
Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|153

STUDYING THE PLANETARY MOTION USING

PYTHON

Abstract

In the present work, we have studied

the motion of planet and the dwarf planet and

estimated the value of Mass of the Sun and

value of Gravitational Constant (in case of

dwarf planet). We also have studied the non-

relativistic contribution of Mercury’s

perihelion precession. For the purpose of the

same, we have considered the paper by Price

and Rush, the freely available NASA data

from NASA website as well as freely

available data in Wikipedia website. For

computational modeling purpose, we have

used the Python programming language.

Keywords: Python, NASA, Programming

language

Authors

Jayashree Kundu
Assistant Teacher

Shyam Sukhi Balika Shiksha Niketan

West Bengal, India

Dr. Rakesh Kumar Mandal
Associate Professor

Department of Computer Science &

Technology

University of North Bengal

P.O North Bengal University

West Bengal, India

Dr. Tamal Sarkar
Scientific Research Officer-II

High Energy & Cosmic Ray Research

Centre

University of North Bengal

P.O North Bengal University

West Bengal, India

ts.phys.edu2020@gmail.com

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|154

I. METHODOLOGY

 We have taken the recent parameters /data of the planets and dwarf planets from the

NASA website for all the Planets and Dwarf planets, and to study the precession of Mercury,

we consider the paper by Price and Rush (Price & Rush, 1979) for calculating the non-

relativistic contribution of Mercury's perihelion precession. In our work, we have created a

computational model which takes the data in Excel format as input and produces an output in

Excel format after processing the data about the required parameters. We have used Python

open-source software for writing the computational model. The organization of the chapter is

as follows: First, we have discussed our methodology and why Python is the preferred

software. In the second part and third of the given chapter, we discuss how to find out Sun's

mass and Gravitational Constant (i.e., Universal Gravitation) using the planetary motion data

of planets and dwarf planets. The chapter's fourth part deals with how to code the

computational model to study the non-relativistic contribution of Mercury's perihelion

precession.

II. PYTHON AND ITS PREFERENCE FOR ASTRONOMY

 Python has become one of the most popular programming languages in astronomy

due to its versatility, ease of use, and rich ecosystem of scientific libraries. Several factors

contribute to Python's preference for astronomy:

1. Python offers many scientific libraries essential for astronomical research (Helfrich,

2019). Some prominent ones include NumPy for numerical computations, SciPy for

scientific computing, matplotlib for data visualization, and Astropy for astronomical data

analysis. Astropy, in particular, provides core functionality and data structure for handling

astronomical data, including units, coordinates, and time.

2. Python's clear and readable syntax makes learning easy, even for those with little

programming experience. Astronomers can quickly adapt to Python and start writing

productive code without spending much time on the language's intricacies.

3. Python has a vast and active community of astronomers and developers contributing to

various projects and libraries. This support network ensures astronomers can seek help,

share knowledge, and collaborate on common challenges.

4. Python easily integrates with other programming languages like C, C++, and Fortran,

which are often used for computationally intensive tasks in astronomy. This allows

astronomers to harness the power of optimized code where needed while still utilizing

Python for higher-level jobs.

5. Python's Matplotlib and other libraries enable astronomers to create publication-quality

plots and visualize complex data effectively. Visualization is essential for understanding

data and presenting research findings.

6. Python's data manipulation libraries, such as Pandas, make processing and analyzing

large astronomical datasets straightforward.

7. With the rise of machine learning and artificial intelligence in various scientific fields,

Python's extensive libraries (e.g., TensorFlow, PyTorch, sci-kit-learn) also make it a

viable choice for implementing these techniques in astronomy.

8. Many astronomy-focused Python packages are developed in collaboration with

researchers and are tailored to specific astronomical needs, making them reliable and

relevant to the field.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|155

9. Python is an open-source language which aligns well with the principles of openness and

transparency in scientific research. This allows researchers to inspect, modify, and share

the code freely.

