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BIO-MEDIATED SOIL STABILIZATION 

TECHNIQUES (BIO-POLYMERS AND MICP)  
 

Abstract 

 

Soil stabilization through biologically 

and eco-friendly ways are not so long-standing 

attempts because of the extensive research 

done in the geotechnical engineering field. 

Among them, are the use of environmentally 

friendly materials like biopolymers, and other 

methods namely, microbial-induced calcite 

precipitation (MICP). Biomineralization 

mediated by MICP is a phenomenon whereby 

certain microorganisms produce enzymes that 

can precipitate calcium carbonate crystals. 

Most importantly, carbonic anhydrase and 

urease producers are widely used for MICP in 

various fields. The mineralization properties of 

these enzymes are drastically exploited for 

various purposes including the formulation of 

self-healing bio-concretes, retention of 

monuments, sealing of cracks in roads and 

buildings, etc. Biomineralization through 

MICP processes can in a way contribute to the 

carbon sequestration through the active 

formation of calcites when these enzymes react 

with atmospheric carbon dioxide. The 

increased rise of environmental issues upon the 

use of chemical stabilizing agents made people 

think of a more sustainable solution through 

the application of biopolymers, such as guar 

gum, xanthan gum, alginate, beta 1,3/1,6 

glucan and chitosan. In conclusion, both the 

mentioned alternatives are considered eco-

friendly and are helpful in reducing carbon 

dioxide emissions. 
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I.  INTRODUCTION  

 

Based upon the outcomes of the microbial treatment of soil, there are at least eight 

different categories of biotechnological techniques used in the construction industry (Fig 1.) 

[1]. In terms of the fundamental characteristics of research methods, two biological processes 

projects:  

 

Biocementation: It involves in situ microbial production of particle-binding compounds to 

improve soil shear strength 

 

Bioclogging: It entails using biological processes to produce pore-filling materials in order to 

significantly reduce the hydraulic conductivity of soil or porous matrix. These techniques 

enable a comprehensive perspective and significant qualities in the field of soil stabilization 

and thus serves as additional support for this [2]. Although anaerobic fermenting bacteria 

have been proposed, microaerophilic bacteria and facultative anaerobic are the best 

candidates for these approaches (soil bioclogging, biocementation, and bio aggregation) [1]. 

 

 
 

Figure 1:  Construction related microbial biotechnology. 

 

1. MICP in soil stabilization : Microbial induced calcite precipitation (MICP), also called 

microbial urease catalyzed biomineralization, is a biocementation method and has been 

employed extensively in environmental and geotechnical engineering, and building and 

materials technologies, mostly focussed at upgrading soil properties and minimizing 

hazards, like mitigation of internal and surface erosion, liquefaction control, slope 

stabilization, structural stability, restoration of heavy metal contamination in water and 

soil, cations (Ca
2+

) and metalloids, and even in self-healing of bioconcrete, soils or cracks 

[3, 4, 5]. The term "microbially induced calcite precipitation" (MICP) describes how 

microbial cells and metabolic processes cause calcium carbonate to precipitate out of a 

supersaturated fluid. In the course of MICP, organisms are capable of releasing more than 

one metabolic products (CO₃²⁻), which when they interact with the ions (Ca
2+

) in the 
environment, precipitate minerals. In the past, many mechanisms including 

photosynthesis, urea hydrolysis, sulphate reduction, anaerobic sulphide oxidation, 

biofilm, and extracellular polymeric molecules were proposed as being in charge of 

producing calcium carbonate precipitation. [6]. However, the most popular technique is 

for bacteria to precipitate calcium carbonate through urea hydrolysis [2]. 
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2. Mechanism of microbial-mediated calcium carbonate precipitation: So far scientists 

have identified the role of urease EC 3.5.1.5) and carbonic anhydrase (EC 4.2.1.1) in 

