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Abstract 

 

The most important factor in 

determining the general economic expansion 

of a civilization is electrical energy. The 

quality of power was greatly impeded by the 

widespread development of automated 

electronic equipment and the downsizing of 

micro-electronics utilized in power systems. 

In order to detect and categorize power 

quality issues, this research compares the 

capabilities of radial basis function-based 

classifiers and multilayer perceptron neural 

networks. The input feature space for the 

comprehensive design optimization of the 

RBF and MLP-NN classifiers is comprised of 

simple statistical parameters.  Principal 

component analysis and sensitivity analysis 

are also looked at for the dimensionality 

reduction. With an accuracy of up to 99.81% 

in classifying the fundamental Power Quality 

disruptions, the optimized classifier is 

sufficiently resilient. 
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I. INTRODUCTION 

 

           In today's context, Power Quality (PQ) holds paramount significance within both the 

power system and industrial sectors. The widespread implementation of highly sensitive 

automated control strategies aimed at enhancing system stability often leads to deviations 

from the normal supply values. These disturbances can distort the original waveform, and the 

increasing intricacy of the system can result in significant repercussions, including substantial 

economic losses in the event of component failures. Hence, it is imperative to recognize that 

Power Quality issues fundamentally stem from consumer-driven concerns [1]- [2]. 

 

The scope of Power Quality (PQ) issues encompasses a range of problems, including 

issues like overheating, motor failures, inaccuracies in metering, and the malfunctioning of 

protective equipment. An essential task in this field is the extraction of disturbance features 

from a vast array of power signals. To tackle this problem, PQ analysis researchers use a 

variety of methods, including the fast Fourier transform (FFT), fractional Fourier transform 

[3]–[4], and wavelet transform [5]–[7]. Moreover, fuzzy logic, support vector machines, and 

artificial neural networks (ANNs) are utilized to address PQ events of this kind. 

 

II.  PQ DISTURBANCES 
 

Power Quality (PQ) disturbances can be categorized into two main groups: stationary 

and non-stationary. Stationary disturbances are characterized by time-invariant statistical 

properties in their waveforms. On the other hand, non-stationary disturbances have time-

variant statistical characteristics in their waveforms. There are further subcategories of non-

stationary disturbances, such as power frequency variations, waveform distortions, voltage 

imbalances, fluctuations, and short- and long-duration voltage variations. 

 

1. Short-Duration Voltage Variations: Any variations in the supply voltage lasting less 

than a minute are categorized as short-duration voltage variations. These fluctuations may 

manifest as interruptions, voltage swells, or sags. 

 

2. Long-Duration Voltage Variations: Extended-duration voltage variations, occasionally 

termed overvoltage or under voltage, along with sustained interruption, encompass any 

deviations in the supply root mean square (rms) voltage at the fundamental frequency 

lasting more than one minute. 

 

3. Voltage Imbalance and Voltage Fluctuation: When the three-phase supply voltages 

have unequal magnitudes and possibly unequal time displacements, voltage imbalance 

results. Whereas voltage flicker describes extremely quick variations in the supply 

voltage, voltage fluctuation is a systematic random variation in the voltage. 

 

4. Waveform Distortion: This is the steady-state departure of the voltage or current 

waveform from the ideal sine wave. DC offset and harmonics are the most common 

manifestations of these aberrations. 

 

5. Power Frequency Variation: These are typically brought on by abrupt variations in the 

system's load [9]. 
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III. DIAGNOSIS OF PQ DISTURBANCES 
 

In order to let network operators take appropriate PQ mitigation procedures and 

effective remedies, it is imperative that PQ disturbances be diagnosed quickly. Power signals 

are often analyzed using a variety of signal processing techniques, such as the S-transform, 

wavelet transform, and Fourier transformation methods. Additionally, artificial intelligence 

(AI) techniques have made their way into the power system domain. Some researchers have 

also successfully applied a hybrid approach that combines the above-mentioned methods for 

diagnostic purposes. This section will delve further into each of these methodologies. 

 

1. Fourier transforms (FT): Complex periodic functions are represented in Power Quality 

(PQ) analysis using the Fourier Transform (FT) as the combination of simple waves, 

expressed mathematically through sine and cosine functions:: 

 

 Discrete Fourier Transform (DFT): Discrete Fourier Transform is another name for 

the Fourier transform, which is primarily used on repeated signals. The DFT and 

frequency function of a discrete signal with finite length x[n] are provided by 

equations (1) and (2), respectively; 
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 Fast Fourier Transform (FFT): The Fast Fourier Transform (FFT) plays a 

significant role in digital signal processing, enabling the analysis of frequency spectra. 

