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STUDYING THE PLANETARY MOTION USING 

PYTHON 
 

Abstract 

 

In the present work, we have studied 

the motion of planet and the dwarf planet and 

estimated the value of Mass of the Sun and 

value of Gravitational Constant (in case of 

dwarf planet). We also have studied the non-

relativistic contribution of Mercury’s 

perihelion precession. For the purpose of the 

same, we have considered the paper by Price 

and Rush, the freely available NASA data 

from NASA website as well as freely 

available data in Wikipedia website. For 

computational modeling purpose, we have 

used the Python programming language. 
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I. METHODOLOGY 

 

 We have taken the recent parameters /data of the planets and dwarf planets from the 

NASA website for all the Planets and Dwarf planets, and to study the precession of Mercury, 

we consider the paper by Price and Rush (Price & Rush, 1979) for calculating the non-

relativistic contribution of Mercury's perihelion precession. In our work, we have created a 

computational model which takes the data in Excel format as input and produces an output in 

Excel format after processing the data about the required parameters. We have used Python 

open-source software for writing the computational model. The organization of the chapter is 

as follows: First, we have discussed our methodology and why Python is the preferred 

software. In the second part and third of the given chapter, we discuss how to find out Sun's 

mass and Gravitational Constant (i.e., Universal Gravitation) using the planetary motion data 

of planets and dwarf planets. The chapter's fourth part deals with how to code the 

computational model to study the non-relativistic contribution of Mercury's perihelion 

precession. 

 

II. PYTHON AND ITS PREFERENCE FOR ASTRONOMY  

 

 Python has become one of the most popular programming languages in astronomy 

due to its versatility, ease of use, and rich ecosystem of scientific libraries. Several factors 

contribute to Python's preference for astronomy: 

 

1. Python offers many scientific libraries essential for astronomical research (Helfrich, 

2019). Some prominent ones include NumPy for numerical computations, SciPy for 

scientific computing, matplotlib for data visualization, and Astropy for astronomical data 

analysis. Astropy, in particular, provides core functionality and data structure for handling 

astronomical data, including units, coordinates, and time. 

2. Python's clear and readable syntax makes learning easy, even for those with little 

programming experience. Astronomers can quickly adapt to Python and start writing 

productive code without spending much time on the language's intricacies. 

3. Python has a vast and active community of astronomers and developers contributing to 

various projects and libraries. This support network ensures astronomers can seek help, 

share knowledge, and collaborate on common challenges. 

4. Python easily integrates with other programming languages like C, C++, and Fortran, 

which are often used for computationally intensive tasks in astronomy. This allows 

astronomers to harness the power of optimized code where needed while still utilizing 

Python for higher-level jobs. 

5. Python's Matplotlib and other libraries enable astronomers to create publication-quality 

plots and visualize complex data effectively. Visualization is essential for understanding 

data and presenting research findings. 

6. Python's data manipulation libraries, such as Pandas, make processing and analyzing 

large astronomical datasets straightforward. 

7. With the rise of machine learning and artificial intelligence in various scientific fields, 

Python's extensive libraries (e.g., TensorFlow, PyTorch, sci-kit-learn) also make it a 

viable choice for implementing these techniques in astronomy. 

8. Many astronomy-focused Python packages are developed in collaboration with 

researchers and are tailored to specific astronomical needs, making them reliable and 

relevant to the field. 
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9. Python is an open-source language which aligns well with the principles of openness and 

transparency in scientific research. This allows researchers to inspect, modify, and share 

the code freely. 

 

Due to these advantages, Python has gained widespread acceptance in the 

astronomy community, from data analysis and simulations to data visualization and 

scientific computing. Its flexibility, combined with the availability of astronomy-specific 

libraries, makes it a powerful tool for astronomers to conduct their research efficiently. 

 

III. EIGHT PLANETS OF SOLAR SYSTEM AND DETERMINATION OF MASS OF 

THE SUN 

 

 Now, to have a better understanding of how to extract valuable information from a 

given dataset, we have created one Excel file having planet name, it’s mass, orbital distance, 

time period etc. 

