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Abstract 

 

The intent of this study is to 

investigate a novel mapping for Suzuki-

type contraction defined on complete 

metric space that has at least one fixed 

point. An example is also provided to 

emphasize the successes. Some known 

outcomes are enhanced and expanded by 

our result. We apply our findings in order 

to solve functional equations that come up 

in dynamic programming. 
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I.  INTRODUCTIONS 

 

Mathematical fixed point theory is a fascinating area of study. Almost all areas of 

mathematical sciences can use it in a variety of ways.  

 

The simplest and most used tool in nonlinear analysis is the classical Banach 

contraction theorem (cf. Theorem 1.1) (1912) due to Polish mathematician Stefan Banach 

(1882-1945). There was a huge development on this line which has a tremendous impact on 

all branches of applicable mathematics and mathematical sciences (see, Agarwal et al. [1], 

Berinde [5], Geobel and Kirk [12], Rhoades [19] and references thereof).  

 

1. Definition: A map E on a metric space Z is a contraction if there exists c ∈ [0, 1) such 

that  

for every p, q ∈ Z, 

      (1) 

δ(Ep, Eq) ≤ cδ(p, q).             

 

Banach states the following theorem popularly known as Banach contraction theorem (Bct). 

 

2. Theorem:  A contraction map on a complete metric space has a unique fixed point. 

 

There are numerous studies published in the last 70 years that demonstrate various 

generalizations of the Bct by weakening either the contractive features of the map or by 

extending the structure of the ambient space (see, for instance, [8], [13] and others). 

 

3. Definition: A map E on a metric space Z is said to be a generalized contraction if there 

exists c ∈ [0, 1) such that for every p, q ∈ Z, 

 

δ(Ep, Eq) ≤ c max  {δ(p, q), δ(p, Ep), δ(q, Eq), [δ(p, Eq) + δ(q, Ep)]/2}.              (2)  

 

Notice that the generalized contraction (1.2) is essentially due to Ciric [9] which is 

referred as (21´) in a thorough comparison of maps by Rhoades [19]. The Bct and 

Kannan's own fixed point theorem have both been extensively extended and generalized 

as a result of his theorem in many different contexts. One of the best generalizations, 

among contractions for single-valued maps is quasi-contraction given by Ciric [10]:  

 

4. Definition: A map E on a metric space Z is said to be a quasi-contraction if there exists  

      c ∈ [0, 1) such that for every p, q ∈ Z, 

 

δ(Ep, Eq) ≤ c max{ δ(p, q), δ(p, Ep), δ(q, Eq), δ(p, Eq), δ(q, Ep)}.     (3)             

 

A result due to Ciric [10] popularly called quasi contraction theorem in metric 

fixed point theory is as follows:   

 

5. Theorem:  A quasi contraction map on a complete metric space has a unique fixed point.  

      Generalizing the classical Banach contraction principle, Khojasteh et al.[14] attained the 

aforementioned outcome. 
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6. Theorem: Let E be a map on a complete metric space Z such that for every 𝑝, 𝑞 ∈  𝑍,  

 

𝛿 𝐸𝑝, 𝐸𝑞 ≤  
𝛿 𝑝, 𝐸𝑞 +𝛿 𝑞, 𝐸𝑝 

𝛿 𝑝, 𝐸𝑝 +𝛿 𝑞, 𝐸𝑞 +1
 𝛿 𝑝, 𝑞 .        

Then,  

 there exists at least one 𝑎 ∈ 𝑍 such that 𝐸 𝑎 = 𝑎;  

 for any 𝑎, {𝐸𝑟(𝑎)} converges to a fixed point; 

 if 𝐸 𝑎 = 𝑎, 𝐸 𝑏 =  𝑏 with 𝑎 ≠ 𝑏, then 𝛿(𝑎, 𝑏)  ≥ 1/2. 

 

For an excellent comparison of various contractive conditions for one and two 

maps, refer to Rhoades [19]. One may consult Boyd and Wong [8], Jachymski [13], 

Rhoades [19] and references therein for a few basic generalizations of the condition (1.1) 

and their comparison. 

 

However in all these fixed point theorems, the contractive or contractive 

conditions are required to hold for all points 𝑝, 𝑞 of the domain. Therefore, it makes sense 

to anticipate the day when this stipulation is significantly eased without compromising a 

theorem's conclusions. 

