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l. INTRODUCTION

The theory of quantum calculus i.e. q — calculysajbich also be defined ascalculus without
limits now becoming the important topic in the diebf Mathematics and Physicsmainly
dealing with the field of Number theory especialyCryptography, Combinatory,Mechanics
, Theory of Relativity and other sciences quantheoty.

In this paper, we have extend the definition of dimensional q — analoguesJafari’s
integral transformation towards 2 - dimensional qaralogues and find out its
relationshipwith other 2 - dimensional Laplace type analogues integral transformations
[11,12]. The paperwere arranged as follows.

The paper mainly divided into three parts, infiret part the generalized definition of
one dimensional g — analoguesof Jafari’'s Integnan3formation and some other basic
integral transformation definition given, in thecead part the generalized definition of 2 —
dimensional g — analoguesof Jafari’s Integral Ti@msation and its relationship with some
basic integral transformation were explained. la ldst part we have proved the conditions

for convergence and uniform convergence of 2 — dsimmal g — analoguesof Jafari’s
Integral Transformation.

In the following, we present some basic definiiomeeded in proving the main
results.

II. BASIC DEFINITIONS

1. Jafari's Integral Transformation: If a functionf(t) which is to be integrable and

defined for t= 0 andp(s) # 0 andq(s) are positive real valued function then its Jagari’
integral transformation [5] is given by

JUF(@); s} = F(s) = p(s) [ f(D)e 9 dt 1
Provided that the integral exist f@(s)

2. g - analogues of Exponential functionThe q — analogues of exponential functidnis
denoted by, (t) and e, (t) and is given by [6]

) . 1 o G t*

é,(t) = Z1(1+ (1 - g 't) = Xi=0q" [k]q! (@)
0 i— -1 o ‘

eq() = M (1- A —q)g''t) = k=0ﬁq! ®)

3. q - Derivative: The g — derivative of a functiofi(t) is denoted by, f(t) and is given
by [6],

_ 4 _ fa-f©)
Dof (1) = 5 = KL @)
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4. Laplace type Integral Transformation: If function f(t) is continuous piecewise and is
of exponential order then its Laplace — type inaétnansformation [14, 15] is given by:

LAf();s} = [ € e *@POf (D)t (5)

In the above definitio®@(s) is a function which is invertible such thét) =
[ e=*®dt is exponential function ana(t) is a function which also invertible.

. TWO - DIMENSIONAL g - ANALOGUES OF JAFARI'S INTEGRAL
TRANSFORMATION

In this section, we introduce the extension of cqnralogues of Jafari’s integral
transformation [13] towards 2 — dimensional q Jegaes of Javari’s integral transformation
of along with some properties;

1. Definition: We consider the definition of 2 — dimensional q ralagues of Jafari’'s
integral transformation using the definition [13} a

J4lf (e, 01w, v) = P(w,v) J) f; eql—e(w,v,%, 0] f(x, t)dgxd,t - [A]

Where,e(u, v, x, t) = Q(u)x + Q(v)tare invertible functions with the property that

x|

f(x,t) e S :{f(x,t): Ak, k, >0,f(x,t)] < Me®,x € (-1)) x [0,0),a.e.'t’,M >

O}.and P(u,v) = P(u)P(v)
2. Relationship with Someq — Analogues of Some Integral Transformations
* 2 —dimensional g — analogues of Laplace transforntian: The two dimensional q

— analogues of Laplace transformation [13] of acfiom f(x,t) can be obtained by
takingQ(u) = uand Q(v) = v, P(u,v) = 1in equation [A] gives;

LLq[f(x H](w,v) = f f eq[—(ux + vt)] f(x, t)dgxd,t

» 2 —dimensional q — analogues of Elzaki transformain: The two dimensional q —
analogues of Elzaki transformation [13] of a fuantif(x,t) can be obtained by

takingQ (u) = % and Q(v) = % ,P(u,v) = uv in equation [A] gives;

