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DEVELOPMENT OF MODEL PREDICTIVE 

CONTROL FOR MAGNETIC LEVITATION SYSTEMS 
 

Abstract 

 

The study of Magnetic Levitation 

systems (Maglev) has gained significant 

attention due to their minimal friction and 

energy-efficient attributes, which are deemed 

crucial factors. This paper introduces a novel 

magnetic levitation system implemented 

through the Simulink environment. The 

dynamics of Maglev exhibit nonlinearity and 

high instability, which renders the task of 

devising an appropriate control algorithm 

even more challenging. The main goal of this 

research is to control the position of a 

ferromagnetic ball within the airspace of the 

nonlinear system. In this investigation, the 

suggested controller is formulated based on 

the linear predictive model, derived by 

approximating the system’s behavior around 

a known operational point. The efficacy of 

the designed control approach is validated 

through simulation levitation model. The 

performance of the suggested controller is 

evaluated in comparison to an existing PID 

control method [1], and it demonstrates 

superior results. 

 

Keywords: Magnetic Levitation systems, 

friction, maglev, linear. 

Author 

 

Lakshmi Dutta 

University Science  

Instrumentation Centre 

North Bengal University 

Siliguri, West Bengal India. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-671-7 

IIP Series, Volume 3, Book 9, Part 4, Chapter 3 

DEVELOPMENT OF MODEL PREDICTIVE CONTROL FOR  

MAGNETIC LEVITATION SYSTEMS 

 

Copyright © 2024 Authors                                                                                         Page|166 

I. INTRODUCTION 

 

Magnetic levitation systems hold practical significance across diverse engineering 

applications. Examples include their utilization in high-speed maglev passenger trains, bear- 

ings designed for frictionless movement, elevating wind tunnel models, isolating vibrations in 

delicate machinery, suspending molten metal within induction furnaces, and raising metal 

slabs during manufacturing processes. Depending on the origin of levitation forces, maglev 

systems can be categorized as either attractive or repulsive setups. Typically, these types 

of systems exhibit instability when operated in open-loop configurations and are 

characterized by complex nonlinear differential equations, which introduce added challenges 

in controlling them. As a result, a crucial attempt involves the development of high-

performance predictive controllers aimed at effectively managing the position of the levitated 

object. 

 

Recently, numerous studies have emerged in the literature concerning the control of 

magnetic levitation systems. These conventional practices involved linearizing the magnetic 

levitation system at the equilibrium point using Taylor-series expansion. Subsequently, 

controllers like the proportional- integral-derivative (PID) [2] and linear-quadratic regulator 

(LQR) [3] were designed. However, this linearization approximation method led to reduced 

robustness in magnetic levitation control systems as certain nonlinear terms were overlooked. 

The feedback linearization technique has found application in devising control strategies 

for magnetic levitation systems [4], [5]. This approach aimed to improve upon the 

drawbacks of the approximation linearization method. The subsequent adoption of the 

backstepping technique in controller design [6], [7] marked a further step in this direction. In 

recent years, more advanced control techniques have been designed to man- age in Maglev 

system. These include robust-control, adaptive- control, conventional control, or various 

combinations of these techniques. Authors in [8] introduced a robust controller for a 

nonlinear system (Maglev), enhancing robustness against parametric uncertainties and 

unwanted disturbances. Similarly, [9] put forth an advance disturbance observer based 

controller to improved the forces involved in levitating and stabilizing the Maglev vehicle 

system. In the reference [10], the authors utilized an adaptive sliding mode control (SMC) 

law in combination with a magnetic flux observer for Maglev. This control strategy was 

applied to handle model uncertainties and external disturbances, enhancing the system’s 

robustness and stability. However, the challenge of chattering remained a significant 

hurdle in SMC application. Subsequent efforts explored intelligent control methods to 

tackle the intricate nonlinearity of magnetic levitation systems. In the reference [11], a 

novel fuzzy controller was presented for the levitation system. This controller was built 

