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DEVELOPMENT OF A DEEP-LEARNING NEURAL 

NETWORK MODEL FOR TRANSIENT AND SMALL 

SIGNAL STABILITY ASSESSMENT 

 
Abstract 

 

The goal of this study is to evaluate 

the instability that current power systems 

are susceptible to as a result of integrating 

new components like power electronics, 

electric vehicles, and renewable energy 

production. Today, the stability and 

security of the electrical network are 

impacted by the growing development of 

renewable energy sources. The purpose of 

this research is to assess the various 

stabilities which concerns the electricity 

system utilizing a feature selection and 

DLNN technique. Nigerian 28 bus system 

and IEEE9 bus system data contingencies 

were generated using DIgSILENT.     The 

Relief-F feature selection method is used to 

construct a data processing pipeline for 

feature selection. This investigation is 

conducted using the DIgSILENT/Python 

program, which is run on an Intel Pentium 

core i5 2GHz CPU. The suggested model's 

improved performance is evaluated on the 

Nigeria 28 bus system and IEEE 9 bus 

system. For the Nigeria 28 bus system and 

the IEEE 9 bus system, the findings show 

evaluation performance metrics for 

accuracy, precision, sensitivity, f1-score, 

specificity, mean squared error, and root 

mean square error. The evaluation metrics 

of the IEEE 9 bus system and the Nigeria 

28 bus system were compared with other 

publications in the corresponding literature. 

This study demonstrates the utility of the 

DLNN technique for online, real-time 

evaluation of transient stability and small 

signal stability. 
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I.  INTRODUCTION  

 

 The capacity of a power system to recover from a disturbance, find equilibrium, and 

resume regular operations is referred to as power system stability. Rotor angle instability 

caused by synchronism loss has long been linked to the instability issue [7]. The instability 

problem has long been associated with rotor angle instability brought on by synchronism loss 

[7]. Depending on the intensity of the disturbance, rotor angle stability can also be divided 

into small signal and transient signal stability. A power system's ability to maintain 

synchronism in the face of slight and major interruptions is referred to as small signal 

stability and transient stability, respectively [2]. A group of highly nonlinear Differential and 

Algebraic Equations (DAE) [2], [7] describe the behavior of synchronous generators in 

respect to their related control systems, loads, renewable energy output, flexible AC 

transmission devices (FACTs), and the transmission network. The DAE model can be 

linearized all the way around the equilibrium point when the power system undergoes 

minimal modification. Small-signal stability is made possible by electrical torque changes in 

synchronous machines with the proper synchronizing and dampening torque component. 

Each condition must be dealt with numerically using time domain simulations because the 

DAE model cannot be linearized around an operating point when a power system encounters 

major variations [7]. If there is not enough synchronizing and damping force, the rotor angle 

of a synchronous generator may occasionally drift and oscillate [2]. Transient instability, 

which has the potential to reduce a power system's overall performance, is the main reason 

for power outages [4].   TSA, a kind of time domain simulation, is expensive and 

computationally difficult, especially for large power systems with an almost limitless number 

of operating points and scenarios. The prediction model is trained utilizing a Deep Learning 

technique (LSTM) and a data set for a range of operating circumstances in order to 

accomplish these goals. The Long Short-Term Memory (LSTM), which is trained to 

remember the oscillatory response of a projected stable system, progressively captures the 

significant weekly damped low frequency oscillation. The TSA, SSA, and LSTM all have 

gradually decreasing computing complexity that increases prediction accuracy. The enhanced 

performance of the proposed model is demonstrated using the Nigeria 28 Bus System, and 

details on how the IEEE 9 Bus system supports it are given. 

 

II. TRANSIENT AND SMALL SIGNAL STABILITY OF A POWER SYSTEM  

 

In this study, deep learning neural network approaches are used to build a prediction 

model for the transient and small signal stability issues in Nigeria's 28 bus system. This 

section explains the mathematical procedure for transient and small signal stability. 

  

1. Transient Stability: The ability of a synchronous machine to maintain synchronism in a 

power system following a disruption is referred to as rotor angle stability. Due to the 

variable impact of power system disruptions on generation, some generators will slow 

down as a result of an increase in load from adaptive operation, while the other generators 

would speed up to maintain grid frequency. The tilt of the rotor with respect to the stator 

changes as the generator speed rises [6]. The rotor continuously accelerates and 

decelerates alternatively to maintain balance between the mechanical input torque and 

electrical output torque. The generator's ability to produce power is decreased by this 

action, which also harms the transformers, prime mover, and generator as a whole. 