In 1948, Cooley and Tukey introduced a method for computing the N-point Discrete 

Fourier Transform (DFT) with a computational complexity of 2N instead of N^2. 

When we decompose the signal x[n] into its odd and even parts using the FFT, it can  

be expressed as follows: 
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FFT reduces the computing effort from N in DFT to N log N multiplications 

for the same statement. This is one of the main advantages of FFT versus DFT. 

 

 Short Time Fourier Transform (STFT): STFT (Short-Time Fourier Transform) is 

employed for analyzing signals that exhibit time-varying spectra. It involves a 

repetitive process of multiplying the time series by time-shifted windows and 

subsequently performing a Discrete Fourier Transform (DFT) on each windowed 

segment. The window function serves the purpose of temporally localizing the time-

domain data prior to extracting frequency domain details. For continuous-time 

signals, the STFT can be expressed as: 
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where; x(t)= signal to be transformed, w(t)=window function, ( , )X   = FT of 

( ) ( )x t t  . In case of discrete signal with ‗m‘ as discrete time-shift, it can be 

expressed as  
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Nevertheless, non-stationary signal resolution is constrained by the constant 

window length of a signal's STFT. Wavelet Transform (WT), a signal processing 

method, has been extensively used in PQ analysis to solve this resolution issue 

utilizing STFT.  

 

2. Wavelet Transform: Wavelet Transform allows the decomposition of a signal into 

multiple components for in-depth analysis, offering various time-frequency resolutions. 

In contrast to the Short-Time Fourier Transform (STFT), the size of the smoothing 

window in Wavelet Transform varies depending on the analyzed frequency. There are 

two main types of wavelet transform that are commonly encountered: Discrete Wavelet 

Transform (DWT) and Continuous Wavelet Transform (CWT). The following is a 

representation of the Continuous Wavelet Transform (CWT): 
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where; x(t)=signal to be analysed, ( )t is the mother wavelet, s and  represent scale and 

translational parameters respectively. 

 

For the purpose of breaking down the signal into a group of mutually orthogonal 

wavelets, DWT is a discrete counter of CWT. Using a discrete set of wavelet scales and 

translations, WT complies with certain predetermined guidelines. 

 

3. Artificial Intelligence (AI): Artificial Neural Networks (ANN) are inherently self-

learning systems, and in addition to traditional training algorithms, hybrid algorithms and 

combined approaches involving ANN and methods like wavelet and S-transform have 

been employed. ANN possesses the ability to approximate non-linear functions and has 

gained extensive utilization within this field. It has found practical use in industrial 

applications, as well as in emerging concepts like distributed generation, particularly for 

Power Quality (PQ) analysis and enhancement. 
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IV.  EXPERIMENTAL SETUP AND DATA GENERATION  

 

The classifier based on neural networks is built and refined to identify and categorize 

PQ disturbances. The following is the initial experimental setup for data collection: 

 

In experimentation following PQ disturbances are considered, 

 Voltage Sag 

 Voltage Swell 

 Arcing load influence 

 Short circuit condition 

 

 
 

Figure 1: Experimental Setup 

 

In the laboratory setup, an induction motor is employed, powered by the mains at 

230V, single-phase, 50Hz, with a rating of one HP. The motor, a squirrel cage induction type, 

is utilized to analyze voltage sags and swells in the system through repetitive ON/OFF 

operations. A welding machine operating at the same voltage and frequency is utilized to 

introduce actual arcing load effects into the system. Short-circuited welding electrodes are 

used to simulate short circuit scenarios for experimental purposes. 

 

A Tektronix Digital Storage Oscilloscope (DSO) of model TPS 2014 B is used to 

record current signals. This oscilloscope has a 100 MHz bandwidth and a 1 GHz sampling 

rate that may be adjusted. Tektronix voltage probes, rated at 1000V and with an approximate 

bandwidth of 200 MHz, are used to record current signals. A total of 100 sets of signals 

representing a range of mains supply circumstances are captured at a sampling frequency of 

10 kHz throughout the trials. 

 

To replicate a weak system environment within the laboratory, a 2 ½ core cable, 

measuring 200 meters in length, is employed. This setup allows for the observation of the 

effects of voltage sags, swells, and arcing loads. 