upon the Takagi-Sugeno fuzzy model and incorporated a H∞ control law. The aim was to 
improve the system’s robustness against parameter perturbations and external 

disturbances, enhancing its overall performance and stability. Building on this, an 

improved approach using a parallel-distributed compensation scheme was presented [11], 

albeit with the challenge of establishing stable fuzzy logic rules. In [12], a fuzzy neural 

network (NN) was employed to emulate an adaptive observer, forming a control 

framework for hybrid permanent magnet and electromagnet Maglev transportation 

systems. This approach exhibited excel- lent performance due to the model-free nature of 

NN. How- ever, the methods mentioned earlier have certain limitations when it comes to 

addressing constraints in the context of magnetic levitation systems. These constraints 

pertain to real- time requirements that ensure reliability [13], [14]. In the case of Maglev 
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trains, it’s essential to consider state constraints such as the air gap, vertical-velocity, and 

acceleration to meet the reliability criteria for aspects like ride comfort, energy efficiency, 

and system implementation [15]. 

 

Model predictive controller (MPC) is a widely adopted approach in industrial process 

control that excels in handling both control and state constraints explicitly and optimally 

[14]. Model Predictive Control (MPC) encompasses solving an optimal control problem with a 

finite horizon that shifts as time progresses [16]. This involves solving the control sequence 

for the current situation online during each sampling moment, with only the initial control 

element of the sequence being employed [17]. Additionally, the present state variables of the 

process are utilized as the starting point for the optimization problem. MPC methods do have 

a computational cost, which results from the ongoing need for online optimisation, which is 

one of its limitations. This is a significant barrier for fast-response systems and turns into 

a major problem for MPC applications. In recent times, researchers have effectively 

employed MPC across various domains. These include its application in robotics [18], 

energy-efficient control of twin rotor MIMO system [19], electrical vehicles [20] and power 

system etc. The MPC approach has also been extended to encompass magnetic levitation ball 

systems. In the paper [21], a robust MPC was introduced for a second-order maglev system. 

This controller was designed to handle both input and output constraints, ensuring the 

stable and constrained operation of the system. In this study, the model uncertainties are 

effectively addressed through the utilization of the linear matrix inequalities (LMI) 

technique. In the work presented in [22], the authors developed an MPC controller for the 

maglev system using a pre-identified state-dependent model based on the autoregressive with 

exogenous variables (ARX) approach, which was established through a set of radial basis 

function neural networks (RBF NNs). Further, in [23], [24] the authors introduced an explicit 

model predictive controller (EMPC) for the magnetic levitation system. They strategically 

moved the optimization process offline, aiming to improve real-time performance while 

considering both input and output constraints. They accounted for both input and output 

constraints for a piece-wise affine (PWA) linear system. Moreover, authors in [25] have 

introduced a nonlinear MPC (NMPC) approach to the maglev system. This approach aimed 

to achieve high control performance by accurately predicting the nonlinear system behavior. 

Nevertheless, the design complexity associated with NMPC posed computational challenges 

greater than those of linear MPC schemes, thus restricting the consideration of control 

constraints to maintain real-time feasibility. 

 

The primary aim of this research is to create a linear model predictive control 

(MPC) technique designed specifically for a Maglev system. The proposed control approach 

has been evaluated through simulations conducted on magnetic levitation systems, employing 
three different input signals. The simulation results demonstrate that the proposed control 

algorithm exhibits superior tracking performance compared to the existing control technique 

[1]. 

 

II. SYSTEM MODELING 

 

Fig.1 depicts a schematic representation of a Maglev system and the physical 

parameters are detailed in TABLE I. The various mechanical parts and its motions can be 

anticipated from this schematic diagram. The magnetic force balances the gravitational force 

exerted on the ferromagnetic ball during the operation of the Maglev system. By altering the 
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input current, the magnetic force of the Maglev may be changed. As a result, in the Maglev 

model, the magnetic force corresponds to the square of the electromagnetic coil current. 