[f(x )] (u,v) —uvffeq (— —) f(x,t)dgxd,t
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» 2 —dimensional g — analogues of Sumudu transformiain: The two dimensional q
— analogues of Sumudu transformation [13] of a fioncf (x, t) can be obtained by

takingQ (u) = % and Q(v) = % ,P(u,v) = %in equation [A] gives;

- 1 [cole o]
SuSu,[f(x, )] (w,v) = EJ- j eq [—(g + %)]f(x, t)dgxd,t
00

* 2 —dimensional g — analogues of Aboodh transformiain: The two dimensional q
— analogues of Aboodh transformation of a functjtix,t) can be obtained by

takingQ(u) =uand Q(v) =v,P(u,v) = iin equation [A] gives;

_ 1 ([
AAL[f (x, )] (w,v) = EJ- j eq[—(ux + vt)] f(x, t)dgxd,t
00

» 2 —dimensional g — analogues dfourreza transformation: The two dimensional
g — analogues of Pourreza transformation of a fandf(x,t) can be obtained by
takingQ (u) = u? and Q(v) = v?,P(u,v) = uv in equation [A] gives;

PP,[f(x,D)](u,v) = uvf f eql—(xu? + tv?)] f(x, t)dgxd,t

* 2 -—dimensional q — analogues Mohand transformation: The two dimensional q
— analogues of Mohand transformation of a functfgw,t) can be obtained by
takingQ (u) = u and Q(v) = v, P(u,v) = u?v?in equation [A] gives;

MM ,[f (x, )](w, v) = u?v? j f eql—(xu + tv)] f(x, t)d xd,t
00

2 — dimensional q — analogues awi transformation: The two dimensional q —
analogues of Sawi transformation of a functigiix,t) can be obtained by

takingQ (u) = % and Q(v) = % ,P(u,v) = Lin equation [A] gives;

u2v?

1
u2p?

SS,[f(x, )] (w,v) = jf eq [—(g+%)]f(x, t)dgxd,t
00

In the similar manner, by substitution of variousalues of
Q(u),Q(v) and P(u,v) one can obtain the relationship with q — analogofeBlatural
Transformation, and q — analogues of G_Transfoonaif ordero.
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IV. CONVERGENCE OF TWO — DIMENSIONAL g - ANALOGUES OF JAFARI'S
INTEGRAL TRANSFORMATION

Theorem 1:

If f(x,t) is continuous o0, ) X [0,%) and integral converges @(u,) and Q(v,). Then
the two — dimensional g — analogues of Jafari’edral transform of (x, t) converges on for
Q(u) > Q(up) and Q(v) > Q(vy) wheree(u, v, x, t) = 0 in the positive quadrant.

To prove the proof wdlwse the following lemmas.

Lemma: If JJ,[f(x,O)]; (up) = fOtP(uo,v)f(x,t)eq[—Q(uo)e(x,t)]dqx is bounded on
[0,0) then the two — dimensional q — analogues of Jafantegral transform w.r.u
converges for Q(u) > Q(u,) and e(x,t) =x =0 in the positive quadrant such that
e(x,t) = x bounded in first variable.

Proof:Consider the set
S, = {(x, t): g(x,t) = P(u,,v) fotf(x, t)eq[—Qu,)e(x, t)]dgx < oo} for 0 <t < . Then
by property ofS; we have,

g(x,0) = 0 and lim,_,, g(x,t) will exist and bounded this is because integrélosnded on
[0, )
Then by fundamental theorem of calculus, we get
gt(x; t) = P(uOJ U)f(x, t)eq [_Q(uo)g(xl t)]
WhereP (u,,v) # 0
Now, weChoos&, andR; with 0 < §; < R, Then the integral
Ry
T= | Pl v) f 0eg[-Q@e Oldgn
61
=5 9:(r, eg[~[Q(w) = Qu)]e(x, £)]dgx with P(up, v) # 0

Applying integration by parts then the integrahsiout to be
Ry
I'= [[eq[-[Q(w) - Qu)]e(x, O]9 (. ]

Ry

+ f [Q(w) — QQuo)leg[~[Q(w) — Quo)]eCx, D] g:(x, )]

81

Now let,6; = 0
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= 1 = [eg[-[0G) — QQueCx, R)]g(x, Ry
Ry

+f [Q(w) — Qu,)]eq[—[Q(wW) — Qu,)]e(x, R1)] g (x, t)dgx|]

0

Now leR; — oo thene,[—[Q(u) — Q(u,)]e(x, R)] — 0 asQ(u) > Q(u,) and
e(x, t) = 0 in the positive quadrant and bounded in firstatale.
Which exist as the integral is boundg€) > Q(u,).