 

7. Definition: Define a nonincreasing function θ : [0, 1) → ( 1 2 , 1] by  

 

(𝑐) = 

 
 
 

 
 1    if  0 ≤   𝑐   ≤

1

2
( 5 − 1),

1−𝑐

𝑐2    if  
1

2
( 5 − 1) ≤ 𝑐 ≤

1

 2
,

1

1+𝑐
               if  

1

 2
≤ 𝑐 < 1.

  

 

A map 𝐸 on a metric space Z is said to be Suzuki contraction if there exists c ∈ [0, 

1) such that for every 𝑝, 𝑞 ∈  𝑍, 

 

θ(c) 𝛿(𝑝, 𝐸𝑝) ≤ 𝛿(𝑝, 𝑞) implies 𝛿(𝐸𝑝, 𝐸𝑞) ≤ c 𝛿(𝑝, 𝑞).                                       (4) 

 

     

The following extraordinary generalization of the Bct was recently demonstrated 

by Suzuki in [23]. 

 

8. Theorem: A Suzuki contraction map on a complete metric space has a unique fixed point 

and the sequence of Picard iterates { 𝐸r𝑝} converges to the fixed point for any 𝑝 ∈ Z.  

 

9. Definition: Define a nonincreasing function ψ : [0, 1) → ( 1 2 , 1] by 

 

ψ(c) =   
  1        if  0 ≤   𝑐   ≤

1

 2
,

1

1+𝑐
    if  

1

 2
≤ 𝑐 < 1

  

 

A map 𝐸 on a metric space Z is said to be Kikkawa Suzuki Kannan contraction if 

there exists c ∈ [0, 1/2) such that for every 𝑝, 𝑞 ∈  𝑍, 
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ψ(c) 𝛿(𝑝, 𝐸 𝑝) ≤ 𝛿(𝑝, 𝑞) implies 𝛿(𝐸𝑝, 𝐸𝑞) ≤ c[𝛿(𝑝, 𝐸𝑝) +  𝛿(𝑞, 𝐸𝑞)].   (5) 

 

The following outcome is made possible by Kikkawa and Suzuki [16].  

 

10. Theorem: A map satisfying (1.5) has a unique fixed point on a complete metric space.  

 

For some extensions and generalizations of the above theorem, we may refer to 

[11], [17] and others. 

 

Forceful nature of the Suzuki contraction theorem has inspired many researchers 

to present some beautiful and interesting extensions and generalizations during a small 

span of five years (see, for instance, [2], [3], [11], [17], [18], [21], [22], [24] and others). 

 

This chaper is devoted to the concepts of Suzuki contraction. By combining the 

idea of Suzuki contraction [23] and Khojasteh et al. contraction [14], we obtain a new 

type of fixed point theorem generalizing the results of Banach, Khojasteh et al. [14] and 

others. An illustrative example, highlighting the realizing improvements, is also 

discussed. We apply our key finding to find solutions to some functional equations that 

occur during dynamic programming under much weaker condition than those in [4], [6] 

and [7]. 

 

II. MAIN RESULT 

 

Theorem: Let (Z, 𝛿) be a complete metric space and let 𝐸: Z→ Z with the condition that for 

every 𝑝, 𝑞 ∈ Z, 

 
1

2
 𝛿(𝑝, 𝐸𝑝) ≤ 𝛿(𝑝, 𝑞)          (6) 

 

Implies, 

𝛿(𝐸𝑝, 𝐸𝑞)≤  
𝛿(𝑝,𝐸𝑞)+𝛿(𝑞,𝐸𝑝)

𝛿(𝑝,𝐸𝑝)+𝛿(𝑞,𝐸𝑞)+1
 𝛿(𝑝, 𝑞)                   (7)  

Then, 

 𝐸 has atleast one fixed point 𝑎 ∈ Z. 

 For all 𝑝 ∈ Z,{ 𝐸r𝑝 } converges to a fixed point. 

 If 𝑎≠ 𝑏 are fixed points of 𝐸, then 𝛿(𝑎, 𝑏) ≥1/2. 