 

Table 1: Eight Planets of Solar System 

 

Sl_no. Planet_nm Planet_mass Orbital_Radius 
Spin_wrt_Axis 

(in Earth day) 
Time_Period 

1 Mercury 0.33011 57.9 58.646 87.969 

2 Venus 4.8675 108.2 -243.025 224.701 

3 Earth 1 149.6 0.997 365.24 

4 Mars 0.64171 228 1.026 686.565 

5 Jupiter 1898.19 778.5 0.414 4328.9 

6 Saturn 568.34 1432 0.426 10752.9 

7 Uranus 86.813 2867 0.718 30667.3 

8 Neptune 102.413 4515 0.671 60152 

 

Source: NASA and Wikipedia 

 

1. Reading a File: By using the following Python code, we will be able to read the 

previously created Excel file of Astronomical data by converting it into DataFrame. 

 

 import pandas as pd 

 df=pd.read_excel("Eightplanets_data.xlsx") 

 

The above code creates a DataFrame in the Python environment. 

 

2. Calculating Orbital Speed and Mass of Sun: We all know that orbits of our planets are 

Elliptical in nature, but for mathematical simplicity, lets take that orbit is circular. Thus, 

we have got the followings. 

 

  𝑶𝒓𝒃𝒊𝒕𝒂𝒍 𝑺𝒑𝒆𝒆𝒅 𝒗 =
𝟐𝝅𝒓

𝑻
                      ....(1)  
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And we have got this Eq.(2) by equating the Gravitational Force and Centripetal Force.   

 

  𝑴𝒂𝒔𝒔 𝒐𝒇 𝑺𝒖𝒏 𝑴𝒔 =
𝟒𝝅𝟐𝒓𝟑

𝑮𝑻𝟐                                      ….(2) 

 

Where r= Orbital radius of planets, and T= Time period of planets, G is the gravitational 

constant. 

 

Now, after getting the DataFrame(i.e.,df), we will deduce orbital speed of every planet 

with the help of the above Eq.(1),and mass of the sun with the the help of the following 

Eq.(2), by the following Python coding:- 

 

import numpy as np 

import pandas as pd 

a_o_r=np.array(df.orbital_radius) #Creates an array of orbital radius from DataFrame. 

a_t_p=np.array(df.time_period) #Creates an array of time period from DataFrame. 

length=len(a_o_r) #Making the Loop range. 

velo_list=list() #Creating an empty List to hold orbital velocity. 

velo_2_r_list=list() #Creating an empty List to hold v
2
r values. 

m_sun_list=list() #Creating an empty List to hold different values for Sun’s mass. 

for i in range(length): 

    temp_speed=((2*np.pi)*a_o_r[i])/(a_t_p[i]*24*60*60) 

    speed=temp_speed*(10**6) 

    sp_2_r=((temp_speed**2)*a_o_r[i])*(10**18) 

    m_sun=(4*(np.pi**2)*((a_o_r[i]*(10**9))**3)/ 

                       ((6.6743*(10**-11))*((a_t_p[i]*24*60*60)**2))) 

    velo_list.append(speed) #Velocity of each planet is being appended in the existing list. 

    velo_2_r_list.append(sp_2_r) 

    m_sun_list.append(m_sun) 

df['velocity']=velo_list #List of velocity is being appended to existing DataFrame. 

df['v^2*r']=velo_2_r_list 

df['sun_mass']=m_sun_list 

df #Gives output of modified dataframe. 

        

If we notice the above DataFrame(i.e.,df), then we can have an interesting fact that the 

value in (v
2
r) column are almost equal which exhibits the constant property and can be 

visually shown by Python as follows. 

 

From matplotlib import pyplot as plt 

plt.title("  Property of V^2*R") 

plt.xlabel("Name Of Planets") 

plt.ylabel("V^2*R value") 

plt.scatter(df.planet_nm,df['v^2*r']) 
plt.show() 

 

We can also notice that the Mass of Sun is slightly different for each planet. Thus, we 

took Average of that mass, although we usually use Earth’s orbital radius and time period 

to calculate the mass of Sun.  
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3. Calculating the Mean, Median and Standard Deviation: Through the following 

coding, we are able to calculate mean, median and standard deviation of (v
2
r) using 

Numpy. 

