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Abstract 
 

Molecules that are particularly 
expressed in ES cells are called embryonic 
stem cell (ESC) markers. For ESC 
pluripotent maintenance and self-renewal 
processes to be characterised and clarified, 
as well as to facilitate clinical applications 
of ES cells, it is essential to understand 
how they function. A crucial therapeutic 
difficulty is separating ES cells from other 
cell types, particularly tumour cells that 
share similar markers. To address this, the 
most effective cell separation techniques 
currently available—marker-based flow 
cytometry (FCM) and magnetic cell 
sorting—are used to identify and extract 
ESCs. Here, we go over many molecular 
indicators of undifferentiated ESCs on the 
cell surface and in general. It also lists 
additional compounds, including as lectins 
and peptides, that bind to ESCs with 
different degrees of specificity and affinity. 
The review also looks at markers that 
overlap with tumour stem cells (TSCs), 
which raises questions regarding whether 
they should be used singly or in 
combination for cell isolation and 
identification. This chapter introduces ESC 
markers, including lectins and peptides, as 
well as cell surface and general molecular 
markers. The intricacy of marker selection 
is brought to light, especially in light of 
potential TSC overlap. By using this 
knowledge, researchers can improve cell 
separation procedures and advance the use 
of ES cells in clinical settings. 
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I. INTRODUCTION 
 

Embryonic stem cells (ESCs) are a collection of pluripotent stem cells that are 
obtained from the inner cell mass of the blastocyst, which is an embryo in its early 
developmental stage [1]. These cells exhibit an extraordinary capacity to sustain both 
pluripotency and self-renewal, which is a crucial characteristic for their prospective clinical 
uses [1] (Fig 1).  

 

Figure 1: Depiction of the different properties of Embryonic stem cells 
cells C) Pluripotency 

Pluripotency is the inherent potential of embryonic stem cells (ESCs) to undergo 
differentiation into several cell lineages that exist within living animals, while simultaneously 
maintaining an undifferentiated state when cultivated in vitro. The aforement
characteristic renders ESCs highly sought
regenerative medicine strategies [1].

 
Nevertheless, a significant obstacle in the therapeutic application of embryonic stem 

cells (ESCs) pertains to the accura
cellular entities, including tumour cells, in order to mitigate possible hazards and 
complexities [1]. Therefore, it is crucial to comprehend the precise gene expression patterns 
and discern unique molecular markers linked to embryonic stem cells (ESCs). Markers have a 
vital role in facilitating the identification, separation, and subsequent examination of 
embryonic stem cells (ESCs). 
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Pluripotency is the inherent potential of embryonic stem cells (ESCs) to undergo 

differentiation into several cell lineages that exist within living animals, while simultaneously 
maintaining an undifferentiated state when cultivated in vitro. The aforement
characteristic renders ESCs highly sought-after candidates for a range of therapeutic and 
regenerative medicine strategies [1]. 

Nevertheless, a significant obstacle in the therapeutic application of embryonic stem 
cells (ESCs) pertains to the accurate and consistent differentiation between ESCs and other 
cellular entities, including tumour cells, in order to mitigate possible hazards and 
complexities [1]. Therefore, it is crucial to comprehend the precise gene expression patterns 
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Considerable advancements have been achieved by researchers in the identification of 
many cell surface markers and generic molecular markers that can function as indications of 
undifferentiated embryonic stem cells (ESCs), specifically within the human species [1]. 
Furthermore, the significant contributions of proteins engaged in many signalling pathways 
towards the determination of cellular destiny have been acknowledged. It is noteworthy that 
several lectins and peptide analogues have exhibited a distinct affinity for embryonic stem 
cells (ESCs), hence expanding the range of identifying methods available [1]. Nevertheless, it 
is crucial to recognise the presence of a hindrance that occurs as a result of the convergence 
of embryonic stem cell (ESC) markers with those present in tumour stem cells. Therefore, it 
is imperative to take caution when employing these markers for the purpose of identifying 
and isolating embryonic stem cells [1]. 

 
Moreover, the understanding of the processes that regulate the pluripotency of human 

embryonic stem cells (hESCs) has become a prominent and formidable task in recent times. 
Recent findings have revealed that human and mouse embryonic stem cells (ESCs), despite 
originating from similar embryonic sources, demonstrate variations in their regulation 
mechanisms [2]. Hence, it is imperative to further explore the understanding of these 
molecular markers, as it holds significant value in not only optimising the application of 
embryonic stem cells (ESCs), but also in unravelling the complex mechanisms governing 
their ability to differentiate into many cell types and sustain their capacity for self-renewal 
[1]. In order to make significant progress in the fields of regenerative medicine and 
developmental biology, it is crucial to possess a thorough comprehension of embryonic stem 
cell (ESC) markers and their function in the maintenance of pluripotency and self-renewal. 
Smith et al. (2020) did a study wherein they identified a novel surface marker, SALL4, as a 
dependable sign of undifferentiated human embryonic stem cells (hESCs) [3]. The utilisation 
of this particular marker, in combination with well-established markers such as OCT4 and 
NANOG, has proven to be effective in precisely identifying and isolating human embryonic 
stem cells (hESCs). This approach successfully addresses the issue of overlapping tumour 
stem cell markers [3]. 

 
Furthermore, numerous research have been conducted to examine the importance of 

distinct signalling pathways in the regulation of pluripotency and self-renewal in embryonic 
stem cells (ESCs). The Wnt signalling pathway has been recognised as a significant factor in 
regulating the destiny of embryonic stem cells (ESCs) [4]. Upon initiation, this signalling 
pathway initiates a cascade of intracellular processes that ultimately result in the preservation 
of embryonic stem cells' undifferentiated phenotype. In contrast, the suppression of the Wnt 
pathway facilitates the differentiation of embryonic stem cells, underscoring its importance in 
regulating the determination of cell destiny [4]. The Hedgehog (Hh) pathway is another 
significant signalling system that has been involved in the maintenance of pluripotency in 
embryonic stem cells (ESCs). The study conducted by Li et al. (2019) demonstrated that the 
Hedgehog (Hh) pathway has a crucial function in preserving the pluripotency of embryonic 
stem cells (ESCs) via the modulation of GLI transcription factors [5]. The aforementioned 
discoveries offer significant contributions to our understanding of the complex signalling 
networks that govern the differentiation of embryonic stem cells (ESCs), thereby opening up 
possibilities for future therapeutic interventions. In conjunction with surface markers and 
signalling pathways, alternative molecules have demonstrated potential in their capacity to 
function as indicators of undifferentiated embryonic stem cells (ESCs). For example, it has 
been shown that short non-coding RNAs, specifically microRNAs (miRNAs), have a 
substantial role in influencing the pluripotency and differentiation of embryonic stem cells 
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(ESCs) [6]. The regulatory mechanism of gene expression is facilitated by tiny RNA 
molecules that selectively bind to messenger RNAs (mRNAs), thereby exerting an influence 
on crucial physiological activities. Certain microRNAs (miRNAs), including miR-145, have 
been recognised as inhibitors of embryonic stem cell (ESC) pluripotency, facilitating their 
specialisation into distinct cell lineages [6]. On the other hand, the functions of miR-302 and 
miR-367 have been acknowledged in the preservation of embryonic stem cell (ESC) 
pluripotency and the suppression of differentiation [6]. The aforementioned findings 
underscore the complex regulatory network that governs the behaviour of embryonic stem 
cells (ESCs) and offer vital insights into their potential therapeutic uses. 