 

Proof : Let 𝑝0 ∈ Z and choose {𝑝r} such that 𝑝r+1 = 𝐸𝑝r, we have 
1

2
 𝛿(𝑝r-1, 𝐸𝑝r-1) = 

1

2
 𝛿(𝑝r-1, 𝑝r)  

  ≤ 𝛿(𝑝r, 𝑝r-1) 

 

So (6) holds, therefore from (7) 

𝛿(𝑝r+1, 𝑝r) = 𝛿(𝐸𝑝r, 𝐸𝑝r-1) ≤  
𝛿(𝑝𝑟 ,𝑝𝑟)+𝛿(𝑝𝑟−1 ,𝑝𝑟+1)

𝛿(𝑝𝑟 ,𝑝𝑟+1)+𝛿(𝑝𝑟−1 ,𝑝𝑟)+1
  𝛿(𝑝𝑟 , 𝑝𝑟−1) 

 

        =  
𝛿(𝑝𝑟−1 ,𝑝𝑟+1)

𝛿(𝑝𝑟 ,𝑝𝑟+1)+𝛿(𝑝𝑟−1 ,𝑝𝑟)+1
  𝛿(𝑝𝑟 , 𝑝𝑟−1) 
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        ≤  
𝛿(𝑝𝑟−1 ,𝑝𝑟)+𝛿(𝑝𝑟 ,𝑝𝑟+1)

𝛿(𝑝𝑟 ,𝑝𝑟+1)+𝛿(𝑝𝑟−1 ,𝑝𝑟)+1
  𝛿(𝑝𝑟 , 𝑝𝑟−1)    (8) 

 

Given 𝜔r =  
𝛿(𝑝𝑟−1 ,𝑝𝑟)+𝛿(𝑝𝑟 ,𝑝𝑟+1)

𝛿(𝑝𝑟 ,𝑝𝑟+1)+𝛿(𝑝𝑟−1 ,𝑝𝑟)+1
 ,          (9) 

 

So, 

       𝛿(𝑝r+1, 𝑝r) ≤ 𝜔r𝛿(𝑝𝑟 , 𝑝𝑟−1) 

 

Similarly, 

          𝛿(𝑝r, 𝑝r-1) ≤ 𝜔r -1 𝛿(𝑝𝑟−1, 𝑝𝑟−2) 

 

So, 

      𝛿(𝑝r+1, 𝑝r) ≤ 𝜔r𝛿(𝑝𝑟 , 𝑝𝑟−1) 

  ≤ 𝜔r 𝜔r -1 𝛿(𝑝𝑟−1, 𝑝𝑟−2) 

 

≤ 𝜔r 𝜔r -1……. 𝜔1 𝛿(𝑝1, 𝑝0).                            (10) 

 

Keep in mind that 𝜔r is non-increasing and has positive terms, so 𝜔1 𝜔2…….. 𝜔r ≤ 𝜔1
r
 and 

𝜔1
r
→0. It follows that 

 

                 lim
𝑟→∞

(𝜔1𝜔2 …… . . 𝜔𝑟) = 0.                  (11) 

 

Thus, it is verified that, 

 

 lim
𝑟→∞

𝛿(𝑝𝑟−1, 𝑝𝑟) = 0.                    (12) 

 

Now, for all r, s ∈N with r < s, 

 

𝛿(𝑝s, 𝑝r) ≤ 𝛿(𝑝r, 𝑝r+1) + 𝛿(𝑝r+1, 𝑝r+2) +…………+ 𝛿(𝑝s-1, 𝑝s) 

 ≤ 

[(𝜔𝑟𝜔𝑟−1 …… .𝜔1) + (𝜔𝑟+1𝜔𝑟𝜔𝑟−1 …… .𝜔1)+. . . . . . . . +(𝜔𝑚−1 …… .𝜔1)]𝛿(𝑝1, 𝑝0) 

 =  (𝜔𝑘 , 𝜔𝑘−1 …… .𝜔1)𝛿(𝑝1, 𝑝0)
𝑠

𝑘=𝑟
                 (13) 

 

 

Suppose that, 

         ak = (𝜔𝑘 , 𝜔𝑘−1 …… .𝜔1). Since 

  lim
𝑘→∞

𝑎𝑘+1

𝑎𝑘
= 0.                    (14) 

 

 𝑎𝑘
∞
𝑘=1 < ∞. It means that 

    (𝜔𝑘 , 𝜔𝑘−1 …… .𝜔1) → 0
𝑠

𝑘=𝑛
                  (15) 

 

as s, r→∞. Thus, {𝑝r} converges to 𝑎 ∈ Z. 