MICP process and substantial research is still going on in the area to talk about the 

application of MICP for geotechnical and environmental applications. The approach of 

soil stabilisation that is most frequently investigated is bio-cementation, which 

precipitates carbonates from urea through a process called carbonate precipitation. The 

interaction between (HCO
3⁻) and calcium ions present in the microenvironment, as well 

as other metabolic wastes, causes calcium carbonate to develop in MICP. [7]. The most 

frequent mechanism for urease-producing bacteria, such as Sporosarcina pasteurii, 

Bacillus megaterium, and Sporosarcina aquimarina, to precipitate carbonate is by the 

hydrolysis of urea. [3, 8. 9]. Some other representative species include Bacillus 

sphaericus and Pararhodobacter sp. The urease enzyme production through bacterial 
metabolic activities marks the initial step of the process of carbonate precipitation by 

ureolysis, followed by the development of ammonia (NH₃+
) and dissolved inorganic 

carbon (DIC) from the urea catalyzed by the urease enzyme (Equation (1)). This causes a 

rise in pH (alkalinity) near the bacteria cells (Equations. (2), (3)), and ultimately resulting 

in the carbonate precipitation (Equations (4), (5)) [3]. 

 

(NH₂ )₂ CO + H₂ O → 2NH₃  + CO₂   -----------------                                                (1) 

2 NH₃  + 2 H₂ O ↔ 2 NH₄ ⁺  + 2 OH⁻  -------------------                                             (2) 

CO₂  + 2 OH⁻  ↔ HCO₃ ⁻  + OH⁻  ↔ CO₃ ²⁻  + H₂ O -----------------                      (3) 

Ca²⁺   + Cell → Cell−Ca²⁺  -----------------                                                                    (4) 

Cell−Ca²⁺ + CO₃² →  Cell−CaCO₃ -----------------                                                    (5) 

 

Carbonic anhydrase is a further significant enzyme that performs a key function in 

addition to urease. The primary goal of carbonic anhydrase-induced calcium carbonate 

precipitation is to catalyse the interaction between Ca
2+

 and CO2 in water [10]. The 

synergistic role of carbonic anhydrase and urease was already reported by Park and 

Hausinger and Dhami et al. [11, 12]. This is caused by the inclusion of nickel in the 

urease active centre, which depends on the control of the CO
2
/HCO

3
 reaction, which is 

facilitated by carbonic anhydrase. The synergistic process can be discussed in the 

following way: the initial ingredient, urea, is degraded by the urease enzyme into a mole 

of ammonia and carbamate (Equation 6), which is followed by the spontaneous 

hydrolysis of carbamate into a mole of ammonia and carbonic acid (Equation 7). 

 

CO(NH₂ )₂  + H₂  → NH₂ COOH + NH₃  -----------------                              (6)  

NH₂ COOH + H₂ O → NH₃  + H₂ CO₃  --------------------                              (7) 

 

Then carbonic acid will get converted to bicarbonate (Equation 8) by carbonic 

anhydrase and ammonia hydrolysis will take place forming two moles of hydroxide and 

ammonium, similar to the step mediated by urease (Equation 2).  

 

H₂ CO₃   ↔  HCO₃ ⁻  +  H⁺  -----------------                                                   (8) 

 

Here too, the pH is elevated around the cell, which will cause calcium carbonate 

to precipitate when soluble Ca
2+

 is present (Equations 9, 4-5). 
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HCO₃ ⁻  + H⁺  + 2NH₄ ⁺  + 2OH⁻ →  CO₃ ²⁻  + 2NH₄ ⁺  + 2H₂ O ----- (9) 

 

In terms of the rate of ureolysis (or urease activity), as well as nucleation and 

crystallisation, bacterial strains play a crucial part in an efficient MICP. Like other 

biomineralization processes, calcium carbonate (CaCO3) precipitation can happen via two 

major mechanisms: either biologically induced or controlled [13]. The organism 

significantly influences the process, including the nucleation and growth of the mineral 

particles, in physiologically regulated mineralization. The creature produces minerals in a 

way unique to its species, independent of its environment. However, as the sort of mineral 

generated depends largely on the environmental conditions, and since no additional 

specialised structures or other particular molecular pathways are considered to be 

involved, the synthesis of calcium carbonate by bacteria is often referred to as being 

"induced." Different bacterial species and abiotic factors (including salinity and medium 

composition) appear to contribute in different ways to calcium carbonate precipitation in 

a range of circumstances [14]. 