 

mean_v2r=np.mean(velo_2_r_list) 

median_v2r=np.median(velo_2_r_list) 

std_v2r=np.std(velo_2_r_list) 

 

And in the same way, we calculate the mean median and standard deviation of Mass of 

sun which exhibit different value for different planet. 

 

4. Writing to Excel: In order to insert all those calculations, we will have to write the 

Python code as follows: 

 

with pd.ExcelWriter('C:/New_ Eightplanets_data.xlsx') as writer: 

        df.to_excel(writer,sheet_name="DataBase_with_speed",index=False) 

        Mean_value_list=[{'Mean of V^2r':np.mean(velo_2_r_list),'Mean Mass(Sun)': 

[np.mean(m_sun_list),"KG"],'Median Mass(Sun)': 

[np.median(m_sun_list),"KG"],'Standard Deviation of                              

mass (Sun)': 

[np.std(m_sun_list),"KG"]}] 

        df1=pd.DataFrame(Mean_value_list) 

        df1.to_excel(writer,sheet_name="Mean_value_Data",index=False) 

 

The above code creates one new Excel file named New_Eightplanets_data in the 

specified path with two sheets named as DataBase_with_speed and Mean_value_Data 

having index as False just because of discarding the extra column that DataFrame always 

generates in extreme left. 

 

5. Checking of Excel Creation: We can check our newly created Excel file in two ways. 

One is, we can open the file directly from the system drive by clicking on it. And another 

way to check the content is to have an access over that Excel file from the Python 

  

6. Environment through the following coding:- 

 

import pandas as pd 

df=pd.read_excel("New_Eightplanets_data.xlsx") 

df.tail(8)  

 

The last line of the above code displays the last eight records of excel file. 

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code 

as df.head() which displays first five records by default. 

 

IV. NINE DWARF PLANETS OF SOLAR SYSTEM AND DETERMINATION OF 

THE GRAVITATIONAL CONSTANT 

 

 In our Solar system there are several celestial bodies that orbits Sun, but not in that 

way that our known eight planets do. That means to be in the category of planet, any celestial 
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object should obey all the three rules which tells that if it, is of spherical shape (which 

ensures that it has its own gravity), revolves around the sun and doesn’t create any 

disturbance for others to move around sun during each trip in its orbit or makes clear its own 

orbit as well, it is a planet. But there are some celestial objects in our Solar system, which 

don't obey the third rule although they obey the first two rules. Thus, these are no longer in 

the category of planets, and hence are called Dwarf Planet. Here, we have aimed to explore 

their property of obeying Newton's Law of Gravitation using Python. 

 

Table 2: Dwarf Planets Dataset 

 

Sl_no. dwarf_nm 
Mean_distance 

(from Sun) 
Orbital_period 

1 Ceres 2.77 4.6 

2 Orcus 39.4 247.3 

3 Pluto 39.48 247.9 

4 Haumea 43.22 248.1 

5 Quaoar 43.69 288.8 

6 Makemake 45.56 307.5 

7 Gonggong 67.38 553.1 

8 Eris 67.38 558 

9 Sedna 506.8 11400 

 

Source: NASA & Wikipedia 

 

 Now, to have a better understanding of how to extract valuable information from a 

given dataset, we have created one Excel file with the sheet name as Dwarf_DataBase  

having dwarf planet’s name, orbital distance, time period etc. 

 

1. Reading a File: By using the following Python code, we will be able to read the 

previously created Excel file of Astronomical data by converting it into DataFrame. 
 

 import pandas as pd 

 df=pd.read_excel("Dwarfplanets_data.xlsx") 

 

The above code creates a DataFrame in the Python environment. 

 

2. Calculating Orbital Speed and Gravitational Constant: We all know that orbits of our 

dwarf planets are Elliptical in nature, but for mathematical simplicity, lets take that orbit 

is circular. Thus, we have got the followings. 