 

We assert that, 

         𝑎 = 𝐸(𝑎). 
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Now 
1

2
 𝛿(𝑝r, 𝐸𝑝r) = 

1

2
 𝛿(𝑝r, 𝑝r+1) ≤ 

1

2
 [𝛿(𝑝r, 𝑎) + 𝛿(𝑎,  𝑝r+1)]  

 

    ≤ 
1

2
 [𝛿(𝑝r, 𝑎) + 𝛿(𝑎,  𝑝r)] = 𝛿(𝑝r, 𝑎) 

 

So 𝛿(𝐸𝑝r, 𝐸𝑎) ≤  
𝛿(𝑝𝑟 ,𝐸𝑎)+𝛿(𝑎,𝐸𝑝𝑟)

𝛿(𝑎,𝐸𝑎)+𝛿(𝑝𝑟 ,𝐸𝑝𝑟)+1
  𝛿 (𝑝r, 𝑎) 

 

 

That is, 𝛿(𝐸𝑝r, 𝐸𝑎) ≤  
𝛿(𝑝𝑟 ,𝐸𝑎)+𝛿(𝑎,𝑝𝑟+1)

𝛿(𝑎,𝐸𝑎)+𝛿(𝑝𝑟 ,𝑝𝑟+1)+1
  𝛿(𝑝r, 𝑎) 

 

Upon imposing a limit on both sides of the aforementioned equation, we have 

 

𝛿(𝑎, 𝐸𝑎) ≤  
𝛿(𝑎,𝐸𝑎)+𝛿(𝑎,𝑎)

𝛿(𝑎,𝐸𝑎)+𝛿(𝑎,𝑎)+1
  𝛿(𝑎, 𝑎) 

 

So, 𝛿(𝑎, 𝐸𝑎) ≤ 0 

i.e. 𝛿(𝑎, 𝐸𝑎) = 0 

 

Thus  𝑎 = 𝐸𝑎. 

 

If 𝑎≠ 𝑏 with 𝑎 = 𝐸𝑎 and 𝑏 = 𝐸𝑏, then 
1

2
 𝛿(𝑎, 𝐸𝑎) =0 ≤ 𝛿(𝑎, 𝑏), so (2.2) implies 

𝛿(𝑎, 𝑏) = 𝛿(𝐸𝑎, 𝐸𝑏) ≤ [𝛿(𝑎, 𝐸𝑏)+ 𝛿(𝐸𝑎, 𝑏)] 𝛿(𝑎, 𝑏) = 2[𝛿(𝑎, 𝑏)]
2 

 

Therefore 𝛿(𝑎, z
’
) ≤ 2[𝛿(𝑎, 𝑏)]

2 

 

i.e. 1≤ 2 𝛿(𝑎, 𝑏) 

i.e. 𝛿(𝑎, 𝑏) ≥ 1/2 and we find the desired result. 

 

Theorem 2.1's generality over Theorem 1.3 is demonstrated in the next example.  

 

Example: Let Z =  0, 1,
1

2
  and δ: Z × Z → R

+ 
defined as  

δ(0,0) = δ(1,1) = δ 
1

2
,

1

2
  = 0,  

δ 0,
1

2
 = 𝛿   

1

2
, 0 = 𝛿 0, 1 = 𝛿  1, 0 = 3, 

 𝛿   1,
1

2
 =  𝛿   

1

2
, 1 = 1. 

 

Clearly, δ is a metric on Z. 

 

Define 𝐸: Z → Z by 

 

𝐸(0) = 0, 𝐸   
1

2
 =

1

2
, 𝐸 (1) = 0. 