Due to these advantages, Python has gained widespread acceptance in the

astronomy community, from data analysis and simulations to data visualization and

scientific computing. Its flexibility, combined with the availability of astronomy-specific

libraries, makes it a powerful tool for astronomers to conduct their research efficiently.

III. EIGHT PLANETS OF SOLAR SYSTEM AND DETERMINATION OF MASS OF

THE SUN

 Now, to have a better understanding of how to extract valuable information from a

given dataset, we have created one Excel file having planet name, it’s mass, orbital distance,

time period etc.

Table 1: Eight Planets of Solar System

Sl_no. Planet_nm Planet_mass Orbital_Radius
Spin_wrt_Axis

(in Earth day)
Time_Period

1 Mercury 0.33011 57.9 58.646 87.969

2 Venus 4.8675 108.2 -243.025 224.701

3 Earth 1 149.6 0.997 365.24

4 Mars 0.64171 228 1.026 686.565

5 Jupiter 1898.19 778.5 0.414 4328.9

6 Saturn 568.34 1432 0.426 10752.9

7 Uranus 86.813 2867 0.718 30667.3

8 Neptune 102.413 4515 0.671 60152

Source: NASA and Wikipedia

1. Reading a File: By using the following Python code, we will be able to read the

previously created Excel file of Astronomical data by converting it into DataFrame.

 import pandas as pd

 df=pd.read_excel("Eightplanets_data.xlsx")

The above code creates a DataFrame in the Python environment.

2. Calculating Orbital Speed and Mass of Sun: We all know that orbits of our planets are

Elliptical in nature, but for mathematical simplicity, lets take that orbit is circular. Thus,

we have got the followings.

 𝑶𝒓𝒃𝒊𝒕𝒂𝒍 𝑺𝒑𝒆𝒆𝒅 𝒗 =
𝟐𝝅𝒓

𝑻
 (1)

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|156

And we have got this Eq.(2) by equating the Gravitational Force and Centripetal Force.

 𝑴𝒂𝒔𝒔 𝒐𝒇 𝑺𝒖𝒏 𝑴𝒔 =
𝟒𝝅𝟐𝒓𝟑

𝑮𝑻𝟐 ….(2)

Where r= Orbital radius of planets, and T= Time period of planets, G is the gravitational

constant.

Now, after getting the DataFrame(i.e.,df), we will deduce orbital speed of every planet

with the help of the above Eq.(1),and mass of the sun with the the help of the following

Eq.(2), by the following Python coding:-

import numpy as np

import pandas as pd

a_o_r=np.array(df.orbital_radius) #Creates an array of orbital radius from DataFrame.

a_t_p=np.array(df.time_period) #Creates an array of time period from DataFrame.

length=len(a_o_r) #Making the Loop range.

velo_list=list() #Creating an empty List to hold orbital velocity.

velo_2_r_list=list() #Creating an empty List to hold v
2
r values.

m_sun_list=list() #Creating an empty List to hold different values for Sun’s mass.

for i in range(length):

 temp_speed=((2*np.pi)*a_o_r[i])/(a_t_p[i]*24*60*60)

 speed=temp_speed*(10**6)

 sp_2_r=((temp_speed**2)*a_o_r[i])*(10**18)

 m_sun=(4*(np.pi**2)*((a_o_r[i]*(10**9))**3)/

 ((6.6743*(10**-11))*((a_t_p[i]*24*60*60)**2)))

 velo_list.append(speed) #Velocity of each planet is being appended in the existing list.

 velo_2_r_list.append(sp_2_r)

 m_sun_list.append(m_sun)

df['velocity']=velo_list #List of velocity is being appended to existing DataFrame.

df['v^2*r']=velo_2_r_list

df['sun_mass']=m_sun_list

df #Gives output of modified dataframe.

If we notice the above DataFrame(i.e.,df), then we can have an interesting fact that the

value in (v
2
r) column are almost equal which exhibits the constant property and can be

visually shown by Python as follows.