With the aid of the controller, the system receives input from the coil current to regulate the 

location of the iron ball. This force is subsequently balanced within the airspace to meet the 

specified requirements. 

 
 

Figure 1: Schematic diagram of the Maglev system 

 

Table I: Maglev system parameters 

 

Parameter Value Unit 

β 5.64 × 10
−4

 V m
2
 

γ 0.31 V/A 

α 2.48 V 

i0 1 A 

d0 20 mm 

C 2.4 × 10
−6

 Kgm
5
/s

2
 

R 2 Ohm 

L 15 × 10
−3

 H 

m = 
M

 

4 

0.02985 Kg 

 

1. State Space Model: The design and components of the magnetic levitation system will 
be described in this section. The system consists of four electromagnets that act as 

actuators to apply magnetic forces for accurate position control. Additionally, there are 

four Hall Effect sensors integrated into the system to monitor the position of the 

levitating plate. The setup also consists of a sturdy square plate featuring four 

permanent magnets, one at each corner. The electromagnets are 2 ohm internal- 

resistance solenoid coils with a 15 mH rating. Linear radio- metric Hall Effect sensors 

with a 50 V/T are used in Hall effects experiments. The neodymium N 52 disc magnets 

have a 12.70 mm diameter and a 6.35 mm thickness, and they are used as permanent 

magnets. The electromagnetic levitation system model is illustrated in Fig.1, where R 

represents the coil’s resistance, L signifies its inductance, v corresponds to the voltage 

across the electromagnet, i represents the current flowing through it, m indicates the mass 

of the levitating system, g denotes the gravitational acceleration, d signifies the vertical 

position of the ball measured from the bottom, f denotes the force on the levitating 

system generated by the electromagnet, and e stands for the voltage across the Hall effect 
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sensor. The force produced by the electromagnet is mathematically expressed as: 

 

 Fmag = C 
i
(
t
)  

                                                                d
3
                                                      (1) 

 

where d is the vertical position and C is a turn constant. From (1) we got 

 

                                         (2) 
 

where m is the mass of the levitating magnet and g is the gravity of acceleration. The power 

supply and electromagnetic coil can be related electrically by using the following expression: 

 

                               (3)                 

 

where R and L represent the resistance and inductance of the electromagnet, respectively. 

Now, let’s consider the following perturbations concerning changes in these parameters. 

 

 
 

 

where the voltage needed to suspend the levitating plate at do is called vo. Under this 

perturbation, it is possible to linearize the dynamics (2) and (3) around an operational point 

(i0; d0; v0) as 

 

 
 

 

The transfer function from ∆v to ∆d is obtained by removing ∆i in equation (8) and using 

Laplace transforms as 

                (9) 

 

where ∆V (s) and ∆D(s) represent the Laplace transforms of ∆v(t) and ∆d(t), respectively. 

The output voltage of the Hall sensor is as follows. 

 

                                     (10) 
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where α, β, γ are constant sensor parameters. Linearizing (10) around e(t) = e0 + ∆e yields 

 

                                            (11) 

 

where ∆e is the sensor voltage. We can determine the relationship between the electromagnet 

voltage perturbation ∆V (s) and the sensor voltage perturbation ∆E(s) by applying the 

Laplace transform to equation (11) and utilizing I(s) = ∆V (s)/(Ls + R) from equation (3) and 

the representation in equation (9). This relationship is expressed as follows: 

 

                      (12) 

 

After taking the second derivative of equation (7) and the first derivative of equation (8), 

equation (12) can be transformed into a state-space representation. Consequently, the 

linearized model described in equation (12) can be represented in statespace form as follows: 

 

  (13) 

 

The measured system output (y) can be obtained by simplifying Equation (11), where (∆e = 

y, ∆d = x1, and ∆i = x3). 