 

V.  FEATURE EXTRACTION 

 

The necessary features of the collected data are extracted by wavelet transform 

analysis in a MATLAB environment. 
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Five categories of PQ events—such as Induction motor sag, arc load sag, sag from 

welding machine short circuit, swell from Induction motor switching off, and healthy 

condition—as well as their key characteristics are taken into consideration to illustrate the 

wavelet technique's feature extraction capacity. To execute successive signal decomposition 

utilizing the MRA technique for the reconstruction and decomposition of the observed signal, 

WT uses two functions: the scaling function ф and the wavelet function ψ. The distinct 

features of each instance are displayed in Figures 2 through 6. Wavelet function ψ functions 

as a A high pass filter generates a high-frequency component referred to as the detailed 

function (d), while the scaling function ̄ convolves the signal with a low pass filter , resulting 

in a low-frequency component known as the approximate function (a) in the decomposed 

signal. 

 

 
 

Figure 2: Normal condition 

 

 
 

Figure 3: Sag due to Induction Motor Start 

 

 
 

Figure 4: Sag due to welding machine short circuited 
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Figure 5: Sag due to arc load of welding machine 

 

 
 

Figure 6: Swell due to Induction Motor switching off 

 

Different power quality disturbances are classified based on statistical characteristics 

of waveforms. Specifically, "sample" statistics will be derived from the available data, 

including the kurtosis coefficient, maximum and minimum values of the skewness 

coefficient, and the root mean square (RMS) of zero-mean signals (standard deviation). 

Additionally, Pearson‘s coefficient of skewness is considered, as defined by: 
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Spread about the center is shown by m2, skewness about the center is indicated by 

m3, and the amount of data massed at the center is indicated by m4. Using the second, third, 

and fourth moments, the sample coefficients of skewness and kurtosis are defined directly. 

 

            , respectively. 

 
3

3

3

2


m

g

m

                                                          (10) 

                         



Futuristic Trends in Electrical Engineering 

e- ISBN: 978-93-6252-001-2 

IIP Series, Volume 3, Book 1, Part 3, Chapter 3 

                                            COMPARATIVE ANALYSIS OF MLP-RBF BASED NETWORKS FOR 

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES 

 

Copyright © 2024 Authors                                                                                                                    Page | 146 

                     

 
4

4

4

2


m

g

m

                                                      (11) 

 

The following is the covariance between the dimensions j and k sample:  
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For dimensions j and k, rjk the ordinary correlation coefficient is given as;  
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VI.   DISTURBANCE CLASSIFIER USING ANN 

 

1. Multi Layer Perceptron: The proposed classifier for disturbances is the Multilayer 

Perceptron (MLP) Neural Network. The input layer comprises 14 input parameters, while 

the output layer consists of six Processing Elements (PE's) corresponding to six critical 

conditions. The data processing and analysis are conducted using Neuro Solution 5.7, 

XLSTAT-2010, and MATLAB 7.1. 

 

The general learning algorithm employed for training and classification is 

described as follows: 

 

Initialization of Weights: 

 

 First, set the weights to tiny, random numbers. 

 Step 2: Perform steps 3–10 if the stopping condition is false. 

 Step 3: Complete steps 4–9 for every training pair. 

 

2. Feed Forward: 

 

 Step 4: After receiving the input signal xi, each input unit sends it to every unit in the 

hidden layer. 

 Step 5: The weighted input signals of each hidden unit (j=1,…,p) are added together. 
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Applying the activation function Zj = f(zinj) here the activation function is 

tanh( ) ( ) / ( )x x x xx e e e e     and sends this signal to all units in output units. 
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 Step 6: Each output unit ( ky , k=1,…,m) sums its weighted input signals , 
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And apply its activation function to calculate the output signals  k inkY f y   here the 

activation function is 

 

                  tanh( ) ( ) / ( )x x x xx e e e e                                                            (16) 

 

3. Back Propagation Error: 

 

 Step 7: The goal pattern for each output unit (, k=1,...,m) is determined by computing 

the error information term.  
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 Step 8: Each hidden unit (
jz ,j=1,…,p) sums its delta inputs from units in the layer 

above 
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The error information term is calculated as 

 

             j inj injf z                                                              (18) 

 

 

4. Updation of Weight and Biases:  

 

 Step 9: Each output unit (yk, k=1,…,m) updates its bias and weights (j=0,…,p) 
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Where   is learning rate and   is momentum factor 

 

And each hidden unit ( jz , j=1,…,p) updates its bias and weights (i=0,…,n) 
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 Step 10: Test the stopping condition 
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The neural network is trained with randomized data, and this process is repeated 

five times using various random weight initializations to eliminate bias. Authentic 

learning and generalization are encouraged by this method, especially for various hidden 

layers. Figure 7 illustrates the study's findings that the step learning rule and the tanh-

axon transfer function produce better results. The number of Processing Elements (PEs) 

in the concealed layer is varied during the experimentation. Figure 8 shows that 11 PEs in 

the hidden layer yields the optimum network performance. 