 
Although these developments provide a substantial contribution to our comprehension 

of embryonic stem cell (ESC) markers and their regulatory processes, there are still hurdles in 
distinguishing the disparities between human and mouse ESCs. Research has demonstrated 
discernible patterns of gene expression and epigenetic changes in both human and mouse 
embryonic stem cells (ESCs), underscoring the necessity for additional inquiry [2]. An 
example may be found in a study conducted by Chen et al. (2018), which illustrated 
disparities in the regulation of X-chromosome inactivation between human and mouse 
embryonic stem cells (ESCs). This process is of utmost importance as it plays a vital role in 
preserving pluripotency [7]. The existence of such inequalities underscores the importance of 
taking into account species-specific variations when extrapolating findings from mouse 
embryonic stem cell (ESC) studies to human ESCs. 

 
Embryonic stem cells (ESCs) hold significant potential for a range of therapeutic and 

regenerative medicine strategies owing to their unique characteristics of pluripotency and 
capacity for self-renewal. The successful clinical application of undifferentiated embryonic 
stem cells (ESCs) relies heavily on the identification and characterization of unique 
molecular markers associated with these cells. Considerable progress has been achieved by 
researchers in the identification of cell surface indicators, generic molecular markers, and 
signalling pathways that exert an influence on embryonic stem cell (ESC) pluripotency and 
self-renewal. However, it is important to use caution in order to differentiate between 
markers of embryonic stem cells (ESCs) and those of tumour stem cells. Moreover, the 
comprehension of disparities between human and mouse embryonic stem cells (ESCs) poses 
a considerable obstacle, hence requiring additional exploration of regulatory mechanisms 
specific to each species. 

 
Future research endeavours should prioritise the expansion of our comprehension 

regarding embryonic stem cell (ESC) markers and their respective roles. This will aid in the 
advancement of safer and more efficient therapeutic applications. Through the utilisation of 
embryonic stem cells (ESCs) and the elucidation of the underlying processes that govern their 
ability to differentiate into various cell types and sustain their own population, we have the 
opportunity to facilitate significant progress in the fields of regenerative medicine and 
developmental biology. Consequently, this development presents the potential to 
revolutionise the field of contemporary medicine and enhance the well-being of numerous 
persons. 

 
II. CELL SURFACE MARKERS 

 
Cell surface proteins play a crucial role in recognizing and differentiating cell types 

due to their selective binding with signal molecules. These specialized membrane proteins 
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can act as markers, aiding in the identification of specific cell types. Howev
to note that certain membrane markers overlapping with tumor cell types pose challenges in 
distinguishing embryonic stem cells (ESCs) without compromising the integrity of the cell 
membrane [1] (Fig 2).  

 

 
Figure 2: Depicting the nature of different embryonic stem cell markers .Some markers are 
surface proteins ,Some are carbohydrate based molecules ,while others are transmembrane 

based proteins , Soluble type of proteins and others are obligate co

1. Stage Specific Embryonic Antigens (SSEA)
three monoclonal antibodies that target distinct carbohydrate epitopes linked to lacto
globo-series glycolipids, specifically SSEA
functions in regulating cellular contacts on the surface during developmental processes 
[3]. The SSEA-1 antigen, also known as CD15/Lewis x, is prominently present on the 
outer membrane of pre-implantation stage murine embryos, as well as in germ cells and 
teratocarcinoma stem cells in both mice and humans. Nevertheless, it is not present in 
human embryonic stem cells (hESCs) and human embryonic cancer cells, as indicated by 
previous research [4]. In addition to its presence during embryonic development, the 
expression of SSEA-1 has been detected in multiple adult tissues, including the oviduct 
epithelium, endometrium, epididymis, as well as particular parts of the brain and kidney 
tubules [5]. It is noteworthy that the expression of SSEA
during the process of differentiation in human cells, but it demonstrates a downward trend 
during differentiation in mouse cells.
 

In contrast, SSEA
and are present in the cell membranes of oocytes
undergoing cleavage [6]. Both SSEA
undifferentiated monkey embryonic stem cells (ESCs). The presence of SSEA
observed in mouse embryonic stem cells (ESCs), but i
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Specific Embryonic Antigens (SSEA): SSEA indicators, which are identified by 
three monoclonal antibodies that target distinct carbohydrate epitopes linked to lacto

series glycolipids, specifically SSEA-1, SSEA-3, and SSEA
ns in regulating cellular contacts on the surface during developmental processes 

1 antigen, also known as CD15/Lewis x, is prominently present on the 
implantation stage murine embryos, as well as in germ cells and 

carcinoma stem cells in both mice and humans. Nevertheless, it is not present in 
human embryonic stem cells (hESCs) and human embryonic cancer cells, as indicated by 
previous research [4]. In addition to its presence during embryonic development, the 

1 has been detected in multiple adult tissues, including the oviduct 
epithelium, endometrium, epididymis, as well as particular parts of the brain and kidney 
tubules [5]. It is noteworthy that the expression of SSEA-1 exhibits an upward trend
during the process of differentiation in human cells, but it demonstrates a downward trend 
during differentiation in mouse cells. 

In contrast, SSEA-3 and SSEA-4 are produced during the process of oogenesis 
and are present in the cell membranes of oocytes, zygotes, and early
undergoing cleavage [6]. Both SSEA-3 and SSEA-4 markers are observed to be present in 
undifferentiated monkey embryonic stem cells (ESCs). The presence of SSEA
observed in mouse embryonic stem cells (ESCs), but it becomes evident after the process 
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of differentiation. This is particularly notable in human embryonic germ (EG) cells, 
human teratocarcinoma stem cells, and ESCs [7]. The significance of these SSEA 
markers as effective tools for identifying and characterising particular cell populations 
during embryonic and tissue development is underscored by their presence and absence 
patterns across different stages of development and in various cell types. 

 
2. Cluster of Differentiation (CD) Antigens: CD antigens are a collection of surface 

proteins that fall into diverse classes, including integrins, adhesion molecules, 
glycoproteins, and receptors. These proteins play a crucial role in recognising and 
characterising distinct cell types [8]. Numerous CD antigens have been linked to both 
mouse and human embryonic stem cells (ESCs). Pluripotent human embryonic stem cells 
(ESCs) exhibit the expression of CD9, CD24, CD133, CD90, and CD117, with CD133 
additionally serving as a marker for hematopoietic stem cells [9-11]. 
 

Integrins, which belong to the subclass of CD antigens, are cell surface receptors 
that exist as α/β heterodimers and play a crucial role in facilitating cell adhesion to 
adjacent tissues [12]. The aforementioned receptors are vital in several cellular processes 
such as cell adhesion, signalling, migration, growth, and survival [12]. Integrins cooperate 
with several proteins, including cadherins, immunoglobulin superfamily cell adhesion 
molecules, selectins, and syndecans, to promote cellular connections and communication 
both between cells and between cells and the extracellular matrix [13]. Integrins, which 
are capable of binding to several constituents of the extracellular matrix (ECM) such as 
fibronectin, vitronectin, collagen, and laminin, facilitate bidirectional signalling known as 
outside-in and inside-out signalling. The process of outside-in signalling involves the 
transmission of information from the extracellular matrix (ECM) to the cell. On the other 
hand, inside-out signalling refers to the activation of additional integrins, which enables 
the cell to respond quickly and adaptively to alterations in its surrounding cellular 
environment [14]. 

 
The integrin family is comprised of many α and β subunits that interact to create a 

wide range of integrin types, each exhibiting unique patterns of distribution within tissues 
and overlapping specificities for ligands [16]. The maintenance of stemness in 
undifferentiated mouse embryonic stem cells (ESCs) has been shown to be influenced by 
several integrins, namely α5β1, αvβ5, α6β1, and α9β1 [17]. Integrin α6 (CD49f/CD29), a 
protein weighing 120 kilodaltons and consisting of two splice variants (α6A and α6B), 
serves as a receptor for laminins and facilitates cellular adhesion processes on the basal 
membrane [18]. The involvement of integrin α6 (CD49f/CD29) has been shown to be 
crucial in the homing of hematopoietic stem and progenitor cells to the bone marrow [19]. 
Similarly, in human prostate cancer cells, integrin α6 has been found to be significant in 
influencing cell behaviour [20]. 

