD are top-tier devices; however YOLOv5 

excels in speed while SSD excels in precision.  

 

There are three stages to the YOLOv5 method: the residual block or gridding 

stage, the bounding-box regression stage, and the IoU stage. The first stage involves 

mapping or dividing the picture using a grid of leftover blocks. Instead of executing CNN 
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in loops for each item, this technique does a single forward pass over all cells. This 

approach allows for comprehensive coverage. The model can identify an item if its mass 

center falls inside one of its cells. 

 

If a single cell includes the centers of many different types of objects, the model 

will provide a composite result matrix. When many bounding boxes intersect, a 

regression to the mean is conceivable. It examines the object classes included inside the 

enclosing boxes to see whether they represent the same objects. Using IoU, we may test 

whether or not the outlines of two object classes coincide. More than 50% overlap 

between bounding boxes causes a greater incidence of deletion. The location in the centre 

of the box where the average score is highest will be the winner. Non-max suppression 

occurs when the bounding box does not delete items based on the score.  

 

The SSD model makes use of deep learning to perform object detection and 

localization. Similar to YOLOv5, it just takes a single forward pass to recognize all of the 

objects in a photo. It's an efficient strategy, to put it briefly. This is different from 

YOLOv5 since it employs bounding-box regression. 

 

It has just come to light [23] that YOLOv5 is one of the fastest CNN-based object 

detection systems. Therefore, the goal of this study is to investigate the feasibility of 

incorporating tracking information and YOLOv5 into the detection phase to create a more 

effective detection and counting method. Training the deep learning algorithm used to 

develop YOLOv5 [29] required over a million images from the ImageNet database. 

ImageNet has 1.2 million unique photos over a thousand different topics. We employ the 

YOLOv5 layers all the way to the final fully linked one, where we limit the number of 

categories from a thousand to two, since auto-identification is our primary goal. 

 

In this study, we use the YOLOv5 architecture to rapidly apply transfer learning to 

the detection process. In addition, we can make a precise assessment and substantially 

improve detection performance by combining the optical flow data into the counting 

approach suggested in [14]. In the last few layers, we use transfer learning by exchanging 

the softmax 1000 classes for the softmax 2 classes.  

 

Transfer training makes use of pre-trained convolutional neural network models to 

expedite subsequent training. These models needed a lot of training data to become this 

good. After developing our architecture using pre-trained models up to the last, fully-

connected layer, we train it from scratch on the vehicle dataset. Our hard work has finally 

paid off with the completion of this layer.  

 

In [22], you can find a more thorough description of the transfer learning 

approach. [22] Using transfer learning, we settled on the Resnet-50 [16] as the primary 

neural network model for the YOLOv5 framework. Figure 2 is a block schematic of the 

YOLOv5 and SSD car-identification models.  

 

This shows the model's inner workings in great detail. The convolutional neural 

network ResNet50 was trained using over a million photos from the ImageNet dataset. 

There are almost a thousand different types of tags used to organize the over 1.2 million 
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pictures in this collection. We proposed a strategy for training YOLOv5, then tested it out 

over three independent sessions with varying sets of photos. 

 

 
 

Figure 2: Architecture of YOLOv5 and SSD vehicle Detection models 

 

After some tweaking, YOLOv5 achieved a respectable degree of recall accuracy. 

Still, it has a low overall accuracy since it correctly identifies some false positives. In the 

next sections, we'll see how K-means clustering and monitoring optical flow data will be 

used to get rid of these spurious positives. As a result, it will be better equipped to spot 

serious threats. When compared to the foreground automobiles' motion characteristics, 

the false-positive data gathered from the background regions exhibit a large amount of 

variation. We use the motion data associated with particular feature points to exclude 

them from the verdict. Some of the methods used to cluster the feature points are 

described in [7, 31, and 32]. K-means clustering, on the other hand, is accurate enough for 

our purposes while being computationally manageable. 