From matplotlib import pyplot as plt

plt.title(" Property of V^2*R")

plt.xlabel("Name Of Planets")

plt.ylabel("V^2*R value")

plt.scatter(df.planet_nm,df['v^2*r'])
plt.show()

We can also notice that the Mass of Sun is slightly different for each planet. Thus, we

took Average of that mass, although we usually use Earth’s orbital radius and time period

to calculate the mass of Sun.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|157

3. Calculating the Mean, Median and Standard Deviation: Through the following

coding, we are able to calculate mean, median and standard deviation of (v
2
r) using

Numpy.

mean_v2r=np.mean(velo_2_r_list)

median_v2r=np.median(velo_2_r_list)

std_v2r=np.std(velo_2_r_list)

And in the same way, we calculate the mean median and standard deviation of Mass of

sun which exhibit different value for different planet.

4. Writing to Excel: In order to insert all those calculations, we will have to write the

Python code as follows:

with pd.ExcelWriter('C:/New_ Eightplanets_data.xlsx') as writer:

 df.to_excel(writer,sheet_name="DataBase_with_speed",index=False)

 Mean_value_list=[{'Mean of V^2r':np.mean(velo_2_r_list),'Mean Mass(Sun)':

[np.mean(m_sun_list),"KG"],'Median Mass(Sun)':

[np.median(m_sun_list),"KG"],'Standard Deviation of

mass (Sun)':

[np.std(m_sun_list),"KG"]}]

 df1=pd.DataFrame(Mean_value_list)

 df1.to_excel(writer,sheet_name="Mean_value_Data",index=False)

The above code creates one new Excel file named New_Eightplanets_data in the

specified path with two sheets named as DataBase_with_speed and Mean_value_Data

having index as False just because of discarding the extra column that DataFrame always

generates in extreme left.

5. Checking of Excel Creation: We can check our newly created Excel file in two ways.

One is, we can open the file directly from the system drive by clicking on it. And another

way to check the content is to have an access over that Excel file from the Python

6. Environment through the following coding:-

import pandas as pd

df=pd.read_excel("New_Eightplanets_data.xlsx")

df.tail(8)

The last line of the above code displays the last eight records of excel file.

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code

as df.head() which displays first five records by default.

IV. NINE DWARF PLANETS OF SOLAR SYSTEM AND DETERMINATION OF

THE GRAVITATIONAL CONSTANT

 In our Solar system there are several celestial bodies that orbits Sun, but not in that

way that our known eight planets do. That means to be in the category of planet, any celestial

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|158

object should obey all the three rules which tells that if it, is of spherical shape (which

ensures that it has its own gravity), revolves around the sun and doesn’t create any

disturbance for others to move around sun during each trip in its orbit or makes clear its own

orbit as well, it is a planet. But there are some celestial objects in our Solar system, which

don't obey the third rule although they obey the first two rules. Thus, these are no longer in

the category of planets, and hence are called Dwarf Planet. Here, we have aimed to explore

their property of obeying Newton's Law of Gravitation using Python.

Table 2: Dwarf Planets Dataset

Sl_no. dwarf_nm
Mean_distance

(from Sun)
Orbital_period

1 Ceres 2.77 4.6

2 Orcus 39.4 247.3

3 Pluto 39.48 247.9

4 Haumea 43.22 248.1

5 Quaoar 43.69 288.8

6 Makemake 45.56 307.5

7 Gonggong 67.38 553.1

8 Eris 67.38 558

9 Sedna 506.8 11400

Source: NASA & Wikipedia

 Now, to have a better understanding of how to extract valuable information from a

given dataset, we have created one Excel file with the sheet name as Dwarf_DataBase

having dwarf planet’s name, orbital distance, time period etc.

1. Reading a File: By using the following Python code, we will be able to read the

previously created Excel file of Astronomical data by converting it into DataFrame.

 import pandas as pd

 df=pd.read_excel("Dwarfplanets_data.xlsx")

The above code creates a DataFrame in the Python environment.