 

 
 

Figure 7: shows how average MSE and classification accuracy vary depending on the 

learning  algorithm and transfer function.              

 

  
Y: No. of Epoch    X: No. of PE‘s 

 

 

Figure 8: shows how the number of processing elements in the hidden layer affects 

the average MSE during training. 

 

By comparing the average minimum MSE, the hidden layer and output layer 

parameters, or step size, are chosen. The performance is displayed in Figures 9 and 10, 

where the ideal step size values for the hidden layer and output layer are, respectively, 0.8 

and 0.9. 
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Figure 9: Average minimum MSE variation on TR and CV datasets with step sizes for the 

hidden and output layers 

 
 

Figure 10: Average MSE Variation for Training and CV with Average Classification 

Accuracy for the Total Number of Epoches 

 

VII. SELECTION OF ERROR CRITERION 

 

 Supervised learning necessitates the use of a metric for assessing the network's 

performance. Error criteria members are compared to an expected response, and any 

discrepancies are reported to the appropriate learning procedure. Gradient descent learning is 

used to identify the proper metric to assess sensitivity. The cost function, represented by J, 

should ideally approach zero as the network converges to the desired response, although it 

usually stays positive. Various cost functions have been presented in the literature, where "p" 

is defined as p = 1, 2, 3, 4, and so on, and the criterion is represented as L-1, L-2, L-3, L-4, 

and so forth. The cost function is employed to define components within the Error Criteria 

family. 

 

Error Criteria family components are defined by a cost function in the form: 
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and error functions: 
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Since the expected response and the network's output are d (t) and y (t), respectively, 

a number of error criteria have been tried in order to determine which one is right. In the end, 

the L-2 criterion, which is displayed in Fig. 11, produces the best results. 

 

 
  

Y-AXIS: Error Criterion X-AXIS: No. of Epochs 

 

Figure 11: Variation in Average MSE with Error Criterion 

 

From the above experimentation, selected parameters for MLP NN are given below.  

 

Transfer: TanhAxon   Learning Rule:  Step 

Number of Inputs: 14 

Number of Hidden Layers:  01 

Number of PEs in Hidden Layer: 11 

 

Step Learning Rule: Hidden Layer: Transfer function: tanh 

Step size: 0.8 Transfer function: tanh Output Layer: Learning Rule: step 

Size of step: 0.9 

There are 4500 epochs in total. 

237 Training Exemplars = 70%, Cross Validation Exemplars = 15% are the number of 

connection weights. 

 

15% of testing exemplars 

Time required per epoch per exemplar: 0.1822 micro –secs. 

 

The proposed neural network (NN) undergoes training on various datasets and is 

subsequently subjected to careful validation to ensure that its performance remains 

independent of the specific data partitioning scheme used. The NN's performance should 

consistently demonstrate optimality across all datasets, as assessed through mean square error 

(MSE) and classification accuracy. The designed multilayer perceptron (MLP) undergoes 

five rounds of training with different random weight initialization and is tested on separate 

testing, cross-validation (CV), and training datasets. 

 

For both training and testing, two different ways to data tagging are used: "data 

tagging by percent" and "data tagging by various groups." The Leave-N-Out technique is also 

applied. A useful method for evaluating the model's generalization skills is leave-n-out 

training, which is especially helpful with tiny datasets. With this approach, the full dataset 

can be used for training and testing. The network is trained iteratively by the algorithm, 
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which removes a different subset of the data each time for testing. The outputs from each 

tested subset are then combined into a thorough testing report. The model then undergoes one 

more training round with all of the data, and the weights from this last training run can be 

applied to additional testing. 

 

The entire dataset is split into four groups in order to assess the accuracy of the 

classification and learning capacity. First and second groups (i.e., 50% of the data) are the 

training data; third and fourth groups (i.e., 25% of the data each) are set aside for cross-

validation and testing (e.g., 1234: 1, 2-TR, 3-CV, 4-Test). For every group, a total of twenty-

four combinations are prepared, and the network is trained and evaluated. The variance in the 

percentage of data tagged for each error criteria and the average minimum MSE are 

evaluated, with the L2 error criteria showing the lowest MSE and the best classification 

accuracy. Figures 12, 13, and 14 give the full set of results. 

