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Abstract 

 

The LP-Sasakian manifold was 

investigated in this chapter. At first we 

introduced historical background of the 

concern manifold. Next some rudimentary 

facts and related properties of LP-Sasakian 

manifold are discussed. After that LP-

Sasakian manifold concerning generalized 

Ricci soliton is studied and investigate 

main result in the form of theorem that is 

LP-Sasakian manifold of odd dimension 

satisfying the generalized Ricci soliton 

equation is an Einstein manifolds. 
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I. INTRODUCTION 

 

An developing area of contemporary mathematics is the geometry of contact 

manifolds. The mathematical formalisation of classical mechanics has given way to the 

concept of contact geometry [7]. K- contact manifolds and sasakian manifolds are two 

significant kinds of contact manifolds [1], [20]. There are various researchers that have 

analyzed K-contact and Sasakian manifolds ( [21], [3], [4], [11], [19], [23]) and many others.  

 

The concept of the LP-Sasakian manifold was initially introduced by Matsumoto [13]. 

Mihai and Rosca defined the same notion independently in [16]. This type of manifold is also 

discussed in ([14, [22]). A complete regular contact metric manifold 2 1nM 

 carries a K-

contact structure ( , , , )g   , which is described in terms of almost kaehler structure ( , )J G of 

the base manifold's 2 1nM   . If the base manifold 2 1( , , )nM J G in this case is Kaehlerian, the 

K-contact structure ( , , , )g    is Sasakian. If 2 1( , , )nM J G  is only almost Kaehler then 

( , , , )g   is only K-contact [1].  Recent research in [12] has demonstrated the existence of 

K-contact manifolds that are not Sasakian. Even yet, Sasakian and contact structures are 

intermediated by K-contact structures. Numerous writers, including [3, [4], [9], [19], [21], 

[23], have researched K-contact manifolds. 

 

Let us consider function f on M , then  

 

(1.1) (  , ) ,g grad f f     

 

(1.2) (  )( , ) (  , ),Hess f g grad f      

for all smooth vector fields ,  . For a smooth vector field , we have ([15],[18])  

 

(1.3) ( ) ( , ).b g      

The generalized Ricci soliton equation in a Riemannian manifold ( , )M g  is described by [18] 

 

(1.4)  1 22 2 2 ,b bg c c S g     l  

where gl  is the lie derivative of , defined by  

 

(1.5) ( )( , ) ( , ) ( , ),g g g           l  

for all vector fields , ,   and 1 2, ,c c R . For different values of equation (1.4) is a 

generalization of killing equation 1 2( 0)c c     , for soliton 1 2( 0, 1)c c  , homotheties 

1 2( 0)c c  , , vaccum near-horizon geometry equation 1 2

1
( 1, )

2
c c   etc. We suggest the 

reader for further information ([2], [5], [6], [10], [18]). 

 

If  grad f  , then the equation for the generalized Ricci soliton is [8] 

 

(1.6) 1 2 .Hess f c df df c S g     
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The work in present Chapter motivated by [8], for the fact that relationship between 

LP-Sasakian and K-contact manifold, so we studied (2n+1)-dimensional Lorentzian para- 

Sasakian manifold over generalized Ricci soliton. 

 

II.  PRELIMINARIES 

 

A (2n+1)-dimension differentiable manifold will be LP-Sasakian manifold [13] [16], if it 

aquire the (1,1) tensor field  , vector field ,   is a 1 form on M , lorentzian metric g, 

accept [14],[17] 

 

(2.1)  2 ( ) ,I     ( ) 1,    ( , ) ( , ) ( ) ( ),g g            

(2.2)  ( ) 0,   ( ) 0,   ( , ) ( ),g     ( , ) ( , ),g g        

(2.3)         ,     

(2.4)          ( ( , ) , ) ( ( , ) ) ( , ) ( ) ( ),g R R g                          

(2.5)         ( , ) ( ) ,R          

(2.6)        ( , ) ( 1) ( ),S n      

(2.7)  ( ) [ ( , ) ( ) ( )] [ ( ) ] ( ),g                  

as any vector fields, ,  on ( )M . 

 

Additionally, If a manifold's Ricci tensor has the following form given below, it becomes an 

Einstein manifold:  

 

(2.8) ( , ) ( , ),S ag      

for vector fields ,  . 