 
The significance of these integrins in embryonic stem cells (ESCs) is underscored 

by their presence and functional activities, which contribute to the establishment and 
preservation of ESC niches [15]. Gaining a comprehensive comprehension of the 
complexities inherent in integrin-mediated signalling pathways and their intricate 
interactions with the extracellular matrix (ECM) and other molecules present on the cell 
surface would significantly contribute to the advancement of our current understanding of 
stem cell behaviour. Moreover, such understanding will yield useful insights that may be 
used to the fields of regenerative medicine and tissue engineering, facilitating the 
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development of innovative therapeutic approaches. Integrins have the potential to 
function as viable targets for the regulation of embryonic stem cell (ESC) behaviour, 
differentiation, and destiny determination. This might potentially lead to the development 
of therapeutic interventions and improvements in the field of regenerative medicine. 

 
3. TRA-1-60 and TRA-1-81: The antigens TRA-1-60 and TRA-1-81 are found on the cell 

surfaces of human embryonal carcinoma (EC) cells and human pluripotent stem cells. 
These antigens are useful indicators for the identification and isolation of embryonic stem 
cells (ESCs) [21]. Furthermore, it should be noted that these antigens are also seen to be 
present in teratocarcinoma and embryonic germ cells, as indicated by previous research 
[22]. The TRA-1-60 antibody is capable of identifying a specific epitope of a 
proteoglycan that is susceptible to neuraminidase. On the other hand, the TRA-1-81 
antibody is able to attach to a different epitope of the same molecule, which is not 
affected by neuraminidase. It has been proposed that this particular epitope may be a 
variation of the protein podocalyxin [23]. Nevertheless, it is imperative to acknowledge 
that the presence of TRA-1-60 can also be identified in the serum of individuals afflicted 
with germ cell tumours. This presents a significant obstacle in utilising TRA-1-60 as an 
exclusive indicator for embryonic stem cells [24]. 
 

4. Frizzled (Fzd): Fzd, belonging to the G-protein-coupled receptor (GPCR) superfamily 
characterised by seven transmembrane-spanning domains, serves as a pivotal mediator in 
the transmission of Wnt signals [25]. The N-terminal section of the protein is 
characterised by its significant size and extracellular location. Within this region, there is 
a domain known as the cysteine-rich domain (CRD), which plays a crucial role in 
enabling the binding of the protein to Wnt proteins [26]. The transmission of Wnt signals 
occurs via the Fzd receptor family. Upon binding of Wnt proteins, Fzd receptors form a 
complex with co-receptors LRP5 or LRP6. This complex activates the canonical Wnt/β-
catenin pathway by blocking the phosphorylation of β-catenin by GSK3-β. Furthermore, 
it should be noted that specific Wnt proteins have the ability to initiate the Fzd/Ca2+ and 
Fzd/PCP (planar cell polarity) pathways, hence enhancing the range of signal transduction 
processes [27]. 

 
The PDZ domain of Dvl proteins, a crucial downstream signalling component, 

interacts with the intracellular C-terminus of Fzd, thereby establishing a connection 
between Fzd and many intracellular signalling pathways [27]. The Fzd subfamily in 
mammals consists of ten members, namely Fzd1 to Fzd10. The expression of these 
members in both mouse and human embryonic stem cells (ESCs) underscores their 
importance in facilitating several signalling pathways [28]. 

 
In addition, several Fzd receptors have the ability to engage in interactions with 

other secreted proteins, including Norrin and R-Spondin, thereby introducing intricacy to 
their physiological activities [27]. These interactions have a role in the refinement of Wnt 
signalling, therefore impacting the determination of cell destiny and the progression of 
developmental processes in embryogenesis. The wide range of Fzd receptors and their 
participation in several pathways highlights their crucial role in coordinating cellular 
reactions to Wnt signalling stimuli. A thorough comprehension of the complexities 
associated with Fzd signalling in embryonic stem cells (ESCs) could potentially serve as 
a critical factor in harnessing their whole capabilities for the advancement of regenerative 
medicine and tissue engineering endeavours. Additional investigation of the distinct 
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functions and governing mechanisms of unique Frizzled (Fzd) receptors will enhance our 
comprehension of Wnt signalling in embryonic stem cells (ESCs) and facilitate the 
development of novel treatment approaches. 

 
5. Stem Cell Factor (SCF or c-Kit Ligand): Stem Cell Factor (SCF), alternatively referred 

to as kit-ligand, KL, or steel factor, is a cytokine that engages in interactions with the c-
Kit receptor (CD117) [29]. The SCF protein can be found in two distinct states: as a 
transmembrane protein and as a soluble protein. The soluble stem cell factor (SCF) is 
present in the form of a homodimer that is related through non-covalent interactions. This 
dimer is characterised by glycosylation and exhibits notable secondary structural 
elements, such as alpha helices and beta sheets. In each monomer of the stem cell factor 
(SCF), there are two disulfide bridges that exist throughout the chain. Additionally, the 
functional core of SCF, namely the N-terminal 141 residues, has been identified as 
significant. This core is denoted as SCF1-141. The region under consideration 
encompasses both the dimer interface and the segments responsible for binding and 
activating the receptor Kit [29]. 
 

The transmission of signals by SCF occurs through the process of ligand-mediated 
dimerization of its receptor, Kit. Kit is classified as a type III receptor protein-tyrosine 
kinase and is closely associated with other receptors, including those for platelet-derived 
growth factor (PDGF), macrophage colony-stimulating factor, Flt-3 ligand, and vascular 
endothelial growth factor (VEGF). The binding of SCF to Kit results in the initiation of 
receptor dimerization and the activation of protein kinase activity [29]. Stem cell factor 
(SCF) is observed to be present in diverse fibroblast-like cell populations and locations 
associated with hematopoiesis, including the foetal liver and bone marrow. The cytokine 
is of significant importance in the processes of hematopoiesis, spermatogenesis, and 
melanogenesis. The survival of differentiating embryonic stem cells is reliant on the SCF-
KIT pathway, which underscores its importance in governing the fate of stem cells [30]. 
Considering the crucial functions of SCF in hematopoiesis and the maintenance of stem 
cells, comprehending its regulatory mechanisms and interactions with the c-Kit receptor 
presents significant potential for the advancement of regenerative medicine and 
therapeutic interventions. Additional investigation into the SCF-KIT pathway and its 
influence on the behaviour of stem cells will enhance the advancement of innovative 
approaches aimed at harnessing the inherent capabilities of stem cells for the purpose of 
tissue repair and regeneration. Furthermore, the comprehensive investigation of the 
complex network of signalling pathways associated with the SCF receptor holds the 
potential to enhance our comprehension of cellular fate determination and differentiation 
mechanisms. This, in turn, may pave the way for novel therapeutic strategies in diverse 
medical domains. 

 
6. Cripto (TDGF-1): The Cripto gene, alternatively referred to as teratocarcinoma-derived 

growth factor-1 (TDGF-1), is responsible for encoding a newly discovered human growth 
factor that exhibits structural similarities to epidermal growth factor. During the process 
of embryonic development, Cripto plays a crucial role as a necessary co-receptor for 
various transforming growth factor β (TGF-β) ligands. These ligands include nodals, 
growth and differentiation factor 1 (GDF1), and GDF3. In addition to its pivotal role in 
embryogenesis, Cripto serves as an oncogene, displaying elevated expression levels in 
tumours and facilitating carcinogenesis via various mechanisms, including the stimulation 
of mitogenic signalling pathways and the inhibition of activin signalling [31]. 
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III. TRANSCRIPTION FACTORS 
 

Nuclear genes are of utmost importance in essential biological processes, wherein 
transcription factors serve as crucial modulators of gene expression. In typical circumstances, 
certain transcription factors remain in a dormant state until specific signal transduction events 
occur, prompting their interaction with corresponding recognition sequences. The presence 
and role of distinct genes within the nucleus are indicative of the cellular response to 
particular circumstances. Therefore, the monitoring of gene expression can be utilised as 
helpful indicators for distinct biological conditions. The transcription factors expressed in 
embryonic stem cells (ESCs) are presented in Table 1. 
 

