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THROUGH MATHEMATICAL PROGRAMMING 
 

Abstract 
 
 The attempts to simulate the 
economy of agricultural production, 
including its dimensions, are where 
mathematical programming in agriculture 
first emerged. In light of economic 
research, we must talk about the design and 
resolution of single-period, deterministic 
linear programming models, which assist 
farmers in enhancing their economic 
growth and achieving happiness and 
success in life. The models have been 
improved in order to incorporate more 
economic theory and economic reality. 
Using a set of fixed farm restrictions, linear 
programming can be used to identify a 
combination of farm enterprises that will 
maximize profits. 
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I. INTRODUCTION 
 

 Since the beginning, statistical and quantitative approaches have been crucial in the 
study of agriculture, particularly in agricultural economics and other areas of applied 
economics. As a contribution, linear programming has emerged as one of the most useful 
methods for the study of resource allocation decisions at the business and sector level in the 
agriculture industry. For more than three decades, the field of agriculture economics has used 
this mathematical programming. It has been such a helpful analytical tool that its fundamental 
concepts are taught in all agricultural colleges and universities. In the past decade, there have 
also been several methodological advancements in the field of agriculture, and both 
developed and developing nations have adopted mathematical programming models for 
agriculture. The models have been improved in order to incorporate more economic theory 
and economic reality.  
 
 The models serve as a bridge between statistics and economic theory on the one hand 
and a realistic understanding of current issues and policy stances on the other. The attempts to 
model the economics of agricultural production, including its dimensions, are where 
mathematical programming in agriculture first emerged. Economic agriculture is a good fit 
for the mathematical programming structure also known as process analysis or activity 
analysis. In both rich and developing nations, agronomists and other agriculture specialists 
consider the agricultural inputs and outputs coefficient in terms of the annual crop cycle and 
per acre, hectare, or other units of land. In this scenario, the model turns into a tool for 
converting micro-level (farm-level) information into macro-level (sector-level) functions, 
which are more recognizable to many economists. At the sector level, parametric variations 
can be used to generate response functions that are implicit in the model's structure. 
 
 The equilibrium production and price levels that the sector would typically trend 
toward can be determined using a set of estimated supply and demand functions at the sector 
level. Data issues and changes in the underlying economic structure are the key issues with 
depend solely on econometrics. Cross-supply effects are crucial parts of the supply functions 
because, in many circumstances, numerous crops compete for the same fixed resources. As a 
result, the data problem develops. In a time series data collection, there are typically 
insufficient degrees of freedom to estimate both the own and cross-supply elastic tics. In 
addition to these factors, the supply functions of a programming model offer details on the 
response of inputs like labor, agrochemicals, and the like. 
 
 In its most basic form, linear programming is a technique for identifying a 
combination of farm companies that will maximize profits while taking into account a set of 
preset farm limitations. Early uses of linear programming in farm planning presupposed a 
single-period planning horizon (no expansion), profit-maximizing behavior, and a specific 
setting. 
 
II. STRUCTURE OF LINEAR PROGRAMMING MODEL 

 
 Individual farmers frequently have to choose what products to produce, how to 
produce them, and during which seasonal times. These decisions are influenced by forecasted 
yields, costs, and prices for individual farm enterprises, as well as by the need for fixed 
resources within the enterprises and the total supply of fixed resources available. In its most 
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basic form, linear programming is a technique for identifying a combination of farm 
companies that will maximize profits while taking into account a set of preset farm 
limitations.  
 

For a given farm situation the linear programming model requires the specification of 
 
 The alternative farm activities, their units of measurement, their resource 

requirements, and any specific constraints on their production. 
 The fixed resource constraints of the farm 
 The forecast activity returns net of variable costs, hereafter called gross margins. 

 
To formulate the problem mathematically we introduce the following notation: 
 

X୨: The level of the j୲୦ farm activity, such as the acreage of … grown 
 

Let n denote the number of possible activities; then j = 1 to n 
 

C୨: The forecasted gross margin of a unit of  the j୲୦ activity (e.g., Rupee per ace) 
a୧୨: The quantity of the i୲୦ resource (e.g., acres of land or days of labor required to 
produce one unit of the  j୲୦ activity ) 
 

Let m denote the number of resources; then i = 1 to m 
 

b୧ ∶ The amount of the resource available (e.g., acres of land or days of labor) 
 

With the notation, the linear programming model can be written as follows: 
 

max Z = ∑ C୨
୬
୨ୀଵ X୨ … (eqn. 1) 