 

3. Factors affecting MICP: In MICP, urea and a calcium source are used as the 

cementation solution, which is subsequently injected into the medium after the 

introduction of bacteria [15]. A simple and uncomplicated method of MICP that can 

produce high amounts of CaCO3 in a short amount of time is calcite precipitation. The 

seemingly straightforward chemical process of calcium carbonate precipitation depends 

significantly on the pH, calcium concentration, DIC quantity, and accessibility of 

nucleation sites [16]. Availability of nucleation sites being the final parameter is crucial 

for continuous and stable calcium carbonate production, whereas the first three mentioned 

parameters affect the carbonate ions concentration (CO₃²⁻) or the saturation state [17]. 
Most of the ureolytic bacteria that have been discovered and are now in use are aerobes, 

hence they are employed for MICP in oxic settings. This facilitates their continuous 

enzymatic activity expression at the surface of soil where the oxygen is adequate. But the 

activity in anoxic conditions by the same organisms has been reported in many literatures 

[3, 18]. Each of these variables has a significant impact on the production of CaCO₃ 
crystals or ureolytic activity. Additionally, a number of environmental factors like 

temperature and carbon dioxide partial pressure affect the concentration of DIC (for 

systems exposed to the atmosphere).Additionally, the primary features of the treated 

(final) products, such as stiffness and strength, depend on the base material's grain 

characteristics, namely shape, particle roughness, and size, as well as the distribution and 

morphology of the cement within the medium (that is the crystal shape and size, amount, 

and location of calcium carbonate) [2, 19]. For example, coarse sand was infrequently 

chosen for bio-cementation since the microorganisms and particle sizes were 

incompatible [20]. The creation of a thin, uneven layer of calcium carbonate, which was 

insufficient to increase the specimens' strength, was blamed for low cementation in coarse 

soils. In the biomineralization process, when calcium carbonate precipitates along with 

the bacteria, bacteria act as nucleation sites. The many negatively charged groups found 

on the cell wall of bacteria allow positively charged metal ions to attach to their surfaces 

at neutral pH [21]. Later, these linked metal ions, such as calcium, could interact with 

anions, such as carbonate, to form an insoluble salt (e.g. calcium carbonate). When there 

is a sufficient excess of the required cations and anions, the metal salt on the cell surface 

acts as a nucleation site to initiate mineral formation. In addition to calcium carbonate 

precipitation, the shape of the crystals that are created affects how durable they are. 
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The method's advantage over traditional procedures is its ability to mitigate 

geotechnical engineering issues without causing any disruptions, along with the easy 

application over a large area at ambient temperatures, even under buildings, without 

disturbing them. While maintaining some of the soil's permeability, MICP gives 

significant gains in strength, stiffness, and dilative behavior. It has been known that MICP 

can modify soils' engineering characteristics, including their strength, stiffness, and 

hydraulic conductivity. The same method can also be used to enhance the quality of sand 

and soil, as well as to seal concrete with cement. Environmental remediation using MICP 

has proven to be efficient and ecologically sustainable. MICP is used to sequester 

atmospheric CO2 and remove radionuclides and heavy metals from damaged areas. MICP 

applications are not restricted and are helpful for other applications to create goods that 

are secure and stable for the environment. The technique of application, which 

necessitates numerous two-phase cycles of treatment to produce sufficient strength and 

carbonate precipitation, is one of the major MICP drawbacks, followed by the high cost 

of implementation [22, 23]. 