In the similar manner we can prove that if the gnad
I, = waP(u, vo)f(x,t)eqs[—Q(w)e(x, t)]ld,t  Converges at @,) then the integral
converges foQ(v) > Q(vy),e(x,t) =t = 0 and 0 < x < «. Hence the theorem hold.

Theorem 2:

If f(x,t) is continuous and bounded 0j),x) X [0,0) and integral converges at
Q(u,) and Q(v,). Then the 2 — dimensional q — analogues of Jafémtegral transform of
f(x,t)converges uniformly oru,«) X [v,©) if Q(u) > Q(u,) and Q(v) > Q(v,) where
e(x,t) = 0 in the positive quadrant.

To prove the proof wdlwse the following lemmas.

Lemma:lf JJ[f (x, O] (o) = [, P(o,v) £ (x, t)eg[~Quo)e(x, t)]dgx is bounded on
[0,0) then the 2 — dimensional q — analogues of Jafdntegral transformconverges

uniformly on[u, ). If Q(u) > Q(u,) ande(x, t) = 0 in the positive quadrant and bounded
in first variable.

S, = {(x, t):glx,t) = P(u,,v) fotf(x, t)eq[—Quy)e(x, t)]dgx < oo} for 0 <t < w. Then
by property ofS; we have,

g(x,0) = 0 and lim,_,, g(x,t) will exist and bounded this is because integrélosnded on
[0, 0)

So by fundamental theorem of calculus, we get
9e(x, t) = P(uo, v)f (x, t)eq[—Q(uy)e(x, )] , whereP (u,,v) # 0 ----- |

Now, we choos& andé such thad < § < §;, then the integral

81

I = fP(uO,v) f(x, t)eq[—Qwe(x, t)]dgx

1)
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s .
T, €q[—[QW) — Qu,)]eCx, )] ge (x, t) dgx with P(u,, v) # 0
Applying integration by parts then the integrahsiout to be

1= {[eq[-100w) — Quo)elx, D]g (x, 0],
Ry

+ f [Q(w) — Quo)]eq[—[Qw) — Quo)]elx, )]g (x, t)dgx

81

= [eq[—[Q(w) — Q(uo)le(Ry, ©)]g(Ry, t) — e4[—[Q(w) — Q(uy)]e(8y,8)]g (61, 8)
Ry

+ f [Q(w) — Q(uo)]eq[—[Q (W) — Qup)]e(x, )] g (x, )dgx ]
81

By property of bounded ne3sM > 0 such that
lg(x,t)| < Mit gives us;

[ < {Meg[—[Q(w) — Q(uo)]e(Ry, )] + Mey[—[Q(w) — Qu,)]e(61, )]
+ M[Q(w) — Qu,)leq[—[Qw) — Quo)]e(Ry, )]
+ M [Q(w) — Qu,)]eq[—[Q(w) — Quy)]e(61, )1}

Hence by Cauchy’s criteria for uniform convergefaethe given integral converges
uniformly on u, ) under the condition that; Q(u) > Q(u,).

In the similar manner we can prove thawé integral
I, = waP(u,vo)f(x,t)eq[—Q(v)e(x,t)]dqt Converges at @,) then the integral

converges uniformly foQ(v) > Q(v,),e(x,t) =t = 0 and 0 < x < 0. Hence the theorem
hold.

V. CONCLUSION

The paper gives the conditions about convergendeiaiform convergence of the 2 —
D g — analogues of Jafari’'s Integral Transformataong with its relationship with some
other g — Integral transformation.
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