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PROCESSING INDUSTRIES 
 

Abstract 

 

 The food sector often uses enzyme 

technology because of its efficiency, 

specificity, and safety benefits. Recent years 

have seen "future foods" emerge as a new 

hotspot for developing healthier, more 

nutrient-dense, palatable, and sustainably 

produced meals. Nonetheless, many meals 

have consistency, nutrition, and flavor 

concerns. Enzyme technology 

advancements have enabled the 

development of new tools and ways for 

modifying the feel of foods and caloric 

components. In this paper, we explore the 

applications of enzyme innovation to the 

production of potential meals, with an 

emphasis on taste, consistency, and security. 

Additionally, we examine the prospective 

alternatives of catalyst-based innovations 

regarding food production, both of such as 

the customization of enzyme activity, the 

development suitable hosts to produce of 

meal-grade amino acids, and the further 

development of combinatorial multi-enzyme 

complexes. 
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I. INTRODUCTION  

 

Food science has transformed from traditional ways for nutritional enhancement, such 

as mechanical processing of food, as biological studies and food manufacturing have 

developed. Components, as well as modern food manufacturing or designing. Future food 

production will be dependent on advances in biological engineering, machine learning, 

manufacturing by additives, and flavor (Fig. 1) [1]. In the future, mitochondrial and enzyme 

science will be used alongside traditional food manufacturing technologies, for instance 

establishing biosynthetic pathways to turn renewable raw materials into food components and 

beneficial nutritional supplements.  These technological breakthroughs will address 

difficulties concerning the global food provides safety, hygiene, and stability as enhancing 

nutrition technological and scientific advances [2, 3].   

 

Future food production employing cell culture has the potential to expand land 

utilization by 1,000 times, consume > 90% less water, and emit 87% less greenhouse gas than 

traditional food businesses [1, 4]. In terms of health, safety, nutrition, and environmental 

effect, foods like artificial meat (including plant-based and cell-cultured varieties) outperform 

traditional meat production in a big way. Impossible Foods Inc., Beyond Meat, and Memphis 

Meats are current biotech firms that have spent money to create and market fake meat and 

other future foods.  

 

Food processing requires the creation of effective methods for modifying and 

improving synthetic meat's flavor, texture, and nutritional qualities. Enzyme-based 

technology has emerged as a potent instrument for the fast expansion of the food industry 

since it cuts down on processing time, material costs, and energy requirements while being 

non-toxic and environmentally beneficial [5, 6]. As an illustration, glutamate amino acids 

(TGase) as digest were tuned to change the amount of linking and breakdown toxins and 

quality enhancement during food preparation [7]. 

 

 
 

Figure 1: The Growing of Food for the Coming Years.Manufactured production of food in 

the future would entail several sophisticated methods that involve artificial brains, microbial 

technology, metabolic design, nutrition artificial life, protease a career in engineering or the 

technology of 3D printing. (Reference No. (79) (2020) Progress and possibilities from 

enzyme manufacturing for subsequent meals). 
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Currently, enzymes are also used to improve nutritional aspects and utilization 

efficiency of raw materials and provide methods to customize flavor profiles of food (Fig.2). 

This review focuses on the applications of enzyme technology in future food production, 

including food texture improvement, nutritional safety enhancement, and flavor optimization 

(see Table 1). Furthermore, the prospects of enzyme technologies are also discussed. 

 

II. APPLICATIONS OF ENZYME-BASED TECHNOLOGY IN FUTURE FOOD 

PRODUCTION 

 