 

 
 

Figure 12: Average minimal MSE variation with test on Training and Testing dataset 

andpercentage of data marked for training 

 

 
 

Figure 13: Changes in the average minimum MSE for each of the 24 dataset groups with 

training and CV                             
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Figure 14: Average MSE Variation with Test on Training, CV, and Testing Datasets with 

Shifted CV Rows (n) 

 

The final improved MLP-based classifier yields a 99.18% classification accuracy 

with an average training MSE of 0.00083773 and an average cross-validation MSE of 

0.025529. 

 

VIII.  RADIAL BASIS FUNCTION  

 

Radial basis function (RBF) networks are hybrid networks with a nonlinear structure, 

typically composed of a single hidden layer containing processing elements (PEs). Unlike 

conventional sigmoidal functions, Gaussian transfer functions are employed in this layer. 

Unsupervised learning rules are applied to determine the centers and widths of these 

Gaussians, while supervised learning is implemented in the output layer. It is important to 

note that RBF networks generally demonstrate faster learning rates compared to multilayer 

perceptrons (MLPs). The application of this network is recommended, especially in situations 

where the number of exemplars is extremely limited or widely dispersed, leading to inherent 

ambiguity in clustering. 

 

In the case of standard radial basis function networks (RBFs), the supervised 

component of the network is primarily tasked with generating a linear combination of the 

output derived from the unsupervised layer. Consequently, the default configuration involves 

having no hidden layersThe supervised segment can be converted from a simple linear 

perceptron to a multilayer perceptron (MLP) by adding more hidden layers. The six 

conditions of PQ disturbances that the network is intended to classify are: Arc load, Welding 

machine short circuit, Swell owing to Induction Motor, Sag due to Induction Motor, and Line 

to Ground. 

 

1. The general learning algorithm is as follows: The response of the Gaussian activation 

function is nonnegative for all values of x. We define the function as 

 

                      2( ) exp( ) f x x                                                                       (23) 

 

               and its derivative  

 

              ' 2( ) 2 exp( ) 2 ( )    f x x x f x                                                                 (24) 
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The radial basis function and the back propagation network in the Gaussian function 

are not the same.  

 

Step 1: Initialize the weights (set to small values) 

Step 2: do step 3-10, if stopping condition is false  

Step 3: do step 4-9 for each input  

Step4: all units in the hidden layer receives input signals from each input unit ( ix , i=1,…, n)  

Step 5: Calculate the radial basis function 

Step 6: Choose the centers of the radial basis functions. The centers are chosen using the 

collection of input vectors. A appropriate sample of the vector space input has been ensured 

by selecting a sufficient number of centers. 

Step 7: The output of mi   unit ( )i iv x  in the hidden layer  

 

                   

' 2

2
1

( )
( )



    
  

 
 


r

ji ji

i i

ij

x x
v x e


                                                    (25) 

 

Where    jix  - centre of the RBF unit for input variable 

               '
jix  - j

th 
variable of input pattern  

               i  -Width of the i 
th 

RBF unit 

 

Step 8: Initialize the weights in the output layer of the network to some small random value 

Step 9: output calculation of the neural network 

 

                    0

1

( )



 
H

net im i i

i

y w v x w                                                    (26) 

Where  

H-number of hidden layer nodes (RBF Function) 

nety -Output value of m
th

 node in output layer for the n
th

 incoming pattern 

imw - Weight between i 
th

 RBF unit and m
th 

output node  

0w  - Biasing term at n
th

 output node  

 

Step 10: Calculate the error and check the stopping condition 

 

To ensure genuine learning and generalization across various parameters, biasing is 

removed, and the neural network is exposed to randomized data that undergoes retraining five 

times with distinct random weight initializations. 

 

2. Selection of Error Criterion: Analogous trials are conducted to determine the 

appropriate criterion for error. Fig. 15 displays variations in average minimum MSE 

based on various error criteria.              

      Finally L-4 criterion gives the optimal results.  
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Y: Error Criterion  X: No. of Epochs 

 

Figure 15: Variation in Average MSE with Error Criterion 

 

The supervised and unsupervised parameters, including the cluster centers, metric, 

and competitive rule, have been optimized through testing. Results of the experiments are 

displayed in Figs. 16 through 19. 

 

 
 

Figure 16: Variation in Average Classification Accuracy with Competative rule and metric 

 

 
 

Variation in Average Minimum MSE for Various Numbers of Cluster Centers (Fig. 17) 

 

 
 

Figure 18: Average Variation Arrangement Precision and Mean lowest MSE using Epoch 
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Figure 19: Variation in Average Minimum MSE for Step and Momentum with Training and 

CV 

 

Lastly, the following parameters are used in the creation of the RBF classifier: 

 

There are 14 inputs. 