 

Table 1: Microorganisms and enzymes used for MICP 

(Referred below) 

 

II. BIOPOLYMERS IN SOIL STABILIZATION 
 

The use of biopolymers in place of traditional admixtures for soil stabilization and 

enhancement is becoming more and more common [42]. The purpose of using Xanthan gum 

in geotechnical engineering is to improve soil erosion resistance by filling soil pores and 

reducing the permeability of sandy soils [43, 44]. Through resonant column (RC) testing, Im 

et al. [45] studied the dynamic characteristics of xanthan gum with typical Korean sand. 

Although xanthan gum could hold the sand together, moisture exposure significantly reduced 

its strength. Clay was added, which considerably enhanced the performance by strengthening 

the polymer. According to the mechanical properties derived from UCS testing, adding clay 

increases the compressive strength of biopolymer stabilized sands by a significant amount 

[46]. This study assessed how well the biopolymers guar gum (GG) and xanthan gum (XG) 

improved the consolidation properties and unconfined compressive strength (UCS) of an 

expansive soil under various testing conditions. The crosslinking of soil particles by gum 

strands, which contributes to the increase in strength, was validated by the microlevel 

experiments [47]. 

 

Similarly, gellan gum has been studied for its impact on pore filling to reduce 

permeability and increase the strength of shallow soils [48].  Through direct shear 

experiments, Chang and Cho [49] examined how the shear strength and cohesiveness of 

gellan gum-treated sand-clay mixes increased with increasing overburden stress levels. Agar 

offers hard textures and has been utilized as a stabilizer when it forms gels [50]. Because 

polyacrylamide (PAM) is more efficient and reasonably priced, it is frequently utilized for 

EOR, water treatment, and soil amendment effects [51, 52]. Guar gum was added in 

concentrations of 0.22 to 5%, which decreased silt and sand permeability and raised sand 

cohesion stress. Additionally, Chudzikowski [53] used scanning electron micrographs to 

demonstrate how guar gum (2 % concentration after 5 weeks of curing time) filled pores 

between soil particles (SEM). 

 



Futuristic Trends in Construction Materials & Civil Engineering  

e-ISBN: 978-93-5747-754-3 
IIP Proceedings, Volume 2, Book 11, Part 3, Chapter 3   

BIO-MEDIATED SOIL STABILIZATION TECHNIQUES (BIO-POLYMERS AND MICP)  

 

Copyright © 2022 Authors                                                                                                                        Page | 219  

 

The biopolymer dosage should be chosen keeping in mind the intended strength, 

curving temperature, and time. To attain a higher UCS, the curing time or temperature (or 

both) should be raised as the biopolymer dosage increases [46]. The biopolymer 

concentration in the biopolymer-treated soil mixture, moisture condition, temperature, and 

dehydration time are the significant elements and soil and environmental conditions affecting 

various geotechnical aspects of biopolymer-treated soils [54]. Additionally, it would be 

simple to create and implement artificial intelligence methodologies and algorithms to 

enhance the performance of biopolymers as a workable soil development technique. For 

instance, Bayesian networks or genetic programming neural networks have been successfully 

employed in the investigation of geopolymer concrete and brick, and they may be imitated 

for biopolymers [55].   

 

In a similar study, a cross-linked polysaccharide biopolymer called -glucan (-G) and a 

cross-linked protein biopolymer called poly—glutamic acid (-PGA) was used to stabilize the 

soil. Genetic programming was used to analyze how various variables related to the stabilized 

pavement design. The study's findings demonstrate that subgrade stabilization can be 

accomplished using -PGA - -G biopolymer. A tiny (1%) amount of biopolymer results in 

specimens with a 56-day UCS cure that is 247% stronger [56]. However, given that current 

stabilization/solidification techniques are susceptible to the effects of Mine Tailing toxicity 

and salinity, it is crucial to look into the possibility of more environmentally sound, long-term 

solutions under these circumstances. Armistead et al. (2022) [57] examined the effects of 

salinity (NaCl, 0-2.5 M) and arid climate temperatures (25 °C, 40 °C) on the stability of MT 

exemplar and sand (control) soil systems by locust bean gum (LB) biopolymer. 