1. Food Texture Improvement: The quality of food is significantly influenced by texture, 

which makes it a prime candidate for structural and function modification via enzyme 

technologies. This enzyme, for example, may promote the bonding the amino as well as 

argentine protein remnants in meat products, reducing the volume of raw materials 

required for manufacture and providing meat products with a feel similar to whole raw 

tissues [8]. As compared to the traditional chemical approach that incorporates plenty of 

chlorine or phosphate of sodium salts as well, TGase-processed beef offerings are 

significantly better for you [9].Milk proteins, minced fish, and sausages have been 

processed using TGase. The gel texture is improved by this cross linking. By boosting the 

gel's water-holding capacity, viscosity, and stiffness [10]. However, due to its lack of 

enzymatic capabilities and restricted residue substrate range, TGase has just a few cross 

linking uses [7]. Other enzymes, such as lactase, are capable of linking proteins found in 

milk by forming covalent bonds between tyrosine residues. [11], Lactase may improve 

the elastic attributes of milk that is skimmed jellies. [12]. additionally, protein cross 

linking may be accomplished by polyphenol oxidase [13]. When Li et al. investigated the 

cross linking influence of the horseradish peroxides enzyme on casein in the absence of 

hydrogen per oxide, they reported that casein emulsification climbed by ten percent and 

the stability of the emulsion grew by six percent during attaching. [14]. additionally, a 

significant approach for modifying protein texture is the covalent fusing of fatty acids 

with proteins [15]. For instance, fatty-acylated proteins can alter the chemical and 

physical structural characteristics of proteins derived from plants to increase their ability 

to store oil.  
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Figure 2: Enzyme-based technology applications in future food areas. Enzyme-based 

innovations are primarily employed in the enhancement of future food production structure, 

nutrition, colour, and aroma, but they are also used in the inspection of meal components or 

identifying the presence of pathogens, antimicrobial agents, and contaminants. (Reference no. 

(79)  (2020), Actual Status & Expectations on Starch Technology in Upcoming Meals . 

 

2. Food Hygiene: Allergies to certain foods and antibiotic exposure have heightened citizen 

worries regarding meal hygiene and safety. [16]. Because of hypersensitivity towards -

conglycinin & bean globulin itself amino acids derived from plants such as soy amino 

acids are prohibited. [17], to prevent or mitigate wellness issues, it is critical to reduce the 

proportion that contains these offenders in future food manufacture. Numerous 

investigations [18] have shown that the proteases papain and pepsin may hydrolyze 

soybean allergens and diminish allergenicity. Chymotrypsin's breakdown of 11S glycinin 

significantly reduces its allergenicity, according to "Lee et al." [19]. Particularly 

juxtaposed with existing both chemical and physical approaches, characterized by worse 

manufacturing parameters, less discriminating (degrade both antigens), and greater 

hazards [20], enzyme-based treatments offer a considerable benefit in minimizing 

allergenicity. Amino variations (which include acetylating) are an additional therapy for a 

food-based protein allergy symptom. The antigen city of glycerin (11S) dropped by 
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approximately 30% complying with glycosylation, implying perhaps glycosidase could 

represent a useful agent in reducing allergy symptoms to products made from soybeans. 

[21]. Equestrian drugs, particularly amoxicillin and cephalic acid, are widely used in the 

yoghurt trade. Because of the excessive usage of these antibiotics, milk, and meat 

products can frequently get contaminated [22, 23]. As a result, creating economical and 

accurate enzyme-based gadgets for measuring the content of goods could help maintain 

food quality. [24]. 

 

To make wholesome and nutrient-dense food, it is necessary to reduce allergies, 

antibiotics, and other hazardous components in raw materials. The use of enzyme 

technology might make food processing in the future safer, more efficient, and 

environmentally beneficial. These enzymes might be made using microbial fermentation, 

which provides scalable extraction techniques, affordable manufacturing prices, and small 

industrial footprints. Fermentation may also supply tailored enzymes to eliminate 

particular sensitivities and dangerous substances. 

 

3. Nutrition and Flavor Enhancements: To address the increased demand for edible 

nourishment, culinary scientists are constantly coming up with novel approaches to 

enhance the taste profile and boost nutrition. Through the enzymatic decomposition of 

animal or plant sources, the utilization of enzymes improves the appearance of colures, 

aroma, and nutritional content of meals. Veggie proteins [25]. From catalytic hydrolysis 

products and other shiitake collagen ingredients, heat can be used to make beef-flavored 

additions that consist of a drug called hydrazine, diazole, and cytosine. [26]. 