Now, δ(𝐸0, 𝐸1) = δ(0,0) = 0. 
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𝛿  𝐸0, 𝐸  
1

2
  = 𝛿  0,

1

2
 = 3, 

𝛿  𝐸1, 𝐸  
1

2
  = 𝛿  0,

1

2
 = 3, 

 

and we have 

𝛿  𝐸0, 𝐸  
1

2
  = 𝛿  0,

1

2
 = 3 ≤

 

 
 
𝛿  0, 𝐸  

1
2  + 𝛿  

1
2 , 𝐸 0  

𝛿(0, 𝐸0) + 𝛿  
1
2 , 𝐸  

1
2  + 1

 

 
 
𝛿  0,

1

2
  

 

= 
𝛿 0,

1

2
 +𝛿 

1

2
,0 

𝛿(0,0)+𝛿(
1

2
,
1

2
)+1

 𝛿  0,
1

2
 = 

3+3

0+0+1
 ×3=18, 

but 

𝛿  𝐸1, 𝐸  
1

2
  = 𝛿  0,

1

2
 = 3 >

 

 
 
𝛿  1, 𝐸  

1
2  + 𝛿  

1
2 , 𝐸 1  

𝛿(1, 𝐸1) + 𝛿  
1
2 , 𝐸  

1
2  + 1

 

 
 
𝛿  1,

1

2
  

 

= 
𝛿 1,

1

2
 +𝛿 

1

2
,0 

𝛿(1,0)+𝛿 
1

2
,
1

 2
 +1

 𝛿  0,
1

2
 = 

1+3

3+0+1
 ×1=1, 

 

Thus, 𝛿(𝐸p, 𝐸q) ≤  
𝛿(𝑝,𝐸𝑞)+𝛿(𝑞,𝐸𝑝)

𝛿(𝑝,𝐸𝑝)+𝛿(𝑞,𝐸𝑞)+1
  𝛿(p, q) if (p, q) ≠  1,

1

2
 ,  

 

since at  1,
1

2
  

 
1

2
 𝛿 (1, T1)= 

1

2
× 3 > 1 = 𝛿  1,

1

2
 . 

 

Thus 𝐸 satisfy Theorem 2.1 but not Theorem 1.3. 

 

III. APPLICATIONS 

 

We take for granted that Y and Z are Banach spaces throughout this section and C ⊆ X 

and D ⊆ Y. Let R denote the field of reals, 𝑔: 𝐶 × 𝐷 → 𝑅and 𝐺: 𝐶 × 𝐷 × 𝑅 → 𝑅.
 
Viewing C 

and D  as the state and decision spaces respectively, dynamic programming's problem 

reduces functional equations problem: 

 

𝑢 = sup
𝑞∈𝐷

 𝑔(𝑝, 𝑞) + 𝐺(𝑝, 𝑞, 𝑢 τ 𝑝, 𝑞 )  ,  𝑝 ∈ 𝐶.                                                      (16) 

 

Some functional equations appear naturally during the multistage process (cf. 

Bellman [4] and Bellman and Lee [6]; see also Bhakta and Mitra [7] and others). In this part, 
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we investigate whether the functional equation (3.1) that arises in dynamic programming has 

a solution. 

 

 Let B(C) denote the set of all bounded real-valued functions on C. For an arbitrary 

l∈B(C), define  𝑙 = sup
𝑝∈𝐶

 𝑙(𝑝) . Then (𝐵(𝐶),  .  )is a Banach space. Imagine that the 

following circumstances hold:  

 

(DP-1) 𝐺 and 𝑔 are bounded. 

 

(DP-2) For every (p, q) ∈ C × D, l, n ∈ B(C) and t ∈ C, 
1

2
 𝑙(𝑡) − 𝐽𝑙(𝑡) 

 
≤  𝑙(𝑡) − 𝑛(𝑡)   

 

implies 

 𝐺(𝑝, 𝑞, 𝑙(𝑡)) − 𝐺(𝑝, 𝑞, 𝑛(𝑡))   
 𝑙(𝑡)−𝐴𝑛(𝑡) +  𝑛(𝑡)−𝐴𝑙(𝑡) 

 𝑙(𝑡)−𝐴𝑙(𝑡) ,  𝑛(𝑡)−𝐴𝑛(𝑡) +1
  𝑙(𝑡) − 𝑛(𝑡) , 

 

where 𝐴 is defined as follows: 

𝐴𝑙(𝑝) = sup
𝑞∈𝐷

{𝑔 𝑝, 𝑞 + 𝐺  𝑝, 𝑞, 𝑙𝜏  𝑝, 𝑞   }, 𝑝 ∈ 𝐶, 𝑙 ∈ 𝐵(𝐶). 