 

Some of the shortcomings of conventional systems, such as the requirement for 

microbial and nutrient input, time for cultivation and excrement precipitation, and 

inappropriateness with clayey soils, are solved by the direct use of exo-cultivated 

biopolymers for soil remediation. There are some advantages of direct use of biopolymers in 

soil over traditional biological soil treatment methods. Furthermore, because biopolymers are 

widely available and innocuous in nature, they can be utilized as a replacement for cement 

that releases greenhouse gases. Moreover, biopolymers can also be produced in large 

quantities and react with soil particles rather quickly, making them useful for short-term and 

urgent applications [58]. Each biopolymer is made of the same biodegradable polymers, but 

because the physiochemical properties vary, we need to utilize engineering judgment to 

harness these features effectively [42].  

 

III. PROPERTIES OF MICROBIALLY TREATED SOIL 

 

  The section demonstrates the various properties of soil after treating it with various 

microbial treatment techniques. This section has been categorized as strength and durability 

properties of soil strengthened with various techniques. 

 

1. Strength properties: Ng et al. [59] applied microbial induced calcium carbonate 

precipitation (MICP) procedure using B. megaterium to evaluate the shear strength, and 

they observed that the ratio of treated shear strength to that of untreated sample 

augmented to 2.64 from 1.40. Unconfined compressive strength (UCS) was evaluated to 

be 800 kPa (prior to freeze-thaw cycling) for the MICP treated samples and that of 

samples treated with OPC resulted in > 600 kPa (prior to freeze-thaw cycling) and 
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typically results in severe damage, as anticipated with 40% reduction in strength, was 

observed by Cheng et al. [60] to validate bio-enzymatic facilitated enhancement of soil. 

Nafisi reported a tensile strength range of 210 kPa to 710 kPa with the type of sand and 

mass of carbonate, whereas a minimum compressive strength of 300 kPa was stated by 

van Paassen et al. [61]. High compressible with reduced shear strength fine-grained soils 

are pervasive in various regions of the globe [62]. Therefore, enhancing the properties of 

soil are frequently advised for these soils due to the concerns related to low bearing 

capacity, differential settlement, and inappropriate sideway motions on loading, when it is 

provided underneath foundations [63]. In the course of erection of roads, runways in 

airport, and railway tracks, chemical stabilisation practices have been often employed to 

improve the soil bearing capacity, with a reduction in permeability and settlements, and 

regulate the issues related to swelling/shrinking [64-67]. According to extensive research 

associated with the chemical processes and stabilisation mechanisms for conventional 

soils treated with additives [68], the engineering properties depend on the nature of 

chemical employed and the essential characteristics and properties of the stabilised soil. 

 

 In triaxial testing, Cheng et al. [60] reported that the mechanical 

characteristics of sand treated with the bio-cements increased the effective shear strength 

(i.e., cohesion, frictional angle) with a rise in the concentration of CaCO3 at all level of 

saturation. The crystals precipitated have improved the cohesiveness with the aid of 

coarse sand more effectively at a lower saturation level than by increasing the frictional 

angle. With the similar level of saturation and CaCO3 content as fine sand, coarse sand 

showed a greater friction angle compared to that of fine sand. According to the various 

researches, the major impacts of tiny soil particles are that they (a) increase the number of 

inter-particle interaction spots for the MICP practice and (b) lessen the tension occurring 

at each particle contact. The MICP method works best at a particle interaction right when 

cementation starts, and it becomes less effective as cementation spreads outward around a 

particle contact. Due to an increase in inter-particle interactions, moving the CaCO3 

crystals to two interaction places as opposed to one would be additional beneficial. The 

contact stress likewise reduces in direct proportion to the particle radius squared. As a 

result, smaller particles have two complementary advantages: improved MICP and 

reduced particle contact stresses. 