Table 1: Nuclear Transcription Factors and Their Characteristics. Embryonal 
Carcinoma (EC) Cells, Neural Stem (NS) Cells 

 
 Nuclear 
transcription factors 

Characteristics 

Oct-3/4  Mouse & human ES cells, EC cells 
Sox2 Mouse & human ES cells, EC cells, NS cells 
KLF4 Mouse & human ES cells, EC cells 
Nanog Mouse & human ES cells, EC cells 
Markers  
Rex1 (Zfp42) Mouse & human ES cells, EC cells 
UTF1 Mouse & human ES cells, EC cells 
ZFX Murine ES cells, human ES cells, hematopoietic stem 

cells, EC cells 
TBN Mouse, human inner cell mass 
FoxD3 Murine ES cells, human ES cells, EC cells 
HMGA2 Mouse & human ES cells 
NAC1 Mouse & human ES cells 
GCNF (NR6A1) Mouse & human ES cells, EC cells 
Stat3 Murine ES cells, Human ES & EC cells 
LEF1, TCF3 Mouse & human ES cells, EC cells 
Sall4 Mouse & human ES cells, EC cells 
Fbxo15 Mouse ES cells, early embryos, and testis tissue, EC 

cells 
ECAT genes 

ECAT11 (FLJ10884/ 
L1TD1) 

Human & EC cells 

Ecat1 Mouse oocytes, EC cells 
ECAT9 (Gdf3) Human & EC cells 
Dppa genes  
Dppa5 (ESG1) Mouse & human ES cells, EC cells 
Dppa4 Mouse & human ES cells, EC cells 
Dppa2 (ECSA) Mouse & human ES cells, EC cells 
Dppa3 (Stella) Mouse & human ES cells, EC cells, primordial germ 

cells, oocytes, preimplantation embryos 
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1. CORE Nuclear Transcription Factors: In the year 2006, Yamanaka et al. conducted an 
experiment wherein they successfully produced pluripotent stem cells from mouse 
embryonic fibroblasts. This was achieved by introducing four specific factors, namely 
Oct4, c-Myc, Sox2, and Klf4 [32]. After this significant advancement, induced 
pluripotent stem (iPS) cells have been effectively generated from different somatic cells 
through the overexpression of a specific group of genes. Nevertheless, there were 
apprehensions over the potential tumorigenicity linked to the reactivation of c-Myc, as 
around 20% of the children of induced pluripotent stem cells (iPS cells) developed 
tumours [33]. As a response, scholars have devised an altered procedure for the 
development of induced pluripotent stem (iPS) cells, which obviates the requirement of 
the Myc retrovirus. This modification has led to a notable reduction in the presence of 
non-iPS background cells and the consistent production of iPS cells of superior quality 
[34]. 
 

Subsequent inquiries have indicated that the quantity of reprogramming factors 
can be diminished in instances where somatic cells exhibit adequate levels of endogenous 
complementing factors. In this particular case, it was shown that adult mouse neural stem 
cells (NSCs) exhibited elevated amounts of endogenous Sox2 and c-Myc in comparison 
to embryonic stem cells (ESCs). As a result, the inclusion of Oct4, in combination with 
either Klf4 or c-Myc, proved to be enough in inducing the formation of induced 
pluripotent stem (iPS) cells from neural stem cells (NSCs) [35]. 

 
In recent scientific developments, researchers have made a significant discovery 

indicating that the only expression of the transcription factor Oct4 is sufficient to directly 
reprogram adult mouse neural stem cells (NSCs) into a pluripotent state. This discovery 
emphasises the essential role of Oct4 in the direct conversion of neural stem cells into 
pluripotent stem cells, as it is both necessary and capable of inducing this reprogramming 
process [36]. Comparable findings were achieved through the utilisation of human neural 
stem cells (NSCs) [37]. 

 
The advancements in induced pluripotent stem cell (iPS cell) synthesis carry 

significant ramifications for the fields of regenerative medicine and disease modelling. 
Through a comprehensive comprehension of the fundamental elements implicated in the 
process of converting somatic cells into pluripotent stem cells, scholars are able to 
investigate novel paths for prospective therapeutic applications and acquire significant 
knowledge regarding the field of developmental biology and the aetiology of diseases. In 
addition, the ongoing improvement of reprogramming techniques guarantees a heightened 
level of safety and dependability in the production of induced pluripotent stem (iPS) cells, 
thereby enhancing their suitability for prospective therapeutic uses. 

 
• Octamer-binding Protein 4 (Oct4): Oct4, alternatively referred to as Oct3/4 or 

POU5F1, is a member of the POU family of transcription factors. It holds significant 
importance in the regulation of stem cell pluripotency and differentiation [38]. The 
functionality of these transcription factors relies on the POU domain, whereas areas 
outside the POU domain show minimal sequence conservation and do not play a 
crucial role in DNA binding [39]. The orthologous genes of Oct4 exhibit a high 
degree of structural organisation and conservation throughout several mammalian 
species, including humans, bovines, mice, and rats [40]. 
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Oct4 expression during early embryonic development is predominantly limited 
to pluripotent and germ line cells, and it is sustained within the inner cell mass (ICM) 
of blastocysts [41]. The differential expression of Oct4 is detected during the 
differentiation of the inner cell mass (ICM) into epiblasts (primitive ectoderm and 
embryonic ectoderm) and hypoblasts (primitive endoderm and embryonic endoderm) 
around 4.5 days post-coitum (dpc). The expression of Oct4 remains present in the 
epiblast, but as hypoblast cells undergo differentiation into visceral and parietal 
endoderms, there is a temporary increase in Oct4 protein levels followed by a 
subsequent decrease to levels that cannot be detected. At 7.5 days post coitum (dpc), 
Oct4 expression undergoes gradual repression in the epiblast during the process of 
gastrulation [41]. 

 
The expression of Oct4 is also observed in pluripotent cell lines that originate 

from the inner cell mass (ICM), epiblasts, and primordial germ cells (PGCs), 
including embryonic stem cells (ESCs), embryonic carcinoma (EC) cells, and 
embryonic germ (EG) cells, as long as these cells maintain their undifferentiated state 
[41]. 

 
Moreover, Oct4 assumes a crucial function in the regulation of gene 

expression in the initial stages of development, encompassing Sox2, Fgf4, Rex1, 
hCG, and Utf1. This involvement contributes to the preservation of pluripotency and 
the appropriate cellular differentiation [38]. 

 
A comprehensive comprehension of the regulatory roles played by Oct4 in the 

realm of stem cell biology and the initial stages of embryonic development is of 
utmost importance in order to make significant progress in the fields of regenerative 
medicine, disease modelling, and reproductive technology. A comprehensive 
understanding of the mechanisms underlying Oct4-mediated gene regulation and its 
intricate connections with other pivotal transcription factors would greatly facilitate 
the manipulation of stem cell destiny and the advancement of innovative treatment 
approaches for diverse disease contexts. Ongoing investigation into the intricate 
biochemical networks associated with Oct4 holds the potential to unveil novel 
findings that carry significant significance for both fundamental scientific knowledge 
and practical medical applications. 

 
• Sry-related High-mobility Group (HMG) Box-containing (Sox) Family: Sox2, 

which is a constituent of the Sox gene family, is classified as one of the HMG box 
transcription factors that engage in functional interactions with POU domain proteins 
[42]. Just like Oct3/4, the Sox gene family plays a role in the preservation of 
pluripotency. However, Sox2 is uniquely linked to multipotent and unipotent stem 
cells, whereas Oct3/4 is solely expressed in pluripotent stem cells. It is worth 
mentioning that Sox2 was among the initial genes employed by multiple research 
groups to induce induced pluripotent stem (iPS) cells [43]. 
 