 

Competitive Regulation: All-Inclusive Measurement: Boxcar 

There are no hidden layers. The output layer is       

Learning Rule: 0.1 Step Size, Momentum  Momentum: 0.7 Tanh the transfer function 

5000 epochs in total 

Unmonitored Education: Uppermost Epoch: 1500     

Max Epoch for Supervised Learning: 3500     

Learning Rate: beginning at 0.01 and decreasing to 0.001 

There are sixty cluster centers. 

There are 1266 connection weights. 

70% of the examples are used for training, while 15% are used for cross-validation. 

15% of the exemplars for testing Time required for training per exemplar is 0.604 micro-

secs  RBF classifiers are trained  and tested on similar data sets, or groups of data. Figures 

20 through 22 display the results. 

 

 
 

Figure 20: Average Variation Arrangement Percentage of data tagged for training and 

accuracy of testing on the Testing and Training dataset 

 

 
 

Figure 21:  shows the average Minimum MSE variation with training and CV for each of the 

24 dataset groups.                   



Futuristic Trends in Electrical Engineering 

e- ISBN: 978-93-6252-001-2 

IIP Series, Volume 3, Book 1, Part 3, Chapter 3 

                                            COMPARATIVE ANALYSIS OF MLP-RBF BASED NETWORKS FOR 

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES 

 

Copyright © 2024 Authors                                                                                                                    Page | 156 

 
 

Figure 22: Average MSE Variation with Test on Training, CV, and Testing Datasets with 

Shifted CV Rows (n) 

 

After optimization, the RBF-based classifier yielded a 98.05% classification 

accuracy, with an average cross-validation mean square error of 0.0232185 and an 

average training mean of 0.00519002. 

 

IX.   DIMENSIONALITY REDUCTION OF CLASSIFIERS  

 

1. Sensitivity Analysis: Dealing with an excessive quantity of input features is a significant 

difficulty after feature extraction, which can possibly impair accuracy and result in 

considerable processing demands. In order to solve this problem, the most sensitive 

values are carefully analyzed and chosen to be input parameters. The selection of inputs is 

driven by the analysis of mean squared error (MSE) and the percentage of classification 

accuracy. These selected parameters are employed in the multilayer perceptron (MLP) 

classifier. Fig. 23 shows graphically the differences in MSE and classification accuracy 

percentage with various sets of the most sensitive inputs. The findings clearly show that 

only the most sensitive criteria produce the best results. After nine inputs, the classifier is 

tested and fine-tuned, and the complete results are shown in detail in Figures 24 to 27. 

 

 
 

Figure 23:  Sensitivity Analysis about Mean 
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Variation of classification accuracy and average MSE for learning rule and transfer function . 

 

 
 

Figure 24: 

Item 25. Average minimal MSE variation with number of inputs on training and CV 

datasets Choosing an Error Criterion 

 

 
 

Figure 26: Average minimal MSE variation on TR and CV datasets with step sizes for the  

hidden and output layers 

 

 
 

Variation of average minimum MSE on TR, CV dataset with output layer and hidden layer 

momentum Figure: 27 

 

 

 

The L-2 criterion was selected, as shown in Fig. 28, after a number of error 
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criteria were tested to find the optimal error criterion for the expected response.  

 

 
 

 

Y: Error Criterion  X: No. of Epochs 

 

Figure 28: Variation in Average MSE with Error Criterion 

 

observing the same guidelines The NN model is ultimately optimized by a series of 

tests, and the resulting network is constructed using the following parameters: 

 

There are nine inputs. 

There are one hidden layer. 

There are nine PEs in the hidden layer. 

Secret Layer:Function of transfer: tanhLearning Guideline: velocityStep magnitude: 0.9; 

momentum: 0.8; result Level:  

Function of transfer: tanhRule of Learning: stepMomentum: 0.7; step size: 0.4 

Epochal Number: 4500 

Failed Standard: L3 

150 connection weights in total 

Time needed for each exemplar in an epoch: 0.4077 µ-sec 

Total effectiveness of training: 99.81897%                        

TRMSE on average: 0.000137 

 

Ultimately, Figs. 29, 30, and 31 display the outcomes of training and testing the 

new NN (MLP-DR-S) classifier under the specified conditions. 

 

 
 

Item 29. Variation of the % of data tagged for training and the average minimal MSE with 

test on the Testing and Training dataset 
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Figure 30: shows the average minimal MSE variation with training and CV for each of the 

24 dataset groups. 