   

Despite the fact that various investigations describe the strength parameters on a 

broad scale, triaxial tests are indicated to evaluate how biocemented soils react under 

monotonic and cyclic loadings since they replicate the performance of soil in the site for 

road applications. 

 

2. Durability properties: Increased soil strength (bearing capacity and shear strength), 

improved surface erosion resistance, and regulation of hydraulic conductivity and seepage 

are the primary goals of ground improvement [69].  

 

With soil treated with a precipitation of 100 kg/m
3
 CaCO3 resulted in a reduction 

in the permeability of about 60% [61]; whereas a reduced permeability results was 

observed by Ivanov et al. as per [70] in the range of 50 to 99% with the help of 1M 

cementation solution as a result of pore space gets clogged with calcite crystals. This 

might be due to the formation of crystals at interaction spots, which can sustain the 

assembly of pores without restraining the pore water agility. 
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According to Chang et al. [71], a tiny amount of Korean red-yellow soil that had 

been treated with xanthan gum increased soil erosion resistance and improved plant 

cultivation. Strong water adsorption during the rainy season and high soil moisture 

retention during the dry season are both characteristics of xanthan gum-treated soil [45].  

 

Reduced permeability inhibits water from entering the samples, which reduces the 

amount of biopolymer particles that dissolve into the stabilized specimens [72-73]. 

Various studies observed that numerous biopolymers such as xanthan gum, chitosan, guar 

gum, poly glutamic acid, poly-hydroxybutyrate and sodium alginate that are available in 

the market were proficient in decreasing the soil permeability up to five times [74-77]. 

Biopolymers in soil have the positive potential to dramatically lower the erodibility of 

soil by boosting inter-particle cohesion, even if they make up just a tiny portion (0.5–

1.0%) of the soil mass [71]. 

 

Chang et al. [78] investigated the strength and resilience of Jumunjin sand 

(standard sand of the Republic of Korea) treated with gellan gum biopolymer were 

assessed during cyclic wetting and drying. The acquired results show that the repeated 

wetting and drying of sands treated with gellan gum causes a progressive loss of strength 

due to the dissociation of the gellan gum monomers during wetting and incomplete 

recomposition during re-drying, with a loss of strength of around 30% over 10 cycles. 

Even after several cycles, a certain amount of strength recovery and resistance was seen, 

suggesting that gellan gum-treated soils may be used in practical construction for short- 

or medium-term goals. 

 

 Table 2 outlines the merits of five frequently utilized biopolymers in the 

geotechnical engineering field for stabilizing various types of soil. 

 

Table 2: General merits of five frequently used soil stabilizing biopolymers 

 

Biopolymer 
Chemical 

composition 
Merits References 

Xanthan gum C35H49O29 Reduced permeability 

[58,72,79] Strong hydrogen bonds allow for the retention 

of the water. 

Gellan 

 gum 

 Strengthening and extending the resilience of 

soils using thermos-gelation treatment 
[71] 

Agar (C12H18O9)n Due to the influence of curing time, increase the 

soil's shear strength. 
[79-81] 

Quick gelation without chemical reaction during 

soil enhancement method 

Polyacrylamide (C3H5NO)n Upsurge water permeation 

[58,82-84] Reduction in soil erosion as a result of 

Polyacrylamide hydrogels 

Guar gum  Decreased bleeding level of the ground 

granulated blast furnace slag cement grouts 
[72,85] 

Condense the penetrability 

Improved shear strength constraints 
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IV. CONCLUSION 

 