2. Calculating Orbital Speed and Gravitational Constant: We all know that orbits of our

dwarf planets are Elliptical in nature, but for mathematical simplicity, lets take that orbit

is circular. Thus, we have got the followings.

 𝑶𝒓𝒃𝒊𝒕𝒂𝒍 𝑺𝒑𝒆𝒆𝒅 𝒗 =
𝟐𝝅𝒓

𝑻
 (1)

And we have got this Eq.(3) by equating the Gravitational Force and Centripetal Force.

 𝑮𝒓𝒂𝒗𝒊𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑮 =
𝟒𝝅𝟐𝒓𝟑

𝑴𝒔𝑻
𝟐 …..(3)

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|159

Where r= Mean distance from Sun(in AU), and T= Orbital time period of dwarf

planet(in Earth years), 𝑀𝑠 =Mass of Sun(in Kg).

Now, after getting the DataFrame(i.e.,df), we will deduce orbital speed of every

dwarf planet with the help of the above Eq.(1),and the value of Gravitational Constant(G)

with the help of the following Eq.(3), by the following Python coding:-

from matplotlib import pyplot as plt

plt import numpy as np

import pandas as pd

a_o_r=np.array(df['Mean_distance(from Sun)']) #Creates an array of orbital radius

 from DataFrame.

a_t_p=np.array(df.Orbital_period) #Creates an array of time period from DataFrame.

length=len(a_o_r) #Making the Loop range.

velo_list=list() #Creating an empty List to hold orbital velocity.

velo_2_r_list=list()#Creating an empty List to hold v
2
r values.

G_value_list=list() #Creating an empty List to hold values for Universal Gravitation.

for i in range(length):

 temp_speed=((2*np.pi)*(a_o_r[i]*149.6)/(a_t_p[i]*365*24*60*60))

 speed=temp_speed*(10**6)

 sp_2_r=((temp_speed**2)*a_o_r[i])*(10**18)

 G_value=(4*(np.pi**2)*((a_o_r[i]*149.6*(10**9))**3))/

(Mass_sun*((a_t_p[i]*365*24*60*60)**2))

velo_list.append(speed) #Velocity of each dwarf planet is being appended in the

 existing list.

velo_2_r_list.append(sp_2_r)

G_value_list.append(G_value)

df['velocity']=velo_list #List of velocity is being appended to existing DataFrame.

df['v^2*r']=velo_2_r_list

df['G_value']=G_value_list

df #Gives output of modified dataframe.

If we notice the above DataFrame(i.e.,df), then we can have an interesting fact that the

value in (v
2
r) column are almost equal which exhibits the constant property and can be

visually shown by Python as follows.

plt.title(" Property of V^2*R")

plt.xlabel("\nName Of Dwarf-Planets")

plt.ylabel("V^2*R value")

plt.scatter(df.dwarf_nm,velo_2_r_list)

plt.show()

We can also notice that the Gravitational constant is almost same for each planet

except Haumea. And this is clearly visible through Python coding as follows.

from matplotlib import pyplot as plt

plt.title(" Property of G")

plt.xlabel("\nName Of Dwarf-Planets")

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|160

plt.ylabel("G_value")

plt.scatter(df.dwarf_nm,G_value_list)

plt.show()

Although we took the Average of that G value, and to do this we usually use

Earth’s orbital radius and time period.

3. Calculating the Mean, Median And Standard Deviation: Through the following

coding, we are able to calculate mean, median and standard deviation of G value using

Numpy array.

Mean_G=np.mean(G_value_list)

Median_G=np.median(G_value_list)

Std_G=np.std(G_value_list)

And in the same way, we calculate the mean median and standard deviation of v
2
r

which also exhibit almost same value for different dwarf planets.