 

 
 

Figure 31: Average MSE Variation with Test on Training, CV, and Testing Datasets with 

Shifted CV Rows (n) 

 

To determine the appropriate analysis and pinpoint the most responsive factors for 

utilization as input parameters, a parallel testing methodology is employed for the RBF-

based classifier. Illustrated in Fig. 32, the quantity of input parameters, organized in 

descending order according to sensitivity, is juxtaposed with the average minimal mean 

squared error (MSE) on both training and cross-validation datasets. Additionally, Fig. 33 

provides insight into the average categorization 

 

 
 

No. 32. Average minimal MSE variation with number of inputs on training and CV datasets  
 

 
 

Item 33. Variation in the average classification accuracy with test on the number of inputs, 

CV, and TR data 
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The results of the sensitivity analysis can be used to reduce the RBF network's 

dimensions. The remaining inputs are down to eight. Similar trials are used to build the 

optimal RBF classifier, which is modified as follows: 

 

Competitive Guideline: Morality Complete Measure: Euclidean 

45 cluster centers are present.  

There are eight inputs. 

There are 681 connection weights. 

46.20% less connection weights overall 

There are eight inputs. 

Competitive Guideline: Morality Complete Measure: Euclidean 

There are no hidden layers. The output layer is  

Function of transfer: tanhLearning Guideline: velocityDecay to: 0.001 Step size: 0.8 

Momentum: 0.6 Learning Rate Start at: 0.01 

There are 45(80) cluster centers. 

Error Standard: L7 

Period: 5000 

Time needed in microseconds for each exemplar in an epoch. 

TR: 97.87%, CV: 97.17%, TEST: 96.80%, overall efficiency  

All-around Average Error % T: 0.0012893  

As a Whole Averages 0.01130 for CVMSE 

RBF-DR-S (Dimensionally Reduced utilizing Sensitivity Analysis) takes 0.2683 

microseconds to complete. 

 

Lastly, a variety of circumstances are tested and trained on the new RBF (RBF-

DR-S) classifier. The findings are displayed in Figures 34, 35, and 36. 

 

 
 

Figure 34: Average minimum MSE variation with test on Training and Testing dataset and 

percentage of data marked for training 

 

 
 

Figure 35: Variation of average minimum MSE with Training and CV with all 24 group of 

dataset 
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Figure 36: Variation of average MSE with Test on Training, CV and Testing dataset with 

CV rows shifted (n) 

 

2. Principal Component Analysis: Principal Component Analysis (PCA) is another 

technique used for dimensionality reduction. It successfully lowers the dimensionality of 

the input space, resulting in a more efficient network. Pearson's rule is followed in the 

PCA procedure. The mathematical concept of eigenvalues—which function as a gauge of 

the accuracy of the projection from a 13-dimensional space to a lower-dimensional one—

is the subject of attention in Fig. 37. Fig. 38 sheds light on the correlation circle by 

showing that, because of its closeness to the circle, "skew" is the only parameter that 

retains information throughout several axes. 

 

 
 

Figure 37: Eigen values, % variability, and principal component 

 

 
       

           Figure 38: Correlation Circle 

 

By varying the number of primary components used as input, we evaluated the 

average minimal MSE and average classification accuracy to establish the ideal number 

of inputs for the MLP. The analysis's findings are displayed in Figs. 39, 40, and 41, which 

show how the average MSE varies depending on the error criterion and the quantity of 

input processing elements used. 
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Figure 39: Variation of average minimum MSE on training and CV dataset with number of 

PCs as inputs  

 

 
 

 Y: Error Criterion  X: No. of Epochs 

 

Figure 40: Variation in Average MSE with Error Criterion 

 

 
 

Figure 41: Variation of average classification accuracy with test on Testing, CV and TR 

Data with number of PEs as Inputs 

 

The dimensionally reduced MLP (MLP DR PCA) NN model based on hidden 

layer and output layer parameter modifications is constructed using the following 

parameters. 

 

There are seven inputs. 

There are one hidden layer. 

There are 14 PEs in the Hidden Layer. 

Secret Layer:  

Function of transfer: tanh     Learning Guideline: Velocity 

Measurement scale: 0.8 Acceleration: 0.8 Output Level:  

Function of transfer: tanh      Learning Guideline: Velocity 

Error: 0.3 Momentum: 0.4 Step size Standards: L5. 

Period: 4000 

Time needed for each exemplar per epoch: 0.2505µ seconds  

There are 202 connecting weights. 
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Weight loss as a percentage: 17.32% 

 

Lastly, as illustrated in Figs. 42, 43, and 44, the new MLP (MLP-DR-PCA) 

classifier is trained and tested under a variety of situations. 