Consequently, it is essential to protect the synchronous machine. [8]. 



Futuristic Trends in Artificial Intelligence 

e-ISBN: 978-93-6252-373-0 

IIP Series, Volume 3, Book 5, Part 2, Chapter 2 

DEVELOPMENT OF A DEEP-LEARNING NEURAL NETWORK MODEL FOR TRANSIENT AND 

SMALL SIGNAL STABILITY ASSESSMENT 

 

  Copyright © 2024 Authors                                                                                                                        Page | 120  

The dynamic reaction of a power system to disturbances is controlled by a 

collection of DAE, and their compact form is:  

 

  
 

  
  

The algebraic variables x and y are displayed together with the state. Additionally, 

the appropriate DAE's vectors are shown in h and g. The algebraic variables y, such as 

bus voltages and active power injections, and the state variables x, such as rotor angles 

and frequencies, are solved to provide time-varying trajectories. Numerical techniques, 

such as the trapezoidal approach (1), are used to discretize the set of differential equations 

in order to achieve this. The new algebraic equations and the remaining algebraic 

equations are solved using Newton's method at each time step (2). To evaluate transient 

stability, the dynamic trajectories over the simulation time window are monitored. This 

method provides an accurate assessment of the temporary for a specific situation [1].   

  

2.   Small Signal Stability: Inadequate oscillation Voltage stability, rotor angle, and 

damping in frequency are all signs of small signal stability. When damping is zero, 

oscillatory activity's amplitude remains constant across time. No matter what the initial 

disturbance was, negative damping increases the oscillations' amplitude. High damping 

ratios increase the size of the critical mode in the power system and lessen oscillation 

behavior. This is due to the fact that it is the least stable part of the system [7]. The 

stability of tiny signals can be evaluated using the smallest damping ratio. Small signal 

stability issues may be localized or global in nature. Local mode oscillations, which are 

smaller disturbances brought on by a single producing station, are smaller than interarea 

mode oscillations, which are larger disturbances produced by a collection of generating 

stations. To increase oscillation stability in multi-machine power systems, controllers for 

the Power System Stabilizer (PSS) and Flexible AC Transmission System (FACTS) are 

frequently utilized. These devices [5], [7] lessen damping by producing additional signals 

to counter oscillations in generator excitation systems. Electrical torque of synchronous 

machines is the primary determinant of how they react to oscillations. The two parts of 

electrical torque are the synchronizing torque (TS), which oscillates in phase with the 

rotor angle deviation, and the damping torque (TD), which oscillates in phase with the 

parts that affect the speed deviation. The stability of small signals is impacted by both 

types of torques [5].  Equation (3) – (5) demonstrate how the set of algebraic and 

differential equations presented in eq (1) – (2) can be linearized around an equilibrium 

point for small perturbation.  

  

  
  

The linearized model in (3) - (6) is used to examine small signal or local stability 

at an equilibrium point in the presence of a slight disturbance in a power system. The 
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Lyapunov first technique is used to accomplish this, which calls for figuring out the 

eigenvalues of the characteristic equation in the manner described below [3].  

  
               det 𝐴𝑠𝑦𝑠 − 𝜆𝐼 = 0                             (6) 

 
Where 

𝐴𝑠𝑦𝑠 = 𝐴 − 𝐵 𝐷−1 𝐶 𝑎𝑛𝑑 𝜆 = (𝜆1,𝜆2,……………..𝜆𝑛) 

 

Responses are either non-oscillatory or oscillatory depending on the real or 

complex calculated eigenvalues. There are also conjugate pairs of complex eigenvalues 

that each shows an oscillatory mode [5].  

  

3. LSTM Network for TSA AND SSA: The LSTM RNN variations have the ability to 

extract historical data from time series data. The network learns by storing incremental 

temporal domain inputs into durable internal hidden states. It's common behavior to recall 

facts from the past over time. Because they can recall previous inputs, LSTMs are useful 

for time-series prediction [7]. Thanks to their chain-like structure and four interacting 

layers, LSTMs interact in a number of ways. In addition to time-series predictions, 

LSTMs are frequently used in voice recognition, music creation, and pharmaceutical 

research [7], [10]. The concerns with long-term reliance are addressed via LSTM. The 

LSTM provides the option to read, write, or reset the sale at each stage [10]. The LSTM's 

mathematical computations are shown in equation (7). 