 

  𝑶𝒓𝒃𝒊𝒕𝒂𝒍 𝑺𝒑𝒆𝒆𝒅 𝒗 =
𝟐𝝅𝒓

𝑻
                        ....(1)  

 

And we have got this Eq.(3) by equating the Gravitational Force and Centripetal Force.   

 

  𝑮𝒓𝒂𝒗𝒊𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑮 =
𝟒𝝅𝟐𝒓𝟑

𝑴𝒔𝑻
𝟐                     …..(3) 
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Where r=  Mean distance from Sun(in AU), and T= Orbital time period of dwarf 

planet(in Earth years), 𝑀𝑠 =Mass of Sun(in Kg). 
 

Now, after getting the DataFrame(i.e.,df), we will deduce orbital speed of every 

dwarf planet with the help of the above Eq.(1),and the value of Gravitational Constant(G) 

with the help of the following Eq.(3), by the following Python coding:- 

  

from matplotlib import pyplot as plt 

plt import numpy as np 

import pandas as pd 

a_o_r=np.array(df['Mean_distance(from Sun)']) #Creates an array of orbital radius 

                                                                    from DataFrame. 

a_t_p=np.array(df.Orbital_period) #Creates an array of time period from DataFrame. 

length=len(a_o_r) #Making the Loop range. 

velo_list=list() #Creating an empty List to hold orbital velocity. 

velo_2_r_list=list()#Creating an empty List to hold v
2
r values. 

G_value_list=list() #Creating an empty List to hold values for Universal Gravitation. 

for i in range(length): 

       temp_speed=((2*np.pi)*(a_o_r[i]*149.6)/(a_t_p[i]*365*24*60*60)) 

               speed=temp_speed*(10**6) 

               sp_2_r=((temp_speed**2)*a_o_r[i])*(10**18) 

           G_value=(4*(np.pi**2)*((a_o_r[i]*149.6*(10**9))**3))/ 

(Mass_sun*((a_t_p[i]*365*24*60*60)**2)) 

velo_list.append(speed) #Velocity of each dwarf planet is being appended in the  

                                         existing list. 

velo_2_r_list.append(sp_2_r) 

G_value_list.append(G_value) 

df['velocity']=velo_list #List of velocity is being appended to existing DataFrame. 

df['v^2*r']=velo_2_r_list 

df['G_value']=G_value_list 

df  #Gives output of modified dataframe. 

 

If we notice the above DataFrame(i.e.,df), then we can have an interesting fact that the  

value in (v
2
r) column are almost equal which exhibits the constant property and can be 

visually shown by Python as follows. 

 

plt.title(" Property of V^2*R") 

plt.xlabel("\nName Of Dwarf-Planets") 

plt.ylabel("V^2*R value") 

plt.scatter(df.dwarf_nm,velo_2_r_list) 

plt.show() 

 

We can also notice that the Gravitational constant is almost same for each planet 

except Haumea. And this is clearly visible through Python coding as follows. 

 

from matplotlib import pyplot as plt 

plt.title(" Property of G") 

plt.xlabel("\nName Of Dwarf-Planets") 
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plt.ylabel("G_value") 

plt.scatter(df.dwarf_nm,G_value_list) 

plt.show() 

 

Although we took the Average of that G value, and to do this we usually use 

Earth’s orbital radius and time period.  

 

3. Calculating the Mean, Median And Standard Deviation: Through the following 

coding, we are able to calculate mean, median and standard deviation of G value using 

Numpy array. 

 

Mean_G=np.mean(G_value_list) 

Median_G=np.median(G_value_list) 

Std_G=np.std(G_value_list) 

 

And in the same way, we calculate the mean median and standard deviation of v
2
r 

which also exhibit almost same value for different dwarf planets. 