Such that, 
∑ a୧୨ X୨ ≤  b୧ ∀ i = 1 to m ୫

୨ୀଵ  … (eqn. 2) 
And,  

 
X୨ ≥  0 ∀ j = 1 to n … (eqn. 3) 

 
The challenge is to identify the farm plan with the highest overall gross margin𝐙,  

that does not break any of the fixed resource limitations (eqn. 2) or entail any negative 
activity levels (eqn. 3). The farm plan is specified by a set of activity levels, X୨, j =

1 to n). The primary linear programming problem is the name given to this issue. 
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Table 1: A Linear Programming Tableau 
 

Structure of Linear Programming 
 

Objective function 
Resource constraints 

𝑿𝟏 𝑿𝟐 … 𝑿𝒏 
 
 

RHS 

1 𝒄𝟏 𝒄𝟐 … 𝒄𝒏 Maximize 
2 𝒂𝟏𝟏 𝒂𝟏𝟏 … 𝒂𝟏𝟏 ≤ 𝒃𝟏 
3 𝒂𝟐𝟏 𝒂𝟐𝟐 … 𝒂𝟐𝒏 ≤ 𝒃𝟐 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
m 𝒂𝒎𝟏 𝒂𝒎𝟐  𝒂𝒎𝒏 ≤ 𝒃𝒎𝒏 

 
A matrix displaying each coefficient in the model's algebraic formulation. By 

custom, linear programming structures are presented in this manner. Several conventions 
have been introduced in Table 1.  

 
 First, the equation to be maximized is called the objective function. In the current 

problem, the objective is the total gross margin (eqn. 1) but other objective functions 
are also possible.  
 

 Second, the constraints are called rows and the activities are called columns.  
 

 Third, the Right Hand Side (or RHS) of the problem is defined as the fixed resource 
supply and the maximize coefficient. Though it is also possible to incorporate equality 
constraints (=) or greater than or equal (≥) constraints, they have all been specified as 
less than or equal (≤) constraints. 
 

 Assumptions: The linear programming model in equations (1) through equation (3) 
makes a variety of assumptions that change the nature of the production process, the 
resources, and the activities. 
 

 Optimization: Either maximization or minimization of a suitable objective function 
is used. 
 

 Fixedness: A non-zero RHS coefficient exists for at least one restriction. 
 

 Finiteness: If there are only a limited number of actions and limitations that need to 
be taken into account, the solution may be sought. 
 

 Determinism: In the model, all constants are a୧୨ , b୧,and c୨ 
 

 Continuity: Activities and resource usage can both be done in fractional unit 
quantities. 
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 Homogeneity: The same resource or activity has identical units throughout. 
 

 Additives: When two or more activities are used, their combined output equals the 
sum of their individual outputs. 
 

 Proportionality: Regardless of the degree of the activity used, it is assumed that the 
gross margin and resource requirements per unit of activity remain constant.  
 

 LetZ = f(b), and constant returns to scale mean that if all the fixed resources are 
increased by a factor of proportionality k, then the value of the objective function Z 
also increases by k. 
 
 
Specifically, f(kb) = kf(b) = kZ 
Since,  

Z =   c୨X୨

୨

 

If the c୨ coefficient is constant, it follows that 
 

kZ =   c୨ (kX୨)

୨

 

Thus, the ideal activity levels will therefore increase by k, if the fixed factor 
supply is increased by a factor of proportionalityk. 

 
According to this, the total output is equal to the sum of the factors times their 

respective marginal products if each factor is valued at its marginal product. Linearity in 
the activities, namely linear programming and the assumptions underlying the linear 
programming model, are defined by the additive and proportionality hypotheses used 
together. These presumptions must be true for all rows and columns of a model, but not 
necessarily for the actual farm production processes. It is feasible to increase the model's 
flexibility in a variety of inventive ways without going against the assumptions.  

 
The fixedness assumption can be relaxed through dynamic multi-period 

specifications which allow growth and changes in the resource constraints over time. 
Also, methods have been developed for modeling stochastic a୧୨ , b୧,and c୨ coefficients and 
for incorporating less than perfectly elastic input supplies. 