 

2. Vehicle Features Refinement and Clustering: At this point, we don't only group 

automobiles together, we also separate them from their backgrounds by wiping them 

clean. Processing speed and precision in matching features are both increased by optical 

flow tracking. As a result, we monitor the feature points between frames f and f + 1 using 

the optical flow Kanade-Lucas method [2]. Combining two successive images creates a 

new set of optical flow vectors, V, with elements Vi = (Mi, i), where S and are defined as 

follows: 

 

Mi =  (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                   (1) 
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𝜃𝑖 =  𝐴𝑟𝑐𝑡𝑎𝑛  
𝑦2−𝑦1

𝑥2−𝑥1
                                                                  (2) 

 

We use the notation X1 and Y1 for the X and Y coordinates of the previous frame, 

and X2 and Y2 for the X and Y coordinates of the next frame. In V, each number 

represents an individual corner point Pi captured between frames f and f+1, whereas M 

and denote the magnitude and angle of the corresponding displacement. Because of the 

erratic detections, many trackers end up failing. As noisy detections can only be followed 

for a limited length of time (9 consecutive frames), this study only considers a foreground 

detection to be a vehicle object if it has been tracked for a sufficient number of 

consecutive frames. After that, we use k-means clustering to group the remaining 

automobiles in the foreground of the picture. For further information, you may check out 

[36]. 

 

3. Vehicle Counting: After identifying the most trustworthy characteristics, we put them 

into their own categories for each car. We assign unique ID numbers to each of these 

vehicle components and track them until they are no longer visible. The allocation 

method starts with a region determined by the intersection of rectangular bounding boxes 

based on historical tracking and current detection. Two automobiles are deemed to be a 

perfect fit if they share a certain minimum percentage of space. The vehicle will get a 

new label if the junction area is either less than or does not exist at all. Below, we provide 

four different approaches to tally the N-frames. 

 

 Since this is the first known instance of this sort of vehicle, the characteristics 

included inside its boundary are yet unnamed. After that, we'll assign these 

characteristics new names and increase the tally by one. 

 In order for a vehicle's characteristics to be labeled, it must appear in the first frame 

and the prior frameset (N-frames). It would be "unmarked" if there were any traits that 

were not readily apparent. 

 The vehicle's bounding box was visible in the previous frameset but is missing in the 

first frame. Since we've already settled on a label for these characteristics, that's what 

we'll call them going forward. 

 We will refer to a vehicle as a "missed counted vehicle" if we are unable to find any 

instances of it across the whole set of video frames. 

 

IV.  IMPLEMENTATION OF VEHICLE DETECTION AND TRACKING USING 

YOLOv5 

 

Small-sized target objects, certain size scaling in the process of continuous detection, 

the complexity of the vehicle environment, too many targets in a single image in the dataset, 

and overlapping of targets are just some of the difficulties encountered when attempting to 

detect the vehicle target using the vehicle dataset. The correct detection technique is very 

important since the success of a vehicle detection system is contingent on achieving a number 

of requirements. Despite the challenges, there are a few things about cars that are 

immediately clear. For instance, almost all car wheels are spherical. The design of an 

automobile's body lines is its most eye-catching aspect. In this article, we will discuss how 

we intend to use YOLOv5 with SSD, a deep learning technique, to recognize and track 

moving vehicles. 
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1. Analysis of Algorithm Selection: The algorithmic development process should prioritize 

speed and accuracy in target detection systems, since they are crucial in practical 

applications. Better item recognition is possible with larger detection accuracies, and 

faster detection rates make the technique applicable to more devices. Think about it In 

Table 1, we compare the detection rates and accuracy ratings of a number of widely used 

target identification techniques. Table 1 shows that Faster R-CNN has a higher detection 

accuracy than other one-stage detection networks, but a considerably different detection 

rate. This is because its use requires a greater depth of understanding. Faster R-CNN, a 

progressive learning approach, is responsible for this result. These single-stage detection 

networks clearly beat Faster R-CNN, a two-stage detection approach, with a higher 

detection rate. The accuracy of YOLO's detection is lower than that of competing 

approaches. In this work, we use YOLOv5 as the vehicle identification approach because 

it achieves high performance in terms of detection accuracy and detection rate and is 

especially well-suited for recognizing small-sized objects. YOLOv5's superiority in 

recognizing objects of smaller sizes was a major factor in the final selection, particularly 

in light of the problems we've just covered. 

 

2. Designing the Model 

 

 Initialization Operation of Candidate Box: The most important part of the detection 

process, network training, requires initialization of the network model's parameters. 

One of the first and most crucial steps is determining the appropriate size for the 

candidate box. There is a direct correlation between the quality of the first candidate 

box initialization and the amount of time and effort spent training and testing the 

network. To determine the appropriate proportions for each candidate box, YOLOv5 

employs a K-means clustering technique. To measure how well k-means clustering 

performed, researchers calculated an assessment index using the Euclidean distance 

between clusters. Using the so-called Euclidean distance index, a lower figure for the 

distance between two objectives indicates a greater degree of similarity between them. 