Polyunsaturated acid, which may be produced by the host bacterial organism a strain of 

biolytic by harboring two denatures alleles from the mould Mortierella alpine, is 

additionally crucial for the creation of flavor in some false meals. [27].  

 

Cheap protein sources may be transformed into specialty foods with excellent 

nutritional content and unusual tastes via enzyme modifications. People can consume 

hydrolysates without experiencing adverse responses since they function as beneficial 

nutritional taste enhancers and antibacterial agents [28]. According to recent studies [29, 

30], these hydrolytic polypeptides help lower oxidative stress, type 2 diabetes, and 

hypertension. As consequently, proteolytic processing might generate a wide range of 

therapeutic peptides with inherent curative properties [31]. The chemical as well as 

physical resilience of bioactive peptides must be elevated further, and molecular 

alterations to multifunctional meals could assist in this endeavor. 

 

While the power source bean aroma impedes the nutritional value of food 

interpreting, legume flour has additionally been used as the primary component of 

alternatives to meat that are plant-based. [32]. the bean scent comes about by the enzyme-

mediated reaction of n-hexane aromatic compounds with alcohol stimulated by the liver 

enzymes lip in crops. [33]. One technique to reduce the bean aroma is to use alcohols 

dehydrogenises, which works in order to transform the compounds that make up alcohols 

into the proper acids. [33]. Utilizing another approach would be to generate meals with 

enticing aromas, soybean (which lacks lipoxygenase) [34]. 
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III. POTENTIAL EXPECTED FOOD MANUFACTURING TECHNOLOGIES 

 

Food manufacturing future generations is going to be capable to supervise hygiene 

and safety criteria across the entire food processing process in real time, thanks to significant 

advances in nanotechnology and artificial intelligence. To produce nutrient-dense food, 

hygiene surveillance must be swift, simple, and precise. Small sample volumes, higher 

preference, lower detection limits, and shorter response times are all advantages of enzyme-

based biosensors; they require immediate attention for point-of-care food analysis. [35]. Up 

until now, biosensors powered by enzymes were used for determining infectious 

microorganisms, biotoxins, and additives.These pesticides and nutritional ingredients.  

 

Table 1: Application of Enzymes in Food Processing.(Reference No. (79) 

 

 

Enzyme property Enzyme Application References 

 Food texture Chymosin Hydrolysis of αcasein, β-casein, 

k- casein, and β-lactoflavin milk 

solidification. 

[65] 

 Trypsin Improvement of the foaming and 

emulsifying properties of protein 

[66] 

 Transglutaminas

e 

Improvement of protein gel 

stiffness,viscosity,and water-holding 

capacity 

[10] 

 Lipoxygenase Carotenoids bleaching and improvement 

of bread dough rheology 

[32] 

 Pectinase Improvement of the juice yield and 

clarity 

[67] 

 Protease Tenderization of meat [68] 

 Lipases Production of food-grade surfactants [69] 

Food safety Laccase Detection of the quality change during 

the storage of fresh-cut fruits and 

vegetables 

[70] 

 β-lactamase Determination of β-lactam antibiotic. [71] 

 Alkaline urate 

oxidase 

Reduction of food uric acid content under 

alkaline conditions 

[72] 

 Organophosphat

e hydrolase 

Deduction of pesticide residues [73] 

Nutritional and 

flavour 

Chymosin Production of more volatile substances [65] 

 Glucose 

isomerase 

Production of sweeteners [74] 

 Lipase Improvement of the yogurt flavour [75] 

Customized food pullulans Production of functional starch 

microparticles with reduced digestibility 

[76] 

 Lactase Production of low-dosage lactose milk [77] 

 Proteolytic 

enzymes 

Production of bioactive peptides [78] 
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Rastislav et al. devised a number of complicated microbiological sensor technologies 

for the combinatorial analysis of food tests comprising insulin, compounds, and beverages. 

[36]. A relatively straightforward sensor having along an oblong monoxide detection with 

nylon threads holding the stuck enzyme amine oxides was used to test the freshness of white 

fish. [37].The sensor detects biogenic demines well since the oxides remained stable for more 

than twelve weeks when exposed to 4 degrees Fahrenheit and 12 degree Celsius conditions. 