  

    
 

 
 

The operator stands for the pointwise multiplication of two vectors, with Wi, Wc, 

and Wo standing in for the weights and ct for the state of the LSTM cell. The output gate 

chooses what information can be output based on the cell state, whereas the input gate 

chooses what new information can be entered while updating the cell state. Based on the 

connections, the LSTM cell represented in (8) can be mathematically described as 

follows:  

  

( 7)   
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The forget gate makes decisions based on the state of the damaged cell. When the 

value of the forget gate, ft, is 1, the information is maintained; when it is 0, the 

information is completely discarded [10]. Figure 1 depicts the LSTM's internal structure.  

  

 
  

Figure 1:  LSTM Network Diagram [11].  

  

III.  NETWORK STRUCTURE OF THE MODEL  

 

In order to create a Deep learning NN for TSA and SSA, this paper builds the six-

layer network model are explained below   

 

1. Data Collection: The National Control Center (NCC), Oshogbo, is where appropriate 

data for modeling the 28-bus Nigeria network are acquired.   

( 8 )   
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2. Using DIgSLIENT, the Nigeria 28 bus system was network modeled.  

 

3. Data collection for DLNN: The Relief-F technique is applied to remove unusual data 

from redundant ones.   

 

4. DLNN (LSTM): A DLNN based on LSTM is modelled using the data that is available, 

trained, tested, and confirmed to complete the required TSA and SSA evaluation.   

 

5. Performance evaluation: The effectiveness of the LSTM model is then assessed using 

the Root Mean Squared (RMS), Specificity, Accuracy, and Precision metrics.  

 

6. Compare outcomes: The results are evaluated against the IEEE 9 bus system.  

 

Figure 2, shows the proposed model for assessing Transient and Small signal 

stability. It is made up of two different model. The two model contains four inputs 

namely, voltage, rotor angle, active power and reactive power.  

 

 
                        

Figure 2:  Schematic Design Model of TSA & SSA 

 

IV. DATA PREPARATION  
 

The 330KV, 28 bus networks in Nigeria that served as the case study (TCN) received 

the bus and transmission line data from the NCC. The 28-bus power network, which includes 

28 buses, 9 generation stations, and 52 transmission lines, is depicted in Figure 3. The 

transmission line and bus data are shown in Table 1. The DIgSILENT power facility is where 

the modeling is carried out. Depending on where the load and generator were located, the bus 



Futuristic Trends in Artificial Intelligence 

e-ISBN: 978-93-6252-373-0 

IIP Series, Volume 3, Book 5, Part 2, Chapter 2 

DEVELOPMENT OF A DEEP-LEARNING NEURAL NETWORK MODEL FOR TRANSIENT AND 

SMALL SIGNAL STABILITY ASSESSMENT 

 

  Copyright © 2024 Authors                                                                                                                        Page | 124  

bars for the transmission lines were either PV or PQ versions. Based on PQ data, the loads 

were grouped into loads. The generators were accurately modeled using the necessary data 

and synchronous generator characteristics. 

 
Figure 3:  The Nigerian 28 Bus Power System [9]. 

  

Table 1: Network Data of the Nigerian 28 Bus Power System [9]. 

 

Bus 
Identification 

Bus Loads Transmission Lines Data 

NO Name MW MVA
R 

Bus Resistance 
R(pu) 

Reactanc
e X(pu) 

1 Egbin 68.90 51.70 FRO
M 

TO  

2 Delta 0.00 0.00 1 3 0.0006 0.0044 

3 Aja 274.40 205.80 4 5 0.0007 0.0050 

4 Akangba 244.70 258.50 1 5 0.0023 0.0176 

5 Ikeja-

West 

633.20 474.90 5 8 0.0110 0.0828 
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6 Ajaokuta 13.80 10.30 5 9 0.0054 0.0405 