This is because it is possible to use the Euclidean technique to determine how far 

apart two points are. K-means clustering begins with the selection of a set of nodes 

that will act as the cluster axis. Calculating the euclidean distance between any 

additional locations or targets and the discovered cluster centers is the next step. We 

may determine which cluster a target belongs to by calculating the Euclidean distance 

between it and the cluster's epicenter. Once we know where inside the cluster the 

target is hiding, we may shift the cluster's center to that point. Assuming the test run 

was successful, the next step is to execute the procedure again and again until the 

center no longer moves. The objective is to herd the targets into a compact group. 

 

To cluster bounding boxes with comparable contents, YOLOv5 use the K-

means algorithm. Every training picture has several bounding boxes, which play a 

crucial role in the process. The initial step of bounding box clustering involves 

collecting all of the bounding boxes from the training images into a single set. 

Gathering the dimensions of the box is a prerequisite for doing bounding box 

clustering. This transition makes sense since the initial recording of those components 

was for locations on the top left and right corners of the box. This information is 

required for bounding box clustering. This takes place since the clustering method use 
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the bounding box's width and height. It's clear why, especially in light of the previous 

statement. The K values of all the bounding boxes, also known as the beginning 

values of the boxes, must be chosen as the clustering values of the anchor box clusters 

once the data has been processed; the value of K chosen for this article is 9. 

 

Table 1:  Comparing the Detection-Rate and Accuracy-Rate Of A Number Of Popular 

Target-Detection Algorithms. 

 

Training Set 

Algorithms 

 

FRCNN YOLO 

 

SSD 

 

YOLOv5 

 

VOC2007 + 2012 

 
0.765 0.772 0.783 0.792 

VOC2007 + 2012 

 
0.958 0.963 0.972 0.987 

VOC2007 + 2012 

 
0.865 0.871 0.883 0.896 

VOC2007 + 2012 

 
0.784 0.789 0.793 0.798 

Training Set 

 
2010 2010 2010 2010 

MAP 78.4 68.8 81.3 91.7 

FPS 21 49 43 54 

 

 

 Detection Module of Network: YOLOv5 is able to do feature extraction because to 

the support of DarkNet-53. The network is able to extract more feature information 

because of its deep-level structure. But as seen in Figure 3, there are also problems for 

the network at extremely deep levels. As a result, training a deep network will result 

in a decrease in the network's effectiveness while attempting to recognize small 

objects. Users of both the deep neural network and other one-stage detection 

algorithms have recently noticed these issues. DarkNet-53 is able to considerably 

enhance the learning capacity to image features since it is built on the concept of 

residual networks and makes use of residual connections. In addition, it compensates 

for the fact that it can't pick up on the tiniest of details. 

 

 The success of any detection network relies heavily on the design of its loss 

function. When training a model, the loss function is what ultimately matters. The loss 

function considers the target to be a positive sample if and only if the difference 

between the projected frame and the actual frame created during training has the 

largest possible IOU value. The loss function shouldn't consider the target to be a loss 

if the anchor frame's IOU isn't at its maximum. As a result, there is only one 

connected prediction frame for each previously gathered actual frame. When 

determining the severity of the damage, we take into account the loss of not just 

beliefs but also logical categories and anchor frame locations. It is usual practice to 
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question whether or not a certain cell in the detection layer contains the center point 

of the target object when expressing confidence. 

 

 
 

Figure 3: Network architecture of YOLOv5 with a backbone of DarkNet-53. 

 

V.  EXPERIMENTAL RESULTS AND ANALYSIS 

 

This section primarily compares the speed and performance of the proposed vehicle 

recognition and tracking method against that of current high-performance CF trackers using 

publicly accessible datasets, and analyzes the results. In this subsection, we will compare the 

performance of the proposed algorithm for vehicle recognition and tracking to that of the 

high-performance CF trackers. 

 

1. Dataset Selection: When developing a system for target identification using a deep 

learning technique, the selection of an appropriate dataset is a crucial and challenging 

step. In this study, we are developing a model and have chosen to train it using the 

BDD100K picture dataset. Figure 4 displays some representative data from the set. All of 

the images included in the offered data were taken from a moving vehicle on a public 

route. These pictures show a broad variety of vehicles, as well as human and non-human 

victims. We only shot at six of the 10 target categories available to us. Vehicles, buses, 

passengers, trucks, motors, and bicycles all count as means of transportation. 
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ii.  
 