 

4. Writing to Excel: In order to insert all those calculations, we will have to write the 

Python code as follows: 

 

with pd.ExcelWriter('C:/New_Dwarfplanets_data.xlsx') as writer: 

            df.to_excel(writer,sheet_name="DwarfDataBase_with_speed",index=False) 

            Mean_value_list=[{'Mean of V^2r':[np.mean(velo_2_r_list),"N*m^2/Kg"], 

                             'Mean G_value':[Mean_G,"N*m^2/Kg^2"], 

                            'Median G_value':[Median_G,"N*m^2/Kg^2"], 

                             'Standard Deviation of G_value':Std_G}] 

            df1=pd.DataFrame(Mean_value_list) 

            df1.to_excel(writer,sheet_name="Mean_value_Data",index=False) 

 

The above code creates one new Excel file named New_Dwarfplanets_data in the 

specified path with two sheets named as DwarfDataBase_with_speed and 

Mean_value_Data having index as False just because of discarding the extra column that 

DataFrame always generates in extreme left. 

 

5. Checking of Excel Creation: We can check our newly created Excel file in two ways. 

One is ,we can open the file directly from the system drive by clicking on it. And another 

way to check the content is to have an access over that Excel file from the Python 

Environment through the following coding:- 

 

import pandas as pd 

df=pd.read_excel("New_Dwarfplanets_data.xlsx") 

df.tail(8)  

 

The last line of the above code displays the last eight records of excel file. 

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code 

as df.head() which displays first five records by default. 
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V. NON-RELATIVISTIC CONTRIBUTION OF MERCURY’S PERIHELION 

PRECESSION 

 

 Mercury, the nearest planet to the Sun, differs in several ways. One is the Precession 

of the Orbit. Its orbit is very unique and mysterious. Mercury takes approximately 88 days to 

make one trip around the Sun, and after each complete trip, its orbit gets changed a bit, and 

this amount of shift causes the change in the position of Mercury’s perihelion which is a little 

bit fast than it was supposed to be. The reason is that Mercury is pulled not only by the Sun 

but also by the other planets of the solar system. Thus the attraction of the planets on Mercury 

becomes more critical when it is at the furthest distance from the Sun. As a result, the 

centripetal force (FC) experienced by Mercury (due to Sun), gets weakened. And when it is 

closest to Sun, the FC experienced by Mercury due to Sun is far much greater than the 

perturbing force, which causes Mercury to follow a new path instead of its normal one. We 

can understand this concept by the following explanation and coding, which shows the 

strengths of Python Libraries (such as Numpy, Panda, etc.). 

 

 To have a better understanding of how to extract valuable information from a given 

dataset, we have created one Excel file having planet name, it’s mass, orbital distance, orbital 

time period etc. 

 

1. Reading a File: By using the following Python code, we will be able to read the 

previously created Excel file of Astronomical data by converting it into DataFrame. 

 

import pandas as pd 

df=pd.read_excel("Eightplanets_data.xlsx") 

df.head(8) 

 

The above code creates a DataFrame (i.e.,df) in the Python environment as 

follows (i.e.,Table-1). 

 

2. Concept of Uniform Ring: The way the small shift can be approximated easily is to 

assume all the planets as a uniform circular ring, centered on the Sun and the object under 

experiment (i.e.,Mercury) as a point object. And, as their exerted force matters a lot on 

Mercury(for its perihelion precession) and the planets may be in their orbit, hence it is 

important to calculate the Linear Mass Density(λi) for all the planets by the following 

equation. 

 

  𝑳𝒊𝒏𝒆𝒂𝒓 𝑴𝒂𝒔𝒔 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝝀𝒊 =
𝑴𝒊

𝟐𝝅𝑹𝒊
    ….Eq.(4) 

 

Where Mi=Mass of every planet, Ri=Planet’s Orbital Radius, i =2
nd

  to 8
th

 planets. 

 

The above Eq.(4) can be achieved by the following coding.  

 

import pandas as pd 

import numpy as np 

a_pl_mass=np.array(df.planet_mass) 

a_o_r=np.array(df.orbital_radius) 

length=len(a_pl_mass) 
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lamda_list=['...',] 

for i in range(1,length): 

lamda_i=(a_pl_mass[i]*(10**24))/(2*np.pi*a_o_r[i]*(10**9)) 

lamda_list.append(lamda_i) 

df['Li']=lamda_list 

 

 The last line of above code adds one column to the existing DataFrame. 