4. Writing to Excel: In order to insert all those calculations, we will have to write the

Python code as follows:

with pd.ExcelWriter('C:/New_Dwarfplanets_data.xlsx') as writer:

 df.to_excel(writer,sheet_name="DwarfDataBase_with_speed",index=False)

 Mean_value_list=[{'Mean of V^2r':[np.mean(velo_2_r_list),"N*m^2/Kg"],

 'Mean G_value':[Mean_G,"N*m^2/Kg^2"],

 'Median G_value':[Median_G,"N*m^2/Kg^2"],

 'Standard Deviation of G_value':Std_G}]

 df1=pd.DataFrame(Mean_value_list)

 df1.to_excel(writer,sheet_name="Mean_value_Data",index=False)

The above code creates one new Excel file named New_Dwarfplanets_data in the

specified path with two sheets named as DwarfDataBase_with_speed and

Mean_value_Data having index as False just because of discarding the extra column that

DataFrame always generates in extreme left.

5. Checking of Excel Creation: We can check our newly created Excel file in two ways.

One is ,we can open the file directly from the system drive by clicking on it. And another

way to check the content is to have an access over that Excel file from the Python

Environment through the following coding:-

import pandas as pd

df=pd.read_excel("New_Dwarfplanets_data.xlsx")

df.tail(8)

The last line of the above code displays the last eight records of excel file.

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code

as df.head() which displays first five records by default.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|161

V. NON-RELATIVISTIC CONTRIBUTION OF MERCURY’S PERIHELION

PRECESSION

 Mercury, the nearest planet to the Sun, differs in several ways. One is the Precession

of the Orbit. Its orbit is very unique and mysterious. Mercury takes approximately 88 days to

make one trip around the Sun, and after each complete trip, its orbit gets changed a bit, and

this amount of shift causes the change in the position of Mercury’s perihelion which is a little

bit fast than it was supposed to be. The reason is that Mercury is pulled not only by the Sun

but also by the other planets of the solar system. Thus the attraction of the planets on Mercury

becomes more critical when it is at the furthest distance from the Sun. As a result, the

centripetal force (FC) experienced by Mercury (due to Sun), gets weakened. And when it is

closest to Sun, the FC experienced by Mercury due to Sun is far much greater than the

perturbing force, which causes Mercury to follow a new path instead of its normal one. We

can understand this concept by the following explanation and coding, which shows the

strengths of Python Libraries (such as Numpy, Panda, etc.).

 To have a better understanding of how to extract valuable information from a given

dataset, we have created one Excel file having planet name, it’s mass, orbital distance, orbital

time period etc.

1. Reading a File: By using the following Python code, we will be able to read the

previously created Excel file of Astronomical data by converting it into DataFrame.

import pandas as pd

df=pd.read_excel("Eightplanets_data.xlsx")

df.head(8)

The above code creates a DataFrame (i.e.,df) in the Python environment as

follows (i.e.,Table-1).

2. Concept of Uniform Ring: The way the small shift can be approximated easily is to

assume all the planets as a uniform circular ring, centered on the Sun and the object under

experiment (i.e.,Mercury) as a point object. And, as their exerted force matters a lot on

Mercury(for its perihelion precession) and the planets may be in their orbit, hence it is

important to calculate the Linear Mass Density(λi) for all the planets by the following

equation.

 𝑳𝒊𝒏𝒆𝒂𝒓 𝑴𝒂𝒔𝒔 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝝀𝒊 =
𝑴𝒊

𝟐𝝅𝑹𝒊
 ….Eq.(4)

Where Mi=Mass of every planet, Ri=Planet’s Orbital Radius, i =2
nd

 to 8
th

 planets.

The above Eq.(4) can be achieved by the following coding.

import pandas as pd

import numpy as np

a_pl_mass=np.array(df.planet_mass)

a_o_r=np.array(df.orbital_radius)

length=len(a_pl_mass)

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|162

lamda_list=['...',]

for i in range(1,length):

lamda_i=(a_pl_mass[i]*(10**24))/(2*np.pi*a_o_r[i]*(10**9))

lamda_list.append(lamda_i)

df['Li']=lamda_list

 The last line of above code adds one column to the existing DataFrame.