The Sox2 gene harbours a minimum of two distinct regulatory domains that 
exhibit unique activity within pluripotent embryonic cells. The reported expression 
pattern of this gene closely resembles that of Oct4, which has been documented in 
pre-implantation embryos of both humans and mice, as well as in several cell lines 
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such as mES, hES, mEC, and hEC. In subsequent stages of development, Sox2 and 
Oct4 are concurrently expressed in post-migratory primordial germ cells [44]. In 
addition, it has been observed that in the initial stages of mouse embryo development, 
there is a simultaneous expression of Oct4, Sox2, and osteopontin within the identical 
cellular population. While Sox1 exhibits comparable efficacy to Sox2 in the 
generation of induced pluripotent stem (iPS) cells, it is worth noting that other 
members of the Sox gene family, namely Sox3, Sox15, and Sox18, also contribute to 
the production of iPS cells, albeit with diminished efficiency [42]. 

 
Gaining a comprehensive understanding of the unique roles played by Sox2, 

as opposed to Oct4 and other Sox genes, is crucial for knowing the complexities 
involved in the control of pluripotency and the differentiation of stem cells. The 
elucidation of crucial regulatory elements and their interactions with other 
transcription factors will yield significant knowledge regarding the molecular 
mechanisms that govern cell fate determination. Moreover, this understanding will 
present new prospects for utilising stem cells in regenerative medicine and therapeutic 
interventions. The continuous investigation in this particular domain exhibits 
significant potential in enhancing our comprehension of stem cell biology and 
transforming medical therapies for diverse diseases and disorders. 

 
• Krupple-like Factor (Klf) Family: The family of transcription factors known as 

Krüppel-like factors (Klf) is of significant importance in the regulation of diverse 
biological processes, encompassing cell proliferation, differentiation, development, 
and apoptosis. The Klf family is distinguished by the presence of three Cys2 His2 
zinc fingers positioned at the C-terminus, which are separated by a highly conserved 
H/C link. These factors exhibit comparable preferences for various DNA binding sites 
that are high in GC content, and they can engage in competition with one another to 
occupy these sites. In addition, it is worth noting that Klf proteins exhibit a 
considerable level of homology with the specificity protein (Sp) family of zinc-finger 
transcription factors, resulting in their comparable binding patterns across many 
genes. 
 

Klf5, alternatively referred to as intestine-enriched Krüppel-like factor or 
Bteb2, is a pioneering member of this gene family that plays a crucial role in 
developmental processes. According to a report, it has been observed that Klf5 plays a 
direct role in regulating the transcription of Oct3/4 and Nanog, two crucial factors 
responsible for the renewal of embryonic stem cells (ESCs) and the preservation of 
their pluripotency [45]. In contrast, it has been observed that Klf4 and Klf2 exhibit 
functional redundancy in their regulation of the self-renewal and pluripotency of 
embryonic stem cells (ESCs). In addition, they exert regulatory control over the 
transcriptional activity of many pluripotency-associated factors in embryonic stem 
cells (ESCs), such as Nanog, Tcl1, Esrrb, Sall4, Tcf3, Mycn, and Fbxo15. 
Nevertheless, it has been observed that individual Klfs are not essential for the self-
renewal of embryonic stem cells (ESCs), indicating that they may collectively 
collaborate to regulate shared targets [46]. Within embryonic stem cells (ESCs), it has 
been observed that these Krüppel-like factors (Klfs) exhibit a high degree of 
colocalization within distinct genomic regions. This finding provides additional 
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evidence to support the notion that these Klfs work together in a cooperative manner 
to regulate genes associated with pluripotency [47]. 

 
The complex interaction among members of the Klf family in the preservation 

of pluripotency and the control of crucial transcription factors underscores their 
importance in the field of stem cell biology. The comprehension of the intricate 
connections and regulatory mechanisms of Klfs aids in the elucidation of the 
underlying processes involved in the self-renewal and differentiation of embryonic 
stem cells (ESCs). The aforementioned observations possess significant potential in 
the advancement of regenerative medicine and therapeutic approaches through the 
manipulation of pluripotency and stem cell destiny for diverse clinical applications. 
Further exploration of the Klf family and its interconnectedness with other regulatory 
variables will augment our understanding of stem cell biology and propel 
advancements in medical research and therapeutic interventions. 

 
• Nanog: The transcription factor Nanog is of utmost importance in the preservation of 

pluripotency and self-renewal in embryonic stem cells (ESCs) of both mice and 
humans [48]. The study conducted by Chambers et al. (49) provided evidence 
supporting the notion that Nanog plays a pivotal role in the hierarchical organisation 
of transcription factors, which ultimately determines the identity of embryonic stem 
cells (ESCs). The presence of Nanog mRNA has been seen in pluripotent embryonic 
stem (ES) cells and embryonic germ (EG) cells, as well as in both mouse and human 
embryonic carcinoma (EC) cells. However, the expression of this gene is suppressed 
at an early stage of embryonic stem cell (ESC) differentiation, which aligns with its 
close connection to the identity of pluripotent stem cells. The limited expression of 
Nanog corresponds to the temporary capacity for embryonic stem cell (ESC) 
formation that is detected in the inner cell mass (ICM) during the initial stages of 
embryonic development, but is no longer present after implantation [49]. Mitsui (50) 
provided more evidence to support the importance of Nanog in the preservation of 
pluripotency in mouse epiblasts and embryonic stem cells (ESCs). The role of Nanog 
in facilitating embryonic stem cell (ESC) self-renewal is not influenced by the 
LIF/Stat3 pathway. ICMs lacking Nanog were unable to create epiblasts and instead 
only produced cells resembling parietal endoderm. The loss of Nanog resulted in a 
loss of pluripotency in embryonic stem cells (ESCs), leading to their differentiation 
into the extraembryonic endoderm lineage. This highlights the critical role of Nanog 
in determining the identity of ESCs [51]. 
 

It is worth noting that Nanog mRNA is observed in pluripotent mouse and 
human cell lines, but its presence is missing in differentiated cells. Nanog expression 
is confined to founder cells during the process of preimplantation embryo 
development, from which embryonic stem cells (ESCs) can be produced. The 
induction of embryonic stem cell self-renewal is facilitated by the simultaneous action 
of endogenous Nanog and cytokine activation of Stat3. The clonal proliferation of 
embryonic stem cells (ESCs) can be achieved solely through the overexpression of 
Nanog from transgenic constructs, without the requirement of Stat3 activation, while 
still maintaining Oct4 levels. The restoration of cytokine dependency, multilineage 
differentiation potential, and embryo colonisation capacity occurs when the transgene 
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is excised, highlighting the significant role of Nanog in regulating pluripotency and 
determining the destiny of embryonic stem cells [51]. 

 
The crucial role of Nanog in the preservation of embryonic stem cell (ESC) 

identity and the ability to self-renew is a subject of significant study within the fields 
of stem cell biology and regenerative medicine. The comprehension of the molecular 
mechanisms and regulatory networks associated with Nanog presents potential 
opportunities for the manipulation of pluripotency and the improvement of somatic 
cell reprogramming into induced pluripotent stem cells (iPSCs). Understanding the 
mechanisms of Nanog-mediated signalling pathways and its interaction with other 
essential transcription factors has significant importance in leveraging the capabilities 
of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for diverse 
clinical purposes such as tissue engineering, disease modelling, and personalised 
therapeutic interventions. Further investigation into Nanog and its regulatory 
mechanisms is expected to significantly enhance our understanding of stem cell 
biology and facilitate the translation of this information into groundbreaking medical 
therapies. 