7 Aladja 96.50 72.40 5 10 0.0099 0.0745 

8 Benin 383.30 287.50 6 8 0.0077 0.0576 

9 Ayede 275.80 206.8 2 8 0.0043 0.0317 

10 Osogbo 201.20 150.90 2 7 0.0012 0.0089 

11 Afani 52.50 39.40 7 24 0.0025 0.0186 

12 Alaoji 427.00 320.20 8 14 0.0054 0.0405 

13 New-

Heaven 

177.90 133.40 8 10 0.0098 0.0742 

14 Onitsha 184.60 138.40 8 24 0.0020 0.0148 

15 B/Kebbi 114.50 85.90 9 10 0.0045 0.0340 

16 Gombe 130.60 97.90 15 21 0.0122 0.0916 

 

 

V. RESULT AND DISCUSSION    
 

The LSTM and Relief-f algorithms are used to execute the test. The implementation 

of this study is carried out using Python/DIgSLIENT. Figure 4 below uses a DIgSILENT 

model to show the Nigerian 28-bus power system for TSA and SSA.  For TSA and SSA 

objectives, information from DigSILENT was gathered in a variety of circumstances.  
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Figure 4:  Modelling of Nigerian 28-Bus System 

 

The user interface in this study allows users to load several datasets and, using the 

Relief-F feature selection algorithm, select pertinent data from the vast amount of data. Data 

loaded is displayed in Table  

                           

Table 2:  Loaded Data Nigerian 28-Bus System 
 

V(p.u)  P(KW)  Q 

(KVAr  

(ϴ)  TSA  

Targ  

SSA 

Targ  

0.388583  -271.618  0.454232  -63.3957  0  1  

0.469965  563.2468  -306.641  97.48929  0  1  

0.255932  -209.335  151.7141  -102.012  0  1  

0.533196  409.5992  -385.232  58.1159  0  1  

0.147646  19.65125  190.0627  -142.138  0  1  

0.540542  127.6128  -338.973  17.22918  0  1  
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0.220532  318.4933  72.08323  176.2186  0  1  

0.484492  -151.327  -180.955  -25.1795  0  1  

0.370508  535.4349  -148.529  133.0507  0  1  

0.366197  -274.478  26.74668  -69.1091  0  1  

0.489727  539.7334  -341.938  88.36538  0  1  

0.209501  -156.153  174.4907  -114.545  0  1  

0.543035  309.6819  -389.185  42.17829  0  1  

0.154649  150.4527  153.4337  -161.475  0  1  

0.514599  -27.5849  -260.075  -5.50633  0  1  

0.310105  458.6298  -49.8561  150.0938  0  1  

0.403731  -252.811  -30.6135  -54.6958  0  1  

0.465345  553.8266  -304.05  100.1514  0  1  

0.233219  -197.255  154.0606  -105.39  0  0.135  

0.54455  350.7548  -412.666  48.70475  0  0.135  

0.261644  -207.228  163.5346  -100.006  1  1  

0.533944  476.4872  -393.262  69.36015  1  1  

0.18805  -114.21  196.6741  -121.668  1  1  

0.558244  357.5287  -423.106  46.91436  1  1  

0.143834  28.34095  192.7953  -144.893  1  1  

0.557052  193.1078  -381.217  22.91489  1  1  

0.174444  207.5377  142.6571  -169.663  1  1  

0.529761  5.899559  -279.595  -2.62709  1  1  

  

The loaded data in this study includes 81,802 instances and 6 attributes, with the 

targets Stable/Unstable and Eigen value. The loaded data is preprocessed and analyzed 

using Relief-f with DLNN. Relief-F is used to preprocess the loaded data before passing 

the chosen or pertinent feature to DLNN. The DLNN consists of input layers, hidden 

layers, and LSTM-based output layers. The ANN Fitting perspective for the data is 

shown in Figure 5.   
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Figure 5:  Fitting Layers of the Data 
 

 TSA and SSA results can be either stable or unstable. The TSA is represented as 1 for a 

stable system and 0 for an unstable system.  In contrast, for SSA, if the damping ratio is 

positive and the real part of the eigenvalue is negative, the system is stable or oscillatory 

free; but, if the real part of the eigenvalue is positive, the system is unstable. Table 3 

shows the deep learning neural network architecture of the TSA and SSA.  