 

1. Theorem : Assume (DP-1) and (DP-2) are true. Therefore, B(C) contains at least one 

solution to the functional equation 

 

Proof : For any l, n ∈ B(C), let 𝛿(𝑙, 𝑛) = sup  𝑙(𝑝) − 𝑛(𝑝) : 𝑝 ∈ 𝐶 .
 
Then (B(C), 𝛿) is a 

complete metric space.  

 

Let 𝜆 represent any random positive number and 𝑙1, 𝑙2 ∈ 𝐵(𝐶).
 
Pick p ∈ C and 

choose 𝑞1, 𝑞2 ∈ 𝐷such that  

𝐴𝑙𝑗 < 𝑔 p, 𝑞𝑗  + 𝐺  𝑝, 𝑞𝑗 , 𝑙𝑗  𝑝𝑗   , +𝜆,                                     (17) 

where 𝑝𝑖 =  𝑝, 𝑞𝑖 , 𝑖 = 1, 2 and 𝑝𝑗 = 𝜏(𝑝, 𝑞𝑗 ). 

Further,  

                            𝐴𝑙1 ≥ 𝑔 𝑝, 𝑞2 + 𝐺 𝑝, 𝑞2, 𝑙1 𝑝2  ,                      (18) 

 

                             𝐴𝑙2 ≥ 𝑔 𝑝, 𝑞1 + 𝐺 𝑝, 𝑞1, 𝑙2 𝑝1  ,               (19) 

  

  Consequently, the initial inequality in (DP-2) becomes  

 
1

2
 𝑙1(𝑝) − 𝐴𝑙1(𝑝) 

 
≤  𝑙1(𝑝) − 𝑙2(𝑝)                  (20)

   

and more over this with gives 

𝐴𝑙1 − 𝐴𝑙2< 𝐺(𝑝, 𝑞1, 𝑙1(p)) − 𝐺(𝑝, 𝑞1, 𝑙2(p)) + 𝜆 

 

≤  𝐺(𝑝, 𝑞1, 𝑙1(p)) − 𝐺(𝑝, 𝑞1, 𝑙2(p)) + 𝜆 

 

≤  
 𝑙1(𝑝)−𝐴𝑙2(𝑝) +  𝑙2(𝑝)−𝐴𝑙1(𝑝) 

 𝑙1(𝑝)−𝐴𝑙1(𝑝) ,  𝑙2(𝑝)−𝐴𝑙2(𝑝) +1
  𝑙1(𝑝) − 𝑙2(𝑝) + 𝜆.                         (21)        
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Similarly, implies 

 

𝐴𝑙2 − 𝐴𝑙1 ≤  
 𝑙1(𝑝)−𝐴𝑙2(𝑝) +  𝑙2(𝑝)−𝐴𝑙1(𝑝) 

 𝑙1(𝑝)−𝐴𝑙1(𝑝) ,  𝑙2(𝑝)−𝐴𝑙2(𝑝) +1
  𝑙1(𝑝) − 𝑙2(𝑝) + 𝜆.                       (22)

  

So, from we obtain 

 𝐴𝑙1(𝑝) − 𝐴𝑙2(𝑝) ≤  
 𝑙1 𝑝 − 𝐴𝑙2 𝑝  +   𝑙2 𝑝 − 𝐴𝑙1 𝑝  

 𝑙1 𝑝 − 𝐴𝑙1 𝑝  ,  𝑙2 𝑝 − 𝐴𝑙2 𝑝  + 1
  𝑙1 𝑝 − 𝑙2 𝑝  + 𝜆.        

 

Since 𝜆 > 0 is arbitrary and this inequality is true for any p ∈ C, and on taking 

supremum, we conclude from that 
1

2
𝛿(𝑙1, A𝑙1) ≤ 𝛿(𝑙1, 𝑙2)  

             

implies 

𝛿 𝐴𝑙1, 𝐴𝑙2 ≤  
 𝑙1(𝑝)−𝐴𝑙2(𝑝) +  𝑙2(𝑝)−𝐴𝑙1(𝑝) 

 𝑙1(𝑝)−𝐴𝑙1(𝑝) ,  𝑙2(𝑝)−𝐴𝑙2(𝑝) +1
  𝑙1(𝑝) − 𝑙2(𝑝) .   

            

2. Theorem : Is thus applicable, where A corresponds to the map E. So A has atleast one 

fixed point 𝑙∗, that is, 𝑙∗(𝑝) is solution of the functional equation  
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