3. Calculating the Forces acting on Mercury: In order to compute the forces acting on

Mercury due to Sun (which is actually a centripetal force towards sun, denoted by 𝐹0 𝑎
and named by force_a0 in program segment) and other planets (which is an outward

radial force, denoted by 𝐹1 𝑎 and named by force_a1 in program segment), we will

apply the following equations.

𝑭𝟎 𝒂 = ¯
𝑮𝑴𝟎𝒎𝒄

𝒂𝟐 ….(5)

 𝑭𝟏 𝒂 = 𝑮𝝅𝒎𝒄 𝝀𝒊
𝒂

𝑹𝒊
𝟐 − 𝒂𝟐

𝟖
𝒊=𝟐 …(6)

where G=Gravitational Constant, M0=Mass of Sun, mc =Mass of Mercury,

a=Distance from Sun to Mercury and Ri is the orbital radius of i
th

planet.

The above Eq.(5) and Eq.(6) can be achieved by the following coding.

mass_mercury=a_pl_mass[0]*(10**24)

radius_mercury=a_o_r[0]*(10**9)

length=len(a_pl_mass)

for i in range(1,length):

 r2_a2=((a_o_r[i]*(10**9))**2)-(radius_mercury**2)

 lamda_i_a_r2_a2=(lamda_i*radius_mercury)/(r2_a2)

 force_a1_sum=force_a1_sum+lamda_i_a_r2_a2

force_a0= (-(G*mass_sun*mass_mercury)/(radius_mercury**2))

force_a1=G*np.pi*mass_mercury*force_a1_sum

4. Calculating 𝑭𝟏
/ 𝒂 : Derivatives are actually useful when we want to find out the rate of

changes of a quantity w.r.t. the other quantity. And as the planets (except Mercury) are in

different position in their orbit at different time, hence we should take derivative of 𝐹1 𝑎
as follows:--

 𝑭𝟏
/ 𝒂 = 𝑮𝝅𝒎𝒄 𝝀𝒊

𝑹𝒊
𝟐+ 𝒂𝟐

 𝑹𝒊
𝟐− 𝒂𝟐

𝟐
𝟖
𝒊=𝟐 …(7)

 = 𝐺𝜋𝑚𝑐S

where G, 𝑚𝑐 , Ri ,i ,a have their usual meaning and S is the summation of derivate of

𝐹1 𝑎 .

The above Eq.(7) can be achieved by the following coding.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|163

for i in range(1,length):

 force_a1_sum_derivative=force_a1_sum_derivative+

 (lamda_i*(((a_o_r[i]*(10**9))**2)+(radius_mercury**2)))/(r2_a2**2)

force_a1_derivative=G*np.pi*mass_mercury*force_a1_sum_derivative

In the above code, value of S(named by force_a1_sum_derivative in the segment) is

calculated inside the For Loop and then multiplied outside to get the value of 𝐹1
/ 𝑎 .

5. Calculating the Apsidal angle(𝛗): We are pretty sure about the fact that any central

force produces a circular orbit and thus Mercury has a stable orbit which exhibits the

property of Simple harmonic motion. Hence, apsidal angle(φ), is the angle between two
apsides, is measured with the help of the following equation(neglecting the second-order

term).

 𝑨𝒑𝒔𝒊𝒅𝒂𝒍 𝒂𝒏𝒈𝒍𝒆 𝝋 = 𝝅 𝟏 −
𝑭𝟏 𝒂 + 𝒂 𝟐 𝑭𝟏

/ 𝒂

𝑭𝟎 𝒂
 …(8)

The above Eq.(8) can be achieved by the following coding.

small_shift=round(((force_a1+((radius_mercury*force_a1_derivative)/2))/

 force_a0),10)

apsidal_angle=np.pi*(1-small_shift)

As the value of 𝐹0 𝑎 is negative, variable small_shift holds negative value
accordingly (i.e., -9.872×10

-7
) which is some multiple of half of total Angular

Distance(i.e., -9.872×10
-7

) Which in turn increases the apsidal angle.