  

Table 3: Deep learning Neural Network Data and Structure of TSA & SSA  

 

Feature and Structure of LSTM  TSA AND SSA  

Number of inputs  4  

Number of neurons in the hidden layer  6  

Output  1 each  

Training data  66560  

Testing data  8256  

Validation data  6273  

Training algorithm   LSTM  

Epoch   31  

Transfer function                                      Relu and Sigmoid  

  

The model confusion matrix utilized to determine the evaluation performance of the 

developed model, including accuracy and precision, using the DLN technique is shown in 

Figure 6. After 10 epochs, the system converges, and the model accuracy for TSA and SSA 

achieves 90.16 percent and 100 percent, respectively. Tables 4 and 5 display the model 

evaluation performance of the methodology.  
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Figure 6: Confusion Matrix for the TSA Developed Model. TP=14335; TN=275; 

FP=225; FN=1526 

  

Table 4: Evaluation Performance for TSA 
 

Measure Evaluation (%) Derivations 

Sensitivity  90.38  TRP=TP/(TP+FN)  

Precision  98.45  PPV=TP/(TP+FP)  

Accuracy  90.16  ACC+(TP+TN)/(P+N)  

  

  

 
  

Figure 7: Confusion Matrix for the SSA Developed Model. TP=7251; TN=9110; FP=0; 

FN=0 
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Table 5:  Evaluation Performance for SSA 
 

Measure  Evaluation (%)  Derivations  

Sensitivity  100  TPR=TP/(TP+FN)  

Precision  100  PPV=TP/(TP+FP)  

Accuracy  100  ACC=(TP+TN)/(P+N)  

  

1. Results compared on IEEE 9 Bus System: This section uses modeling of the IEEE 9 

bus system in the DIgSILENT power plant to evaluate the results of the TSA and SSA 

assessments. It is depicted in Figure 8. DIgSILENT is used to run time-domain 

simulations and compute eigenvalues for these systems. Along with the oscillation 

modes, the generator's rotor angle, voltage level, active power, and reactive power at each 

bus are also given. The simulations are conducted for 10 seconds with a timing difference 

of 0.3 seconds. Given that neural networks need a lot of data to train, Table 6 shows 

loaded data for the IEEE 9 bus system that was created and used for training and testing, 

consisting of 62,500 target values. With the proper target values, recovered samples for 

the IEEE 9-Bus system contained 43,750 training samples and 18,750 testing samples. 

This system displays oscillations with eigenvalues appropriate for both inter-area and 

local modes. The SSA simulation revealed substantial eigenvalue errors. In contrast to the 

TSA, whose LSTM predictions produced simple evaluation performance estimates, the 

LSTM forecasts for this system were precise and closely matched the dynamics of the 

simulated oscillatory modes.   
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                                     Figure 8: Modelling of IEEE 9 Bus System in DIgSILENT  

  

                          Table 6: Loaded data for IEEE 9 Bus System  
 

V(p.u)  P(KW)  Q 

(KVAr)  

(ϴ)  TSA  

Target  

SSA  

Target  

0.17958  -123.513  171.9536  -121.034  0  1  

0.541271  191.1149  -377.243  26.03689  0  1  

0.21862  312.9513  61.45572  172.7484  0  0  

0.437684  -202.49  -101.296  -40.9198  0  0.982346655  

0.441616  528.1544  -257.218  105.0707  0  0.982346655  

0.210953  -162.216  160.9706  -109.329  0  0.10730671  

0.542129  238.5471  -392.568  35.91947  0  0.10730671  

0.194307  277.8757  75.5049  -179.199  0  0.085283166  

0.459572  -195.994  -154.359  -34.6968  0  0.085283166  

0.428978  542.6657  -250.911  109.4685  0  0  
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0.228289  -186.864  148.0511  -106.753  0  0  

0.534469  254.3771  -375.392  36.6825  0  0  

0.198982  272.5964  83.33363  179.7563  0  0  

0.441242  -197.513  -114.59  -37.5489  0  0  

0.445292  530.6067  -272.797  104.8101  0  0  

0.194562  -150.778  160.4638  -113.223  0  0  

0.542532  191.7196  -392.29  28.39765  0  0  

0.227462  338.5404  33.06602  169.661  1  0.982346655  

0.418274  -235.976  -78.9364  -49.4565  1  0.982346655  

0.468614  509.4048  -308.579  91.10054  1  0.10730671  

  

Figure 9 and Table 7 both display the TSA model confusion matrix, which was 

constructed using the DLNN technique to assess the evaluation performance of the 

created model, including accuracy and precision. The TSA's confusion matrix model 

produces the values TP=2300, TN=5900, FP=4000, and FN=370. The system converges 

after 82 epochs, and the model accuracy for TSA is 65%.  