 

3. Calculating the Forces acting on Mercury: In order to compute the forces acting on 

Mercury due to Sun (which is actually a centripetal force towards sun, denoted by 𝐹0 𝑎  
and named by force_a0 in program segment) and other planets (which is an outward 

radial force, denoted by 𝐹1 𝑎  and named by force_a1 in program segment), we will 

apply the following equations. 

 

𝑭𝟎 𝒂  = ¯
𝑮𝑴𝟎𝒎𝒄

𝒂𝟐               ….(5) 

 

   𝑭𝟏 𝒂 = 𝑮𝝅𝒎𝒄  𝝀𝒊
𝒂

𝑹𝒊
𝟐  −  𝒂𝟐

𝟖
𝒊=𝟐              …(6) 

 

where G=Gravitational Constant, M0=Mass of Sun, mc =Mass of Mercury, 

a=Distance from Sun to Mercury and Ri is the orbital radius of i
th 

planet. 

  

The above Eq.(5) and Eq.(6) can be achieved by the following coding. 

 

mass_mercury=a_pl_mass[0]*(10**24) 

radius_mercury=a_o_r[0]*(10**9) 

length=len(a_pl_mass) 

for i in range(1,length): 

       r2_a2=((a_o_r[i]*(10**9))**2)-(radius_mercury**2) 

        lamda_i_a_r2_a2=(lamda_i*radius_mercury)/(r2_a2) 

         force_a1_sum=force_a1_sum+lamda_i_a_r2_a2 

force_a0= (-(G*mass_sun*mass_mercury)/(radius_mercury**2)) 

force_a1=G*np.pi*mass_mercury*force_a1_sum 

 

4. Calculating 𝑭𝟏
/ 𝒂 : Derivatives are actually useful when we want to find out the rate of 

changes of a quantity w.r.t. the other quantity. And as the planets (except Mercury) are in 

different position in their orbit at different time, hence we should take derivative of 𝐹1 𝑎  
as follows:-- 

 

  𝑭𝟏
/ 𝒂 = 𝑮𝝅𝒎𝒄  𝝀𝒊

𝑹𝒊
𝟐+ 𝒂𝟐

 𝑹𝒊
𝟐− 𝒂𝟐 

𝟐
𝟖
𝒊=𝟐               …(7) 

   = 𝐺𝜋𝑚𝑐S 

 

where G, 𝑚𝑐 , Ri ,i ,a have their usual meaning and S is the summation of derivate of  

𝐹1 𝑎 . 
 

The above Eq.(7) can be achieved by the following coding. 

 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-671-7 

IIP Series, Volume 3, Book 9, Part 4, Chapter 2 

STUDYING THE PLANETARY MOTION USING PYTHON 

 

Copyright © 2024 Authors                                                                                         Page|163 

for i in range(1,length): 

      force_a1_sum_derivative=force_a1_sum_derivative+ 

                     (lamda_i*(((a_o_r[i]*(10**9))**2)+(radius_mercury**2)))/(r2_a2**2) 

force_a1_derivative=G*np.pi*mass_mercury*force_a1_sum_derivative 

 

In the above code, value of S(named by force_a1_sum_derivative in the segment) is 

calculated inside the For Loop and then multiplied outside to get the value of 𝐹1
/ 𝑎 .  

 

5. Calculating the Apsidal angle(𝛗): We are pretty sure about the fact that any central 

force produces a circular orbit and thus Mercury has a stable orbit which exhibits the 

property of Simple harmonic motion. Hence, apsidal angle(φ), is the angle between two 
apsides, is measured with the help of the following equation(neglecting the second-order 

term). 

 

   𝑨𝒑𝒔𝒊𝒅𝒂𝒍 𝒂𝒏𝒈𝒍𝒆 𝝋 = 𝝅  𝟏 − 
𝑭𝟏 𝒂 + 𝒂 𝟐 𝑭𝟏

/  𝒂 

𝑭𝟎 𝒂 
            …(8) 

 

The above Eq.(8) can be achieved by the following coding. 