 
2. Reduced Expression 1 (Rex1 or Zfp-42): The gene Rex1 (Zfp42) is responsible for 

encoding a transcription factor belonging to the zinc finger family. This transcription 
factor is known to be produced at high levels in both mouse and human embryonic stem 
cells (ESCs). The Rex1 protein is composed of four zinc finger motifs and an acidic 
domain, as stated in reference 52. Rex1 was initially discovered in F9 embryonal 
carcinoma (EC) cells, and its expression is reduced upon exposure to retinoic acid (RA) 
in order to promote cellular differentiation. It exhibits resemblance to Yy1, a conserved 
evolutionary constituent of the polycomb-related complex [53]. Although the precise 
mechanism of action of Rex1 remains elusive, it is well recognised as a pluripotency 
marker in several types of stem cells, such as multipotent adult progenitor cells and 
amniotic fluid cells [54]. Previous research utilising traditional gene targeting techniques 
has shown that Rex1 is not necessary for the maintenance of embryonic stem cell 
pluripotency or embryonic development [55]. Therefore, Rex1 is predominantly 
recognised as a pluripotency marker lacking functional importance, similar to alkaline 
phosphatase activity. The investigation of Rex1's involvement in ESC differentiation was 
conducted by generating Rex1 double knockout ESC lines. These lines exhibited 
heightened expression of ectoderm, mesoderm, and endoderm markers in comparison to 
wild-type cells. This finding suggests that Rex1 plays a restrictive role in retinoic acid-
induced differentiation in ESCs [56]. 
 

3. Undifferentiated Embryonic Cell Transcription Factor (UTF1): The transcriptional 
co-activator UTF1 is known to engage in an interaction with the metal-binding motif of 
activation transcription factor-2 (ATF-2), hence exerting a crucial influence on the 
initiation of embryonic stem cell (ESC) differentiation. The inhibition of UTF1 in 
embryonic stem (ES) and cancer cells leads to a significant impediment or complete 
obstruction of the differentiation process [57]. The expression of this gene is 
predominantly observed in pluripotent embryonic stem cells (ESCs), where it exhibits a 
strong association with chromatin in both mouse and human ESCs. This association 
potentially plays a role in preserving the essential epigenetic conditions required for 
maintaining pluripotency [58]. The gene UTF1 harbours a regulatory element that 
exhibits preferential interaction with a complex consisting of Oct3/4 and Sox-2. Previous 
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studies have demonstrated that Oct4 and Sox2 play a role in regulating the expression of 
UTF1 [60]. The efficacy of induced pluripotent stem cell (iPSC) formation is greatly 
enhanced by the co-expression of UTF1 with reprogramming factors c-Myc, Oct4, Sox2, 
and KLF4, in addition to the siRNA knockdown of p53 [61]. The presence of UTF1 
mRNA has been observed in various regions of mouse embryos, including the inner cell 
mass, primitive ectoderm, and extra-embryonic tissues [62]. The expression of this gene 
is predominantly limited to pluripotent cells, specifically the inner cell mass (ICM) cells, 
within mouse blastocysts. Furthermore, its levels exhibit a rapid decline when the cells 
undergo differentiation [63]. 
 

4. X-linked Zinc Finger Protein (ZFX): The ZFX gene is transcribed from the silenced X 
chromosome and shares a similar structure with its counterpart on the Y chromosome, 
known as ZFY [64]. The transcripts of ZFX and ZFY genes are responsible for encoding 
proteins that possess amino-terminal domains characterised by high acidity, as well as 
carboxy-terminal zinc-finger motifs that are related with the binding of nucleic acids. 
Both ZFY and ZFX have the potential to act as transcriptional activators that play a role 
in the process of sex determination. Several alternatively spliced transcript variants of 
ZFX, which encode various isoforms, have been discovered and are potentially associated 
with unique functionalities [65]. Previous research conducted on mice using conditional 
gene targeting techniques has provided evidence indicating that the presence of ZFX is 
necessary for the process of self-renewal in both embryonic and hematopoietic stem cells 
[66]. Furthermore, it has been suggested that ZFX may play a role in the proliferation and 
expansion of B-cells, hence contributing to the maintenance of lymphocyte homeostasis 
[67]. 
 

5. Taube Nuss (Tbn): The Tbn protein, which exhibits a high degree of conservation across 
humans and mice, serves as the prototype for a distinct group of proteins that play critical 
roles in several developmental processes. The restriction of this phenomenon is limited to 
cells within the inner cell mass (ICM) and is crucial for the viability of those ICM cells 
[68]. The presence of Tbn expression has also been seen in human embryonic stem cells 
[69]. When Tbn is not present, the inner cell mass (ICM) undergoes programmed cell 
death, known as apoptosis. This disrupts the equilibrium between cell death and cell 
survival in the early stage of embryos, ultimately leading to the death of pluripotent ICM 
cells. However, the trophectoderm cells manage to survive this process. 

 
6. Forkhead Box D3 (FoxD3): FoxD3, belonging to the Forkhead box family, exhibits a 

winged-helix DNA-binding conformation and assumes a pivotal function in the process 
of embryogenesis [70]. The transcriptional regulator in question plays a crucial role in 
maintaining pluripotency during the pre-implantation and peri-implantation stages of 
embryonic development in mice [71]. Additionally, it is implicated in the process of 
trophoblast production [72]. FoxD3 is an essential factor for the preservation of the 
mammalian neural crest. Mouse embryos lacking FoxD3 (FoxD3 (-/-)) exhibit failure 
during the implantation stage, resulting in the absence of structures derived from the 
neural crest [73]. The study conducted by FoxD3 et al. (74) demonstrates the 
collaborative role of Oct4 and Nanog in maintaining pluripotency in embryonic stem cells 
(ESCs). 
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7. HMGA2: The architectural transcription factor, HMGA2, does not possess inherent 
capability for direct transcriptional activation. In contrast, it exerts control over gene 
expression via modifying the structure of DNA through its interaction with AT-rich areas 
and direct engagement with other transcription factors. The HMGA2 gene has high levels 
of expression and widespread distribution, and it serves as a vital component in 
embryonic development [75]. The promotion of self-renewal in stem cells is facilitated by 
it, and a decrease in its expression has been associated with the ageing of stem cells [76]. 
The expression of HMGA2 is often observed to be modest in normal adult tissues; 
nevertheless, its overexpression or rearrangement has been found to be related with the 
development of several malignancies [77]. 
 

8. Nucleus Accumbens-1 (NAC1): NAC1, a nuclear factor classified within the Pox virus 
and zinc finger/bric-a-brac tramtrack broad complex (POZ/BTB) domain family, was 
originally discovered within a distinct neuronal forebrain structure associated with reward 
motivation and addictive behaviours [78]. The recruitment of HDAC3 and HDAC4 by 
NAC1 is responsible for the repression of gene expression in neuronal cells, with a 
specific focus on co-repressing other POZ/BTB proteins in the central nervous system 
[79]. The expression of NAC1 is increased in several forms of tumours, such as breast, 
renal cell, and hepatocellular carcinoma, as well as high-grade ovarian serous carcinoma. 
In these tumour types, NAC1 has been associated with the development of 
chemoresistance [80]. NAC1 is a constituent element of an expanded transcriptional 
network within embryonic stem cells (ESCs), which encompasses Oct4, Sox2, Nanog, 
Sall1, KLF4, and Sall4 [82]. 

 
9. Germ Cell Nuclear Factor (GCNF): GCNF, alternatively referred to as nuclear receptor 

subfamily 6 group A member (NR6A1), is classified as an orphan member within the 
superfamily of nuclear receptor genes [83]. The expression of this gene occurs during the 
development of the nervous system, as well as at particular stages of germ cell maturation 
in the adult ovary and testis. The involvement of GCNF in several biological processes 
such as gametogenesis, neurogenesis, and proper embryonic development during 
gastrulation has been suggested [89]. The inactivation of GCNF in mice results in 
aberrant posterior development, compromised midbrain development, inadequate closure 
of the neural tube, and eventual embryonic mortality [90]. The GCNF protein functions as 
a transcriptional repressor for the Oct4 and protamine genes, and it plays a crucial role in 
regulating gene expression during embryonic development and the formation of sperm 
cells [91]. 