 

Substituting      in (2.6) and then (2.4) and (2.2), we get 

(2.9) ( 1),a n   

 Take in account (2.9) , we have from (2.8)                 

(2.10) ( , ) ( 1) ( , ),S n g       

similarly from (2.10) we infer 

(2.11) ( 1) ,QX n    

 

III.   GENERALIZED RICCI SOLITON ON LP-SASAKIAN MANIFOLD 

 

Theorem 3.1. Let ( , , , , )M g   be a LP-Sasakian manifold then   

(3.1) ( ( ))( , ) ( , ) ( , ) ( , ),g g g g                l l  

for smooth vector fields , with  orthogonal to  . 

 

Proof: It is known that  

(3.2) ( ( ))( , )= (( )( , )) ( )( , ),g g g         l l l l l  
using (1.5) in (3.2) yields 
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(3.3)  

[ , ]

[ , ]

[ , ]

( ( ))( , )= ( ( , ) ( , ) ( , )

( ,[ , ]) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ),

g g g g

g g g g

g g g g

g g g

g g

  

    

     

   

 

   

  

 

 

 

  

 

 

 

 

         

                

                

            

      

l l

 

 

by definition of Riemannian curvature tensor, from (3.3) it follows that 

 

(3.4)  ( ( ))( , )=g( ( , ) , ) ( , )( ) ( , ),g R g g g                 l l l  

using (2.4) in (3.4) and with  orthogonal to  , we get 

(3.5)  g( ( , ) , ) ( , ),R g        

so, (3.4) may be expressed as 

 (3.6)  ( ( ))( , )= g( , ) ( , ) ( , ),g g g                l l  

 

Lemma 3.2:  Let M  be a Riemannian manifold and let f   be a smooth function. Then [15] 

(3.7)  ( ( ))( , ) ( ( )) ( ) ( ) ( ( )),df df f f f f         l  

for every vector field  . 

 

Theorem 3.2:  Let ( , , , , )M g   is a LP-Sasakian manifold which accept the generalized 

Ricci soliton equation. Then  

(3.8)  2 1 ( ( 1) ) ( )  .grad f n c n c f grad f         

 

Proof: Using (2.6) we have 

(3.9)  2( ) ( , ) [ ( 1)] ( ).c S n           

 

Making use of (1.6) and (3.9) implies 

(3.10)  1(  )( , ) ( ) ( , ) [ ( 1)] ( ).Hess f c f g grad n           

 

The lemma thus follows from (3.5) and (1.6), which gives the Hessian definition. 

Next, Suppose that is  orthogonal to  . From Lemma 3.1, and taking  grad f  , we get 

(3.11)  2( (  )( , ) ( ) (  , ) (  , ),Hess f f g grad f g grad f            l  

by Lemma (3.2) and above equation, we obtain 

 

(3.12)  
2 1

2

2 1

2( (  )( , ) ( ) ( ( 1) ) ( , ) ( ( ( )  ), )

                              ( ( 1) )) ( , ) ( ( ) ),

Hess f f n c g c g f grad f

n c g c f

     

   

          

     

l
 

 

since and from equation (2.10), we obtain 

(3.13)   

 

1 1 12( (  )( , ) ( ) ( ( ) ( ) ( ) ( (  , ) 2 ( ( ) ( ( )),Hess f f c f f c f g grad f c f f              l  
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Note that, from equation (2.3) , we have 0g l it implies . Applying the Lie derivative to 

the generalised Ricci soliton equation (1.6) and the aforementioned fact: 

 

 (3.14) 12( (  )( , ) 2 ( ( ))( , ).Hess f c df df    l l o  

Using (3.13), (3.14) and Lemma (3.2) we infer that  

(3.15) 
2

1 1( )[1 ( ) ( )] 0.f c f c f      

 

According to Lemma 3.2 we have 

(3.16)   

1 1

1

2 2

1 2 1

( ( )) ( ,  )

               ( ,  )

                =c ( ( 1) ) ( ) ,

c f c g grad f

c g grad f

n c c f



   



 



 

  

 

 

by equation (3.15) and (3.16), we obtain 

 

(3.17) 1 2( )[1 ( ( 1) )] 0.f c n c      

Which implies               ( )0.f   

 

Provided 1 21 ( ( 1) 0c n c    . Therefore  grad f  is parallel to  . Hence  grad f  as

kerd    is nowhere integrable, that is, f is a constant function. Thus the manifold is an 

Einstein one follows from (1.6), so we concluded that 

 

Theorem 3.3: If ( , , , , )M g   is a odd-dimensional LP-Sasakian manifold that satisfies the 

generalized Ricci soliton equation with 1 2( ( 1) 1c n c    . Then f
 has a constant value. 

 

 Additionally, manifold is an Einstein manifold if 2 0c  .  The lemma thus follows from (3.5) 

and (1.6), which gives the Hessian definition.  
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