6. Calculating the Rate of Precession(𝝎): We all know that normally in a circular motion,

any rotating or orbiting body covers an Angular Distance of 2𝜋. Thus 2𝜋/T (where T is

the Orbital time period of Mercury) is used to measure the Angular velocity which is

expressed in Radians per unit time OR Degrees per unit time. Here, in this case, the total

Angular Distance covered by Mercury under the perturbing force is 2φ (where is the
apsidal angle between two apsides). Therefore, the Rate of Precession is calculated by the

following equation.

 𝑷𝒓𝒆𝒄𝒆𝒔𝒔𝒊𝒐𝒏 𝑹𝒂𝒕𝒆 𝝎 =
𝟐𝝋−𝟐𝝅

𝑻
 ….(9)

Now, Eq.(9) can be evaluated by the following coding, provided that the value of the

apsidal angle is calculated previously.

o_t_p_mercury=df.loc[0,'time_period']#Picking Mercury’s Time period from DataFrame.

Precession_Rate=((((2*apsidal_angle)-(2*np.pi))*(180/np.pi)*3600*365.25*100)/

 o_t_p_mercury)

print("\nRate of Precession(calculated) is= ",Precession_Rate,"arcsec/century")

In the above coding, after subtracting 2𝜋 from 2φ, we have got an extra precession
expressed in Radian which is converted in a suitable unit of arc sec by multiplying Radian

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 4, Chapter 2

STUDYING THE PLANETARY MOTION USING PYTHON

Copyright © 2024 Authors Page|164

with 180/𝜋 (to convert in Degree) ,then by 3600(to convert in DMS(i.e.,degree, minute,
second)) and lastly by converting time period in century(i.e., dividing day by

365.25(making it year(which is the actual length of a year))

and then by 100(making it

century)). Here the output is +531.2 arc sec/century.

7. Writing to Excel: In order to insert all those calculations, we will have to write the

Python code as follows:

with pd.ExcelWriter('C:/New_Mercury_peri_precession.xlsx') as writer:

 df.to_excel(writer,sheet_name="DataBase_modified",index=False)

force_precession_list=[{'Force(due to Sun)':[force_a0,"Newton"],

'Force(due to OtherPlanets)':[force_a1,"Newton"],

'Apsidal Angle':[apsidal_angle,"Radian"],

'PrecessionRate(Calculated)':[Precession_Rate,"arcsec/century"]}]

 df1=pd.DataFrame(force_precession_list)

df1.to_excel(writer,sheet_name="Force_Precession_Data",index=False)

The above code creates one new Excel file named New_Mercury_peri_precession

in the specified path with two sheets named as DataBase_modified and

Force_Precession_Data having index as False just because of discarding the extra column

that DataFrame always generates in extreme left.

8. Checking of Excel Creation: We can check our newly created Excel file in two ways.

One is ,we can open the file directly from the system drive by clicking on it. And another

way to check the content is to have an access over that Excel file from the Python

Environment through the following coding:-

import pandas as pd

df=pd.read_excel("New_Mercury_peri_precession.xlsx")

df.tail(8)

The last line of the above code displays the last eight records of excel file.

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code

as df.head() which displays first five records by default.

VI. DISCUSSION

 We have taken the recent parameters /data of the planets and dwarf planets from the

NASA website. The methodology developed in the paper may help study more astrophysical

phenomena using the data available from different sources. It will help in coding and creating

a computational model for people who like to use Python for Astronomy. In the chapter, we

have considered a straightforward case of one parameter from studies of the observational

parameter.

REFERENCES

[1] Helfrich, G. (2019, 10 21). 4 Python tools for getting started with astronomy. Retrieved from opensource.com:

https://opensource.com/article/19/10/python-astronomy-open-data

[2] Price, M. P., & Rush, W. F. (1979). Nonrelativistic contribution to Mercury's perihelion precession. American

Journal of Physics, 47(6). doi:10.1119/1.11779