             

 
 

Changes in the average minimum MSE with testing and training dataset tests and 

percentage of data tagged for training are shown in Figure 42. 

 

 
 

Figure 43: shows the average minimal MSE variation with training and CV for each of 

the 24 dataset groups. 

 

 
 

Figure 44: Average MSE Variation with Test on Training, CV, and Testing Datasets 

with Shifted CV Rows (n) 

 

By using the same procedure as previously, tests are conducted to develop the 

RBF classifier with the fewest dimensions. The ideal RBF classifier with seven inputs is 

the outcome, as shown in Fig. 45.  

 

 
 

Figure 45: Variation of average classification accuracy with test on Testing, CV and TR 

Data with number of PCs as inputs 
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There are seven inputs. 

Rivalries Guidelines: Normal Complete Meter: Boxcar 

There are no hidden layers. The output layer is  

Function of transfer: tanhRule of Learning: step 

45 cluster centers are present.  

There are seven inputs. 

Layer of Output: Step Size: 0.5 Learning Rate: Initial at 0.01; Decays to 0.001 

There are 636 connection weights. 

49.76% less connection weights were used. 

TRMSE on average: 0.0012893             CVMSE on average: 0.01130 

RBF-DR-PCA (Dimensionally Reduced using PCA) takes 0.4600 microseconds to 

complete. 

 

Lastly, as illustrated in Figs. 46, 47, and 48, the new RBF (RBF-DR-PCA) 

classifier is trained and assessed under a variety of situations. 

 

 
 

Item 46. Variation of the % of data tagged for training and the average minimal MSE with 

test on the Testing and Training dataset 

 

 
 

Figure 47: shows the average minimal MSE variation with training and CV with percent 

accuracy for each of the 24 dataset groups. 

 

 
 

Figure 48: Average MSE Variation with Test on Training, CV, and Testing Datasets with 

Shifted CV Rows (n) 
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X. RESULTS AND DISCUSSION  

 

The outcomes of the RBF-based classifier and the optimized MLP classifier for the 

classification of PQ disturbances are evaluated in this research. With an average MSE of 

0.0008, the optimized MLP classifier obtained 99.18% classification accuracy, whereas the 

RBF-based classifier achieved 98.05% classification accuracy with an average MSE of 

0.0051. These findings clearly show that the MLP-based classifier is a better fit for handling 

this issue. 

 

Two dimensionality reduction techniques—Principal Component Analysis and 

Sensitivity Analysis—are used to improve performance and lower complexity. Classifiers are 

redesigned and optimized for better performance using these strategies. It is clear that the 

more efficient method for reducing dimensionality is Sensitivity Analysis. Sensitivity 

analysis reduces connection weights by 37.7% while increasing the MLP-based classifier's 

percent classification accuracy from 99.18% to 99.81%. Nevertheless, this method is not 

appropriate for the RBF-based classifier since it only marginally affects classification 

accuracy while reducing dimensions by 49.76%. 

 

The dimension reduction classifier based on MLP, utilizing sensitivity analysis, serves 

as an effective diagnostic tool for identifying common power quality disturbances. The 

average MSE for the samples remains consistently reasonable, around 0.0015185. Moreover, 

the average classification accuracy for both training and cross-validation instances is a 

respectable 98.05% and 96.92%, respectively, demonstrating sound classification 

performance. Comparative results are presented in Table I for reference. 
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Table 1: Effects on Average Classification Accuracy and Various Parameters When Classifier Tested on Unseen Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. No Classifier 

Average 

Training 

Mse 

Average 

Cross 

Validation 

Mse 

Percent Classification 

Accuracy When Tested On No Of 

Connecting 

Weights 

Percent 

Reduction 

Of 

Connecting 

Weights 

Time Per 

Exemplars Traing 

Data 

Cross-

Valid-

Ation Data 

Test 

Data 

01 MLP 0.00083773 0.025529 99.18 97.62 96.22 237 - - - 0.2030 µ-secs 

02 
MLP-

PCA 
0.00003944 0.0346457 99.00 96.76 95.11 202 14.76 0.2505 µ-secs 

03 MLP-S 0.000113194 0.01358683 99.81 98.63 96.74 150 36.70 0.4077 µ-secs 

04 RBF 0.0051902 0.0233185 98.05 96.92 95.47 1266 -  - - 0.604 µ-secs 

05 
RBF-

PCA 
0.00606888 0.03276 96.27 94.43 92.88 636 49.76 0.4600 µ-secs 

06 RBF-S 0.0012893 0.01130 97.87 97.17 96.80 681 46.20 0.2683 µ-secs 
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