Food odors and ripeness have also been identified via enzyme-based biosensors, with an 

electrochemical biosensor capturing the pheromone androstenone. [38]. Immobilised-

hydroxysteroid syntheses as well as a screen-printed charcoal electrode were used to make 

this biosensor. For application in future food production and quality assurance, biosensors for 

viruses, mycotoxins, and antibiotics have also been created [39, 40]. An enzyme-linked 

immunosorbent test (ELISA), which integrates the reactivity among an antigen and a 

particular antibody with the visible catalysis of catalysts. 

 

Future ELISA-based approaches to alimentary authenticity and control hold a great 

deal of promise. [41]. to evaluate the quantity of sesame seed residue, Stef and others 42 

developed an ELISA test that is sensitive and specific. This test might be utilized as a 

screening tool for foods for persons with severe allergies. ELISA tests can detect a wide 

range of food borne diseases, particularly Campylobacter. [43], O157:H7 E. coli. [44], Rod 

shaped [45], the bacteria salmonella [46], as well as the bacterial infection Staphylococcus 

aurous [47]. ELISAs are also used to identify toxins in meals, such as toxins known as enter 

produced by the bacteria E. coli and Candida perfringens. [41, 48]. By integrating modules, 

enzyme-based food-borne pathogen monitors can be upgraded from a single assay to a multi-

array function. [49]. 

 

IV. THE POTENTIAL OF MICROBIAL INNOVATION FOR THE FARMING 

SECTOR 

 

The adaptability of metabolic attributes, the establishment of culinary-grade 

expressing protein hosts, and optimizing the performance of multi-enzyme systems are all 

long-standing obstacles to the use of enzyme-based methodologies in the food and beverage 

industry.   

 
 

Figure 3: The next phase of protease innovation in meals. (Reference no. (79) 
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V. ADAPTABILITY OF ENZYMATIC PROPERTIES 

 

Increasing the applicability of catalyst methods for the cultivation of food by 

improving enzyme activity under specific conditions through protein manipulation. For 

example, amino acids are required to produce liquor, cellulose, and magnesium glutamate, 

while its activity is hampered by the acidic conditions in which these activities take place. 

[50] Ding as well as company. It was feasible to extract a variant of amino acid a species 

bacteria called Bacillus licheniformis with higher acid tolerance at a pH of 4.5 and a 14-fold 

boost to catalytic yield (kc at/Km) beyond the native type via controlled evolutionary. 

 

Enhancing chemical modification can also help enzymes adapt better to the industrial 

setting. Despite this technique has a likelihood for lowering enzyme activity, cell-polymer the 

bonds might enhance substrate durability. [51]. Promising In order to improve catalytic 

efficiency and identify the crucial residues involved in catalysis, natural enzymes are 

frequently changed. The unique activity and catalytic performance of the fibrinolytic gene 

identified as Sarmatia marcescens partially syn. amanuensis was increased by 19-fold and 

219-fold, respectively, by Anshan [52] using amino acid modifiers. These fibrinolytic 

enzymes' structural analyses revealed modifications to their ß-sheet and -helix conformations. 

Additionally, enzymes can be chemically altered to enhance enzyme immobilization [53, 54]. 

The processes that are most prevalent in regard to this are hydrophilization, cat ionization, 

while unionization and enhancements to the enzyme's properties range from greater cellular 

penetrability to increased stability or activity. [55].  

 

Advances in the makeup of proteins resources and computational biology have also 

facilitated the invention of secure, focused, and extremely active enzymes that initiate 

complex processes in silicon. [56]. Gideon assembled this enzyme and lactones gene families 

along with remarked on the refinement of their amine sequences using the Rosetta 

computational system. [57]. Despite having just 25% sequence homology, 21 GH10, and 7 

PLL designs are active among these optimized variations. In summary, being able to 

manipulate food enzymes by cognitive and semi-rational layout, high-throughput screening, 

and emerging technologies such as machine learning will be critical to subsequent advances 

in alimentary protease. 