 

 
  

Figure 9:  Confusion matrix for the TSA IEEE 9 bus system 
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Table 7:  Evaluation Performance for TSA of IEEE 9 bus system 

 

Measure Evaluation (%) Derivations 

Sensitivity   94  TPR=TP/(TP+FN)  

Precious  86  PPV=TP/(TP+FP)  

Accuracy   65  ACC=(TP+TN)/(P+N)  

  

The SSA result is a Regression approach since the goal values contain a large 

number of floats and a small number of integers. A Mean Squared Error of 0.183 and a 

Root Mean Squared Error of 0.4277849927 are the results of the system's convergence 

after 40 epochs. Because the majority of the estimated values fall between -0.5 and 0.5, 

Figure 10 shows the Residual Distribution Curve, where the prediction is both over and 

under estimated. 

 

print (‘MSE:   ‘   +   

str(mse) ) print (‘MSE:   

‘   +   str(rmse) ) print 

(‘Epochs:   ‘   +   str(5) )  

MSE:    0.183  

 RMSE:     0.4277849927   

 

 
  

Figure 10:  Residual Distribution Curve 
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Comparing the results of numerous studies on TSA and SSA using various 

machine learning techniques. Table 8 compares the efficacy of several techniques for 

forecasting TSA and SSA. After being compared to CNN and LSTM in Table 8, the 

suggested solution is tested using the IEEE 58, IEEE 60, and New England 39 bus 

systems to account for TSA and SSA. The main comparative metrics are MSE, RMSE, 

Accuracy, Sensitivity, and Precision. Due to the application of LSTM to improve 

accuracy, sensitivity, and precision, the Nigeria 28 bus system has flawless assessment 

performance for both TSA and SSA. TSA's accuracy was poor since the supplied data had 

a large number of floats. When employing the IEEE 9 bus system, the evaluation 

performance's accuracy was 65%. Random hyperparameter tweaking can be used in this 

situation to increase TSA accuracy, but a longer training period is needed. While in SSA, 

the MSE can be enhanced by LSTM layer addition and random search hyperparameter 

tweaking to ensure that it won't overfit the data.  

  

Table 8:  Comparison of performance with TSA and SSA methods 
 

Related 

works on 

(TSA and  

SSA)  

Method  
Accuracy 

(%) 

Sensitivity 

(%) 

Precision  

(%) 
MSE  RMSE  

Nigeria 28 

Bus  

System 

(proposed 

work)  

LSTM  
90.16  

100  

90.8  

100  

98.45  

100  

  

_  

  

_  

  

  

IEEE 9 Bus  

System 

(proposed 

work)  

  

LSTM  

  

65  

  

94  

  

86  

  

0.183  

  

0.42778  

  

IEEE 50 Bus 

System[7].  

  

CNN and  

LSTM  

  

98.31  

  

_  

  

_  

  

  

0.00000016  

  

  

0.0004  

  

New England 

39 Bus 

System[7].  

  

  

CNN  

and  

LSTM  

  

  

94.5  

  

  

_  

  

  

_  

  

  

0.00001024  

  

  

  

0.0032  

  

IEEE 68 Bus 

System[7].  

CNN and 

LSTM  

97.22  

  
  _  _  0.00001681  0.0041  
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VI. CONCLUSION  
 

It has become easier to upgrade existing power systems to a new generation that 

incorporates a significant amount of renewable energy and power electronics. This 

advancement is made possible by the combination of power electronics technology and 

renewable energy sources. However, this modification poses challenges to accurately assess 

the transient and small signal stability of electrical networks. To overcome this obstacle, data-

driven Transient Stability Analysis (TSA) employing Small Signal Assessment (SSA) 

methods has been developed. These methods establish a correlation between the operational 

parameters of the system and its stability status, eliminating the need for a physical model or 

parameter information, unlike traditional time domain simulation and energy function 

methods. The reliable and secure operation of energy networks relies on the stable 

performance of small signals and transients. To evaluate the small signal stability and 

transient stability, this research introduces feature-based deep learning methods, specifically 

Long Short-Term Memory (LSTM) networks. The outcomes of this study provide valuable 

insights into how LSTM effectively assesses the stability of transient and small signals. This 

research will prove beneficial to individuals interested in this subject matter, as it offers a 

deeper understanding of LSTM's role in stability assessment for transient and small signals.   
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