Geotechnical engineering has long attempted to and developed methods of enhancing 

soil characteristics. Out of the many ancient techniques, people are now opting for more eco-

friendly and sustainable techniques such as the use of biopolymers and non-pathogenic 

microorganisms in soil stabilization techniques.  The techniques for bio-mediated soil 

improvement have been developed to lower carbon dioxide (CO2) emissions during cement 

manufacture. Biopolymers being the cost-effective technique, have many more advantages 

over MICP, such as, their use can avoid some difficulties occurring while cultivating 

microorganisms in soil.  The recent researches carrying out on both the areas are hoping to 

provide better user friendly and sustainable qualities, whereby a complete eradication of 

cement usage and the subsequent greenhouse gas emissions can be expected.  
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Organism 

 
Enzyme Application Reference 

B. pasteurii NCIM Urease To improve the properties of bricks by MICP [24] 

Kocuria. flava CR1 Urease Investigated the copper bioremediation capacity of K. flava CR1 based on MICP [25] 

Halomonas sp. SR4 Urease examined how MICP can be used to remove strontium from aquifer quartz sand [26] 

Sporosarcina ginsengisoli 

CR5 
Urease Investigated the role of MICP in remediating As (III) contaminated soil [27] 

Bacillus megaterium 
Urease 

Investigated MICP for reducing the hydraulic conductivity (bioclogging) and improving 

the shear strength (biocementation) of two soil types (tropical residual soil and sand) 
[8] 

Bacillus megaterium SS3 
Urease 

Investigated the synergistic role of carbonic anhydrase and urease in calcium carbonate 

biomineralization 
[28] 

Methylocystis parvum 
Urease 

M. parvus OBBP offered a substitute MICP made of calcium formate to address some 

drawbacks like the emission of ammonia and the creation of nitric acid. 
[29] 

Lysinibacillus sphaericus 

CH5 
Urease Investigated the remediation of heavy metal-contaminated (Cd) soil by L. sphaericus CH-5 [30] 

Bacillus megaterium 
Urease 

It has been demonstrated that improving the characteristics of structural concrete through 

the use of the bio-mineralization mechanism in cementitious materials is a good idea. 
[31] 

Bacillus aerius 
Urease 

Studied the strength and permeation properties of concrete employing calcite producing 

bacteria and rice husk ash 
[32] 

Bacillus sphaericus 
Urease 

Used B. sphaericus to examine how high-strength concrete's compressive strength could be 

improved 
[33] 

Sporosarcina pasteurii 

(ATCC 6452) 
Urease 

Evaluated the efficiency of MICP for enhancing the resistance to internal erosion of 

gravel-sand mixtures 
[34] 

Bacillus megaterium 
Urease 

Examined the effectiveness of sand biocementation to reduce an aeolian sand's 

susceptibility to wind erosion 
[35] 

Sporosarcina pasteurii 
Urease 

Recycled fine aggregates (RFAs) of mortars were shown to have better characteristics as a 

result of appropriate calcium carbonate precipitation on the mortar surfaces 
[36] 

Sporosarcina pasteurii 
Urease 

Investigated the reduction in liquid limit and increase strength via biocementation; increase 

strength via bioencapsulation of marine clay 
[37] 

Bacillus subtilis 

Urease 

It was examined how adding B. subtilis as a unique method affected the concrete's water 

absorption, electrical resistance, compressive strength, chloride ion penetration, 

carbonation depth, water penetration depth, and compressive strength in a sulphate 

[38] 
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environment. 

Sporosarcina pasteurii and 

Bacillus sphaericus Urease 

The effects of various treatment durations and pore volumes (PVs) of cementation media 

on MICP were investigated through laboratory procedures carried out outside of sterile and 

temperature-controlled conditions. 

[39] 

Sporosarcina Pasteurii 

(BCRC11596) 
Urease Investigated the effectiveness of MICP in mitigating beach erosion for coastal stabilization [40] 

Streptomyces microflavus Carbonic 

anhydrase 
Presented a method where CO2 is used for the treatment of calcareous sand [41] 

  

Table 1: Microorganisms and enzymes used for MICP 

 