 

VI. IMPLEMENTING AN ALIMENTARY TRANSLATION NETWORK  

 

Food-grade creation of protein requires secure hosts and antibiotic-free genetic 

procedures; however the method for variant adaptation is hampered by the limited number of 

hosts accessible. To identify enzymes that are secure for upcoming food processing, food-

grade protein expression platforms must be developed.Through generating dual-host (shuttle) 

gene expression vectors with removable pick indicators for replication in E. These obstacles 

have been overcome in the edible lactic acid microbes and downstream protein expression. 

[58], including Lactococcus lactic, Lactobacillus, Bacillus subtitles, Aspergillums Niger, 

Aspergillums oryzae, and B. licheniformis. Douglas et al. inserted the -galactosidase gene 

into the L. microsatellite bacteria. In the dairy industry, regenerated lactic acid bacteria are 

used to boost the efficiency of galactose absorption (as a result, lactose-free milk), which 

improves the capacity of the human body to absorb and use dairy. [59]. Prolyl amino 

peptidase has been isolated in bacterium A by Watanabe et al. orchids for their extremely 

specificity and tolerance to salts, particularly serves as a catalyst in the fermentation process. 

[60].  
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To create novel manifestation sections with efficient expression levels, alternative 

safe for consumption expression hosts are still required. To build the metabolic and 

regulatory aspects and improve the diet hygiene conveying framework for foreseeable food 

production, biology and sanitary datasets may be screened using computational biology and 

system capabilities. In the meantime, illustrating strain features across the mechanism and 

expression system requires assembling numerous cellular parts into a new-molecule synthesis 

approach. 

 

VII. MULTI-ENZYME ENHANCEMENT OF THE SYSTEM 

 

Overall multi-enzyme system has evolved into a formidable tool in food production 

by combining several performing enzymes with each other to increase the reaction rate 

simultaneously. Ginseng hardness may be greatly decreased following treatment with both 

neutral proteases and animal proteolytic enzymes, according to Zhou et al. [61]. Li et al. [62] 

through bringing together several functional digestive enzymes to quicken up their response 

rate synergistically, the multi-enzyme platform has gradually evolved into a powerful weapon 

in the cultivation of food. The paper's authors were Zhou and colleagues. [61], both neutral 

proteases and animal proteolytic enzymes have the potential to significantly reduce the 

hardness of ginseng. Cited after Li et al. The amount and mix of numerous high-quality 

enzymes, determined by (DuPont, Rochester, New York, New York City, USA), can improve 

the handling of food through synergistic effects. Proteins extracted from plants can also be 

decomposed enzymatic ally (using amino acids like papa in, which is brome lain and and 

quercetin) followed by treatment with transglutaminase to generate high-quality hydrolysates 

with increased functional properties such as emulsifying and bubbling abilities. [64].To 

increase the use of multi-enzyme systems in food production, it will be necessary to: (1) 

pursuit find high-performing digestive enzymes; (2) tune the enzyme/strain composite system 

for best yield and performance; and (3) Create a sturdy system that can handle an array of pH 

levels and temperature settings in workplaces. 

 

VIII. CONCLUSION 

 

 The urgent needs of human civilization cannot now be fully met by conventional food 

production. To face both the financial and environmental challenges of scheduled difficulties 

with development, the dietary market will need to produce more efficiently, ecologically 

friendly, and consistently. Future food consumption will change to fit each person's dietary 

and spiritual requirements and to meet the need for wholesome, Foods that are wholesome 

and delectable while also enhancing food processing. Considering folks crave bespoke 

nutrition, subsequent food fabrication is expected to depend on the use of enzymes to create 

tailored diets. The effectiveness of robust enzymes in enhancing human health has previously 

been demonstrated by advanced enzyme design technologies. Above foremost, enzyme-based 

innovations will not merely expand the array of meals available in the future, but also boost 

the quality of food to meet expanding demand while yielding phenomenal revenue streams to 

the agricultural industry. 
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