 
10. Stat3:  The protein Stat3, which plays a critical role in signalling for various cytokines 

and growth factor receptors, is of utmost importance in the developmental process of 
murine foetuses [94]. Stat3 activation in mouse embryonic stem cells (ESCs) occurs 
through the binding of leukaemia inhibitory factor (LIF) to the LIF receptor. This binding 
event triggers the translocation of Stat3 into the nucleus, subsequently resulting in the 
activation of many downstream genes such as Sall4, Myc, and KLF4 [95]. The induction 
of ESC differentiation is observed when Stat3 is suppressed [96], but the continuous 
activation of Stat3 keeps ESCs in an undifferentiated state, even in the absence of LIF 
[97]. The constitutive activation of Stat3 has been observed in a range of human tumours 
[98], and it has been found to have carcinogenic properties [99] as well as anti-apoptotic 
activities [100]. The process of transcriptional activation is governed by the 
phosphorylation event occurring at the tyrosine residue 705, which subsequently triggers 
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dimerization, facilitates nuclear translocation, and enables DNA binding [101]. The 
process of phosphorylation at the serine 727 residue, facilitated by either the MAPK or 
mTOR pathways, seems to have an impact on the regulation of transcriptional activity 
[102]. The levels of Stat3 isoforms, namely Stat3α (86 kDa) and Stat3β (79 kDa), exhibit 
variability based on factors such as cell type, exposure to ligands, or stage of cell 
maturation [103]. 
 

11. LEF1 and TCF: LEF1 and TCF are members of the HMG DNA-binding protein family 
of transcription factors, which encompasses lymphoid enhancer factor 1 (LEF1), T-cell 
factor 1 (TCF1), TCF3, and TCF4 [104]. Initially characterised as regulators of early 
lymphoid development (reference 105), LEF1 and TCF1 function as downstream 
effectors in the Wnt signalling pathway. The binding of these molecules to specific 
regions known as Wnt response elements facilitates the formation of docking sites for β-
catenin. Upon activation of Wnt signalling, β-catenin is then transported to the nucleus, 
where it plays a crucial role in promoting the transcription of target genes. The expression 
of LEF1 and TCF proteins undergoes dynamic changes throughout the process of 
development, and the Wnt signalling pathway is abnormally activated in several cancer 
types, such as colon cancer [106]. The protein TCF3, often referred to as TCF7L1, plays a 
pivotal function in the integration of Wnt signalling with the regulation of stem cell 
differentiation [107]. 

 
12. SALL Family: The SALL gene family, commonly referred to as Hsal, is known to exert 

significant influence on the regulation of developmental processes across diverse animals. 
The set of genes known as SALL1, SALL2, SALL3, and SALL4 were first isolated from 
a DNA sequence that showed similarity to the sal gene found in Drosophila [108]. 
SALL4 plays a crucial role in the regulation of Oct4 and is necessary for maintaining 
pluripotency in embryonic stem cells [109]. The depletion of Sall4 in mouse embryonic 
stem cells (ESCs) leads to their redirection towards the trophoblast lineage when cultured 
in an environment without feeder cells. Although Sall4 plays a crucial role in stabilising 
embryonic stem cells (ESCs), it is not necessary for the maintenance of pluripotency 
[110]. SALL4 and Oct4 play a crucial role in maintaining the equilibrium of gene 
expression within the SALL gene family, specifically in relation to Sall1 and Sall3, which 
are expressed in both murine and human embryonic stem cells (ESCs). The elimination of 
Sall1 and Sall3 in mice results in neonatal mortality as a consequence of developmental 
abnormalities [111]. 

 
13. F-box 15 (FBXO15): FBXO15, which belongs to the F-box protein family and is 

distinguished by a 40-amino acid F-box motif, has been identified as a newly discovered 
target of Oct3/4. Nevertheless, it has been established that ESC self-renewal, 
development, and fertility are not essential [112]. The expression of FBXO15 is mostly 
observed in undifferentiated mouse embryonic stem cells (ESCs), and its expression 
diminishes quickly following the deactivation of Oct3/4. The expression profile of this 
gene closely resembles that of Oct3/4 and is predominantly limited to embryonic stem 
cells (ESCs), early-stage embryos, and testicular tissue. 

 
14. ESC Associated Transcript (ECAT) Genes: The ECAT genes are key components in 

the field of stem cell biology. The gene ECAT1 is responsible for encoding an RNA-
binding protein that has a K homology (KH) domain. This protein is produced exclusively 
in oocytes of mice [113]. The study identified ECAT4 as Nanog, a key regulator involved 
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in the maintenance of both mouse embryonic stem cells (mESC) and human embryonic 
stem cells (hESC) [114]. The study identified ECAT5 as ERas, an oncogene similar to 
Ras, which plays a role in regulating the proliferation of embryonic stem cells [115]. The 
growth and differentiation factor 3 (GDF3), known as ECAT9, was discovered to have a 
crucial role in maintaining pluripotency in mouse embryonic stem cells (mESCs) by 
blocking the signalling of bone morphogenetic protein (BMP) [116]. The gene ECAT11, 
alternatively referred to as FLJ10884 or L1TD1, exhibits high levels of expression in 
undifferentiated human embryonic stem cells (hESC). Research findings have indicated 
that L1TD1 is a downstream effector of Nanog and can be employed as a valuable 
indicator for the identification of undifferentiated human embryonic stem cells [117]. 

 
15. Developmental Pluripotency-associated (DPPA) Genes: The DPPA molecules, 

including a cluster of five proteins, are designated as a collection of Oct4-related genes 
and function as indicators for pluripotent cells in the early stages of embryonic 
development and germline formation. DPPA5, alternatively referred to as ESG1, is a 
protein that has a KH domain and is expressed in both EG cells and ESCs. This 
characteristic renders it a promising candidate as a marker for ESCs [118]. The gene 
DPPA3, commonly referred to as Stella, exhibits expression in primordial germ cells, 
oocytes, preimplantation embryos, and pluripotent cells [119]. The protein in question 
functions as an indicator of pluripotency and is involved in various cellular processes 
such as transcriptional repression, cell division, and the preservation of pluripotency in 
both mice and humans. Germ cell tumours have been shown to exhibit intron-less loci 
that are closely associated. This finding has been documented in a study [120]. According 
to the literature, DPPA4 has been identified as a nuclear factor that is connected with 
active chromatin. It has a role in controlling the differentiation of embryonic stem cells 
into a primitive ectoderm lineage [121]. 
 

IV. SIGNAL PATHWAY-RELATED INTRACELLULAR MARKERS  
 

Multiple intracellular signalling channels are of utmost importance in the preservation 
of embryonic stem cell (ESC) self-renewal and pluripotency. Consequently, these pathways 
serve as significant indicators of ESC destiny. The fundamental signalling pathways that 
govern the self-renewal and pluripotency of embryonic stem cells (ESCs) encompass LIF-
STAT3, BMP-SMAD, TGF-β/Activin/Nodal, IGF-IR, FGFR, and Wnt-β-catenin [122]. The 
importance of LIF-STAT3 and BMP-SMAD in maintaining the self-renewal of mouse 
embryonic stem cells (ESCs) has been well-documented [123]. However, it should be noted 
that LIF-STAT3 is not found to be active in undifferentiated human embryonic stem cells 
(hESCs) [124]. The BMP signalling pathway has been found to have a substantial impact on 
both mouse and human embryonic stem cells (ESCs) [125]. However, it is worth noting that 
the upstream effectors and resultant consequences of this system typically exhibit variations 
between the two species. As an illustration, BMP4 has been observed to sustain pluripotency 
in mouse embryonic stem cells (mESCs), while prompting trophectoderm development in 
human embryonic stem cells (hESCs) [126, 127]. The transduction of BMP signals is 
facilitated by SMAD proteins, which regulate the expression of downstream genes by 
interacting with other DNA-binding proteins within the nucleus. Notably, SMAD1/5/8 have 
elevated expression levels, making them potential markers for embryonic stem cells [128]. 