(a) (b) 

 

 
 

(c)                                                                                          (d) 

 

Figure 4:  Data images of BDD100K 

 

2. Processing of Data: Both a "picture" and a "label" portion make up the downloaded data. 

All the fresh information was actually saved as JSON files, and each JSON file does 

indeed map to an image with the same name. The naming conventions reveal this to be 

true. It includes details such as the image's filename, the category to which it belongs, the 

category's name, and the image's coordinates for the indicated box. The position data 

includes the horizontal and vertical coordinates of the top left corner and the bottom right 

corner, specifying the precise location of the box down to the millimeter. Below there, 

you'll see the horizontal and vertical coordinates for the bottom right corner. Using these 

two points of reference, you can determine where the box is. Many distinct types of 

storage units may appear simultaneously in a single image. The additional data included 

in JSON-formatted files might make their immediate usage difficult. That's why it's 

important to make the changeover to this format, which will simplify the file's data 

structure and get rid of any extraneous data. Converting JSON data to XML is a must for 
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moving on. Aside from its reduced size, the converted JSON file also benefits from a 

more intuitive presentation of its contents. The coordinates and width and height of the 

picture are recorded simultaneously. The generated xml file is not suitable for use as 

training input, but rather it is comparable to the output of specialized tagging programs. 

There has to be a simplification of the training input data's presentation, with extraneous 

information deleted. Finally, we just keep track of where the picture is located, where the 

box is in relation to the image, and what kind of information the box contains. The last 

step is to save the data as a text file with the.txt extension. This file should additionally 

provide the picture's box position inside the image and its category in addition to the 

image's absolute location and name. We have merged all the information from the 

training images into the final text file. Images with input boxes may be located using the 

absolute path, and the image's input contents follow next. Please click this link to go to 

the requested location. Consolidating many image or data files into one text file makes 

them far more manageable for online transfer and sharing. 

 

3. Detection of Model: To complete the process of building a vehicle detection model, one 

must first train the model before loading the trained weight onto the model to carry out 

the actual detection. The training technique may make use of the parameter sets shown in 

Table 2. Target identification throughout the three backbone network layers is where 

YOLOv5 often shines in both training and detection. These are the lowest, middle, and 

highest tiers of the network's central infrastructure. 

 

Table 2: Parameter Settings of the Training Process On Various Models 

 

Models 
mAP/

% 

Vehicle 

Detection and 

Tracking/FPS 

 

Memory 

size 

 

FRCNN 92.4 20 200.3 

YOLOv3 85.7 30 243.6 

SSD 92.5 35 15.7 

YOLOv5 97.6 39 15.9 

 

 

4. Result Analysis of Vehicle Detection and Tracking: To guarantee a high-performing 

trained model, it's important to choose a few parameters before beginning the detection 

network training process. We ran a performance comparison experiment using state-of-

the-art object identification methods, including Faster R-CNN, YOLOv3, SSD, and 

YOLOv5, utilizing the same setup environment and dataset to further analyze the 

improved outcome after applying our redesigned YOLOv5 methodology. Our goal in 

doing so was to verify that the improvements we had seen with the new YOLOv5 

algorithm were really the consequence of those improvements. We capture FPS using an 

NVIDIA GTX1660Ti graphics processing unit. Table 4 displays the results for both the 

Track Maintenance dataset and the BDD100K dataset. 
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Our method's recognition accuracy is higher than that of Faster R-CNN, YOLOv3, 

SSD, and YOLOv5, as shown in Table 4. Our improved YOLOv5 model has a 5.1% 

higher mAP value (mAP at 0.5: 0.05: 0.97) than the previous version. Our enhanced 

model is 1.12 times faster than YOLOv5, 1.45 times faster than YOLOv4, and 2.9 times 

faster than Faster R-CNN in terms of detection speed, indicating that it can match the 

requirements of real-time detection. Compared to the YOLOv5 algorithm, our enhanced 

technique uses somewhat more memory, but still only about a seventeenth as much as 

YOLOv3 and about a thirteenth as much as Faster R-CNN. The breakpoint continuation 

method allows the learner to control the rate of progress. Initiating model training at a 

high learning rate and then dropping to a lower rate for optimization. There is now an 

epoch value of 50 in effect. Assuming the model can be optimized further, the epoch may 

be retrained a certain number of times using the breakpoint continuation method. This is a 

genuine option if there is room for development. Figure 5 depicts the monetary value of 

loss when training is complete. 

 

 
 

 

 

Figure 5: Training results of FRCNN, SSD, YOLOv3t, YOLOv5l, and YOLOv5s on the 

BDD100K dataset. 

(a) mAP at IoU = 50   (b) loss of classification. 