 
III. PRINCIPLES OF SOLVING MATHEMATICAL PROGRAMMING PROBLEMS 

 
 In terms of the ideal activity, the answer to a linear programming problem typically 
results in a distinct farm design. Consider the following linear programming problem: 
 

max Z = ax + by 
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Such that, 
 cx + dy ≤ e, resource bଵ 

 
fx + gy ≤ h, resource bଶ 

 
x, y ≥ 0 

 
If we plot the activity levels on the axes of a graph, the constraints of this problem 

can be portrayed as below figure: 
  

 
 

                 Figure 1: The Feasible Set 
 

 Each constraint is represented by a straight line that intersects the axes at the 
maximum level of each activity that can be produced with the assumed supply of the 
associated resource. For the jth activity and the ith resource, the maximum activity level is 
b୧ 

a୧୨
ൗ  

 Intermediate points along a constraint depict linear combinations of the activity that 
also exactly exhaust the resource. For a farm plan to be eligible for consideration as the 
optimal solution to the linear programming problem, it must be feasible for all the resource 
constraints. In this limits consideration to those combinations of x and y contained in the area 
OABC. ABC is known as the production possibility frontier, it defines the maximum amount 
of x and y that can be produced for all possible ratios of the levels of these activities. To 
identify the optimal farm plan, we need to introduce the objectiveZ. This is done by drawing 
revenue lines that define the combinations of x and y that can be used to attain some fixed 
amount of total gross margin Z. These revenue lines are always parallel, and the ones 
corresponding to larger values of Z always lie above and to the right of those corresponding 
to smaller values of Z. 
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Figure 2: The Revenue Lines 

At we want to maximize Z, the total optimal farm plan is clearly the feasible plan that 
lies on the highest attainable revenue line. 
  

 
                   

Figure 3: The Optimal Solution 
 

The set of realistic farm plans from Figure 1 has been placed in Figure 3 with revenue 
lines. The best answer to the linear programming issue is consequently the farm plan with the 
highest revenue from the set of workable farm plans from the frontier at B. The simplex 
method's key is to narrow down the pool of potential farm plans to a manageable quantity. In 
Figure 3, we were to rotate the revenue line to reflect alternative ratios of the activity gross 
margin. It should be clear that the optimal solution for each rotational shift must not only lie 
on the production possibility frontier ABC, but it will be either points A, B, or C. Some 



Futuristic Trends in Agriculture Engineering & Food Sciences 
e-ISBN: 978-93-5747-823-6 

IIP Series, Volume 3, Book 16, Part 2, Chapter 3 
                              DISCUSSION FOR ECONOMIC AGRICULTURE THROUGH 

MATHEMATICAL PROGRAMMING 
 

Copyright © 2024Authors                                                                                                                      Page | 136 

ambiguity arises if the revenue lines are exactly parallel to either segment yielding the same 
value of Z, so one can choose a plan lying at the end of the segment as the optimal solution 
The end-point solutions are again A, B, and C. 
  
IV. PROBLEMS WITH COMPUTATION IN MATHEMATICAL PROGRAMMING 

 
 Problems in mathematical programming may not always have an optimal solution, or 
they may have an optimal solution but the simplex process may converge slowly or not at all 
due to degeneracy issues. We have to discuss each problem as below: 
 
1. Infeasibility: If there isn't a single solution to a linear programming problem that meets 

every requirement, it is said to be infeasible. In reality, infeasibilities typically result from 
errors made when preparing the data for a linear programming task. They may also occur 
in huge and complex issues when the analyst does not adequately account for all of the 
logical relationships present in the model. 
 

2. Unboundedness: If there is a workable solution with an infinite value for the objective 
function, the problem is said to be unbounded. The most frequent cause of 
unboundedness is incorrect data preparation for a linear programming task. 
 

3. Degeneracy: If the value of the objective function remains constant from one iteration to 
the next, the problem is said to be degenerate. When the best incoming activity can only 
enter the basis at level zero, this occurs. Ties are yet another issue related to degeneracy. 
When two or more potential incoming activities at a given iteration are equally beneficial 
in terms of the growth in the objective functions that result, a tie is created. 
 

V. POST-OPTIMALITY ANALYSIS 
 

 In solving a linear programming problem, all the a୧୨ , b୧,and c୨ coefficients are 
assumed to be known constant. However, the user may not always be sure of his data, 
particularly his forecasts of activity gross margins. Some coefficients, such as price and 
yields, may also vary from year to year because of weather or economic changes beyond the 
farmer’s control. One way of dealing with these uncertainties in the data is to solve the model 
for different but realistic sets of assumptions about the data to determine the stability or 
robustness of the optimal farm plan. Such post-optimality analysis is also useful for 
evaluating longer-term farm decisions, or changes in the economic and technological 
environment, which affect the fixed constraints of the farm.   
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