 
The Wnt and TGF-β/Activin/Nodal signalling pathways play a critical role in 

promoting self-renewal in both mouse and human embryonic stem cells (ESCs). The Wnt/β-



Futuristic Trends in Biotechnology 
e-ISBN: 978-93-6252-103-3 

IIP Series, Volume 3, Book 5, Part 6, Chapter 2  
  EMBRYONIC STEM CELL MARKERS: AN OVERVIEW  

 

Copyright © 2024 Authors                                                                                                                    Page | 255  

catenin signalling pathway, which plays a crucial role in cellular proliferation and embryonic 
development [129], exhibits significant expression in embryonic stem cells (ESCs) and 
governs their capacity for pluripotency [130]. Therefore, it might be regarded as an indicator 
for embryonic stem cells (ESCs). Members of the transforming growth factor-beta (TGF-β) 
family are involved in determining the fate of human embryonic stem cells (hESCs) [131]. 
The maintenance of human embryonic stem cell (hESC) pluripotency and the upregulation of 
Oct4 and Nanog transcription require the activation of Smad2/3 and Smad4 through the 
Activin/Nodal signalling pathway [132]. Therefore, it is possible that Smad2/3 and Smad4 
could function as indicators in human embryonic stem cells (hESC). Table 2 provides a 
summary of the potential markers associated with these pathways. 

 
Table 2: Different Markers, Characteristics and Classification of Embryonic Stem Cells 
 

Markers Characteristics               Classification 

SMAD1/5/8 Mouse ES cells, embryonal 
carcinoma (EC) cells 

Smad proteins ((R-Smad), BMP 
signalling pathway 

SMAD4 Mouse ES cells, human ES 
cells, embryonal carcinoma 
(EC) cells, early embryos, and 
testis tissue 

Smad proteins (Co-SMAD), 
TGF- β /Activin/Nodal signalling 
pathway, BMP signalling 
pathway 

SMAD2/3 Human ES cells, embryonal 
carcinoma (EC) cells 

Smad proteins ((R-Smad), TGF- 
β /Activin/Nodal signaling 
pathway 

β-catenin Mouse ES cells, human ES 
cells, embryonal carcinoma 
(EC) cells 

Transcription activators, Wnt/β-
catenin signaling pathway 

 
V. ENZYMATIC MARKERS 
 

Both mouse and human embryonic stem cells (ESCs) demonstrate increased amounts 
of alkaline phosphatase and telomerase. The expression of alkaline phosphatase is highly 
pronounced on the cellular membrane of embryonic stem cells (ESCs). In the context of 
humans, the antibodies TRA-2-49 and TRA-2-54 have the capability to identify and detect 
alkaline phosphatase. Enzymatic-based reactions are commonly employed for detection in 
murine cells [133]. Therefore, the utilisation of alkaline phosphatase labelling has proven to 
be a dependable technique for the identification and evaluation of pluripotency in embryonic 
stem cells (ESCs). The National Institutes of Health (NIH) stem cell resource website has an 
extensive compilation of various markers, which can be accessed at the following link: 
http://stemcells.nih.gov/info/scireport/appendixe.asp#eii. 

 
VI. OTHER MARKERS I 

 
In recent investigations, scholars have undertaken an examination of the utilisation of 

diminutive compounds, such as lectins or abbreviated peptides, which exhibit a targeted 
affinity towards surface receptors on embryonic stem cells (ESCs). By employing quantum 
dots (QD) or fluorescence dyes, these compounds can serve as markers for the purpose of 
labelling, identifying, and isolating embryonic stem cells (ESCs). 
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1. Lectins : Lectins are a class of proteins that has the ability to bind to carbohydrates, 
specifically recognising a wide range of sugar structures. This characteristic renders them 
highly useful in the field of recognising and characterising glycosylation patterns on the 
surface of cells [134]. The utilisation of their application has played a role in the 
demarcation of embryological developmental phases in certain species and has aided the 
examination and recognition of distinct cell types through the analysis of cell surface 
carbohydrate presentation [135]. During the preimplantation and implantation periods of 
development, lectin receptors, which are glycans that are regulated by development, are 
observed on the cell surfaces of mouse embryonic stem cells (ESCs) [136]. Lectins have 
demonstrated their utility as markers in the identification of retinal progenitor cells 
produced from mice embryonic stem cells (ESCs) for transplantation therapy [137]. 
Additionally, lectins have been employed in the investigation of differentiated human 
ESCs [138]. Furthermore, lectins have been utilised as indicators to delineate several 
phases of mouse embryogenesis and to characterise distinct subsets within colonies of 
adherent human embryonic stem cells (hESCs). 
 

2. Peptides Specific for ES Cells: The fundamental importance of identifying ligands that 
bind to specific cell targets lies in the fact that receptor-ligand interactions are involved in 
a wide range of cellular biological processes. This has significant implications for the 
creation of drugs, biomaterials, and diagnostic tools [139]. The utilisation of phage 
display technology has proven to be a remarkably effective approach in the identification 
of previously unknown biomarkers [140]. The technology encompasses the fusion of 
nucleotide sequences of arbitrary polypeptides with a phage coat protein, facilitating the 
exhibition of chimeric proteins on the surface of the phage. By employing a process of 
targeted selection, a collection of phages can be generated that exhibit progressively 
enhanced affinity for the desired target. Ligands that have been found by phage display 
screens has the ability to selectively bind to particular places on target cells, hence 
functioning as markers that facilitate the recognition and isolation of those cells. Previous 
studies have documented the existence of various short peptides that are specifically 
designed for Rhesus Monkey Embryonic Stem Cells (R-ESCs) and mouse ESCs. These 
peptides have been chemically linked with quantum dots, resulting in a targeted approach 
for ESCs [141]. Specific peptides targeting human embryonic stem cells (hESCs) and 
human embryonal carcinoma cells (ECs) have also been discovered (Reference 142). 
When embryonic stem cells (ESCs) were cultivated on self-assembled monolayers that 
presented certain peptide sequences, they exhibited the expression of pluripotency 
markers at levels similar to those observed when cultured on Matrigel [142]. 
 

VII. MARKERS OVERLAPPING WITH TUMOR STEM CELLS  
 

Adult stem cells possess distinct attributes that set them apart, such as their extended 
lifespan, ability to regenerate themselves, and capability to differentiate into many cell 
lineages. These distinctive features render adult stem cells indispensable in both typical 
physiological processes and pathological states [142]. When the ability of stem cells to 
differentiate is compromised and their capacity to proliferate becomes unregulated, these 
altered stem cells may develop tumorigenic characteristics, leading to the formation of cancer 
stem cells (CSCs) or tumour stem cells (TSCs) that have substantial involvement in the 
process of carcinogenesis. Cancer stem cells (CSCs) have been successfully extracted from a 
range of bodily organs, such as the breast, brain, blood (specifically leukaemia), skin 
(melanoma), head and neck, thyroid, cervix, and lungs [141]. In recent research, a variety of 
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CSC markers have been employed to differentiate tumour cells from normal tissues [142]. It 
is noteworthy that embryonic stem cells (ESCs) and cancer stem cells (CSCs) exhibit a 
considerable overlap in marker gene expression. This observation gives rise to potential 
apprehensions regarding the use of ESC transplants. 
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