 

The image's orange curve shows the loss value for the test set, while the image's 

blue curve shows the loss value for the training set. After a few repetitions of training, the 

initial high loss numbers begin to decrease. Values start to converge and the rate of 

decrease slows. Comparing results after training and testing reveals that the model is 

steadily nearing convergence, even though the loss value is still rather large. The values 
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of the training set loss tend to decline with time, stabilize, and then fluctuate within a 

small range. Adjusting the learning rate in accordance with the breakpoint continuation 

strategy is necessary to keep training going, even if the final results won't be that different 

from the second portion of Figure 6. 

 

To evaluate the efficiency of a target detection model, we look at how well it 

maps to reality. The ap value for a given category indicates how well the detection 

network can distinguish between that category and all others; the map value is the 

aggregate of all ap values. Using this data, the map shows the trained model's value of 

72.8. The numbers show that its efficiency is poor. The detection performance of buses 

and other motor vehicles has decreased dramatically in recent years, whereas that of 

automobiles remains high. The detection box scores in Figure 6 remain constantly above 

0.7, indicating that the model can correctly categorize the great majority of cars. The 

detection impact of trucks is around average, that of bus types is a little lower, and that of 

detection boxes is typically minimal. In Figure 7, we can see how well the network can 

recognize both people and bicycles. 

 

Figure 7 demonstrates that although the detection model does not substantially 

affect either the person or bicycle categories, the human category scores much higher than 

the bicycle category scores. The extension of available box possibilities and the 

subsequent increase in "person" detection box accuracy are other noteworthy 

developments. Figure 8 demonstrates the detection method's outcomes, providing 

evidence that the bus category detection effect is general. During the course of the 

inquiry, this evidence may become apparent. In the image on the left, there are three 

buses, but only the first bus has a score that is greater than the others, therefore it is 

impossible to classify them.  

 

However, as shown on the right, the container designed to represent the bus type 

being utilized is strangely devoid of any contents. Because of this, the detection box does 

not include the whole perimeter of the vehicle. The detection impact of the human 

category is clearly superior to that of the motor category, whereas the motor category is 

just slightly less effective. The "person" category likewise has much more elevated 

scores. While the detection area might be larger, the detection accuracy is fine for both 

the motor and bus categories. The model used in this study gets rather good results for 

detection overall; it excels most at identifying cars and people. This is true for both cars 

and humans. There are millions of potential victims in the vehicle category, but there are 

over 10,000 in the bus category and over 4,000 in the motor category. The following are 

many of the reasons why. 
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Figure 6: Detection of Vehicles on the Road from Different Camera Views By Day Scenes 

and Night Scenes 
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Figure 7:  Illustrating the Detection on Bike Category And Person Category 

 

 
 

Figure 8: Vehicle Detection on Bus Category 

 

Thus, the vast majority of the model's training data pertains to the car category, 

the vast majority of the retrieved features are pertinent to the vehicle classification, and 

the vast majority of the updated parameters appear to have been modified in a way that 

makes identifying the vehicle classification simpler as a result of the reverse-feedback 

process. Therefore, even after so many years, vehicle categorization detection remains 

very precise.  
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It's easy to believe that many individuals are making use of this option, given 

there are currently more than 100,000 objectives in the "person" category. Due in part to 

the fact that their feature information is considerably distinct from that of the many 

categories of vehicles, humans, or the person category, have witnessed a large jump in 

their detection impact. 

 

VI. CONCLUSION 

 

In this study, we use deep learning to automate the process of music production. For 

tracking down people and machines on the track, we also suggest updating the YOLOv5 and 

SSD algorithms. We make substantial use of the YOLOv5 and SSD algorithms to 

dramatically enhance the mean absolute performance (mAP) at IoU and the loss of 

classification for the different sets of training outcomes. Newer YOLOv5 and SSD 

algorithms allow for faster convergence and better recognition of obstructed vehicle objects 

and tiny vehicle objects. These benefits are cumulative. The testing findings demonstrate the 

excellent resilience of the newly developed YOLOv5 and SSD technique. By applying these 

algorithms, we are able to perform thorough inspections of construction workers and 

equipment, addressing the problem of low detection accuracy for complex scene issues like 

occluded vehicle objects and small vehicle objects, and meeting the practical requirements 

for vehicle detection in the context of track construction safety. The findings of this work 

provide credence to the practical use of intelligent detection tools and lend momentum to the 

thorough investigation and advancement of track safety vehicle detection technology. 

According to the measured KPIs, the combination of the YOLOv5 and SSD algorithms is the 

most successful in terms of both vehicle detection and tracking precision. 
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