 

small_shift=round(((force_a1+((radius_mercury*force_a1_derivative)/2))/ 

                                                   force_a0),10) 

apsidal_angle=np.pi*(1-small_shift) 

 

As the value of 𝐹0 𝑎  is negative, variable small_shift holds negative value 
accordingly (i.e., -9.872×10

-7
) which is some multiple of half of total Angular 

Distance(i.e., -9.872×10
-7

) Which in turn increases the apsidal angle. 

 

6. Calculating the Rate of Precession(𝝎): We all know that normally in a circular motion, 

any rotating or orbiting body covers an Angular Distance of 2𝜋. Thus 2𝜋/T (where T is 

the Orbital time period of Mercury) is used to measure the Angular velocity which is 

expressed in Radians per unit time OR Degrees per unit time. Here, in this case, the total 

Angular Distance covered by Mercury under the perturbing force is 2φ (where is the 
apsidal angle between two apsides). Therefore, the Rate of Precession is calculated by the 

following equation. 

 

   𝑷𝒓𝒆𝒄𝒆𝒔𝒔𝒊𝒐𝒏 𝑹𝒂𝒕𝒆 𝝎 =  
𝟐𝝋−𝟐𝝅

𝑻
                       ….(9) 

 

Now, Eq.(9) can be evaluated by the following coding, provided that the value of the 

apsidal angle is calculated previously. 

 

o_t_p_mercury=df.loc[0,'time_period']#Picking Mercury’s Time period from DataFrame. 

Precession_Rate=((((2*apsidal_angle)-(2*np.pi))*(180/np.pi)*3600*365.25*100)/ 

                               o_t_p_mercury) 

print("\nRate of Precession(calculated) is= ",Precession_Rate,"arcsec/century") 

 

In the above coding, after subtracting 2𝜋 from 2φ, we have got an extra precession 
expressed in Radian which is converted in a suitable unit of arc sec by multiplying Radian 
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with 180/𝜋 (to convert in Degree) ,then by 3600(to convert in DMS(i.e.,degree, minute, 
second)) and lastly by converting time period in century(i.e., dividing day  by 

365.25(making it year(which is the actual length of a year))
 
and then by 100(making it 

century)). Here the output is +531.2 arc sec/century. 

 

7. Writing to Excel: In order to insert all those calculations, we will have to write the 

Python code as follows: 

 

with pd.ExcelWriter('C:/New_Mercury_peri_precession.xlsx') as writer: 

            df.to_excel(writer,sheet_name="DataBase_modified",index=False) 

force_precession_list=[{'Force(due to Sun)':[force_a0,"Newton"], 

'Force(due to OtherPlanets)':[force_a1,"Newton"], 

'Apsidal Angle':[apsidal_angle,"Radian"], 

'PrecessionRate(Calculated)':[Precession_Rate,"arcsec/century"]}]

            df1=pd.DataFrame(force_precession_list) 

df1.to_excel(writer,sheet_name="Force_Precession_Data",index=False) 

 

The above code creates one new Excel file named New_Mercury_peri_precession 

in the specified path with two sheets named as DataBase_modified and 

Force_Precession_Data having index as False just because of discarding the extra column 

that DataFrame always generates in extreme left. 

 

8. Checking of Excel Creation: We can check our newly created Excel file in two ways. 

One is ,we can open the file directly from the system drive by clicking on it. And another 

way to check the content is to have an access over that Excel file from the Python 

Environment through the following coding:- 

 

import pandas as pd 

df=pd.read_excel("New_Mercury_peri_precession.xlsx") 

df.tail(8)  

 

The last line of the above code displays the last eight records of excel file. 

Although in this case, we have only eight rows. Instead of writing df.tail(8), we may code 

as df.head() which displays first five records by default. 
 

VI. DISCUSSION 
 

 We have taken the recent parameters /data of the planets and dwarf planets from the 

NASA website. The methodology developed in the paper may help study more astrophysical 

phenomena using the data available from different sources. It will help in coding and creating 

a computational model for people who like to use Python for Astronomy. In the chapter, we 

have considered a straightforward case of one parameter from studies of the observational 

parameter.  
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