                                         (14) 

 

By substituting system parameters in TABLE I into (12) we get 

 

       (15) 
 

Here are the numerical values of the state space equations: 

 

   (16) 

 

                                       (17) 
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III.  CONTROL DESIGN 

 

1. PID Control Design: This section aims to illustrate the fundamental structure of a PID 

controller in the context of closed-loop control for the Maglev system, with the objective 

of maintaining the ball’s position at the desired level. In order to explain the PID 

controller for a levitation system, it’s necessary to possess an appropriate mathematical 

model of the Maglev system. It can be accomplished through the linearization of all of 

the elements of the Maglev system. The transfer functions of the aforementioned 

components, coupled with the PID controller, are presented in Fig.2. Essentially, the 

controlled Maglev system operates based on error detection. The difference between the 

reference position and actual position is known as positional error e(t). Subsequently, the 

PID controller intervenes to regulate this error, enhancing the dynamic response and 

mitigating steadystate error. The general form of this PID controller is expressed as 

follows [26]: 

 

         (18) 

 

where  

 

u(t): This is the control signal or the output of the PID controller that is applied as the 

input to the system being controlled. 

 

Kp: This is the proportional gain, a tuning parameter that determines how much the 

controller responds to the current error. 

 

Ti: This is the integral time or reset time, another tuning parameter that determines how 

aggressively the controller eliminates the accumulated error over time. 

 

Td: This is the derivative time or rate time, yet another tuning parameter that determines 

how much the controller anticipates future error based on the rate of change of the error. 

 

e(t): This is the error signal, which is the difference between the desired reference point 

and the actual output of the plant being controlled. 

 

Together, these parameters and the error signal allow the PID controller to adjust 

the control output in order to minimize the error and maintain the system at or near the 

desired setpoint. The specific values of Kp, Ti, and Td are typically determined through a 

tuning process to achieve the desired control performance for a given system. 

 

2. Model Predictive Control (MPC) Design: This article describes how to create a linear 

MPC to increase the precision of a Maglev system’s control design. Fig.3 depicts the 

fundamental block diagram of the MPC. Following is a representation of the linear state-

space model (discretetime) of the Maglev system: 
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                                           (19) 

 

where x (τ ) is a representation of the state vector at instant τ th . Similar to this, at the τ 

th instant, y (τ ) and up (τ ) represent output and control input of Maglev, respectively. A 

MPC has a built-in model that predict the expected plant behavior over a given prediction 

horizon, or Np. The optimal control problem is online solved in MPC to identify the 

control input. The projected output relies on the presumed input trajectory up (τ + j |τ ) 

for j = 0, 1, ..., Np − 1. The core idea is to select the input that yields the most accurate 

predictions [14]. In Fig.4, you can see the fundamental concept of linear MPC, where Np 

represents the prediction horizon, and Nc is the control horizon. At each time step k, MPC 

forecasts future outputs over a predefined horizon, Np. These predicted outputs y (τ + j |τ 

) for j = 0, 1, ..., Np − 1, depend not only on past outputs and control inputs but also on 

future control signals up (τ + j |τ ) for j = 0, 1, ..., Np − 1. 

 

If the relationship between input and output stays linear over the specified time-frame, we 

can treat the optimization problem as a linear-quadratic one. Here’s how the state 

variables within the prediction horizon are calculated: 

 

                (20) 

 

(20) can be represented as: 

 

 
 

           (21) 

 

The control inputs undergo adjustments within the control horizon interval, after which 

they remain constant. 

 

                                  (22) 

 

 

The connection between the inputs and the rate of change of inputs is as follows. 
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        (23) 
 

By substituting equation (23) into equation (22), the state variable model can be 

represented as: 

 

               (24) 
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Figure 2: Magnetic levitation system with the PID controller 

 

 
 

Figure 3: Block diagram for MPC 

 

 
 

Figure 4: Basic MPC concept 

 

 

 
 

The predicted system output can be defined as: 

 

                     Y (τ ) = ZCpX (τ ),                                                  (25) 
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Furthermore, by substituting (24) into (25), the output equation rearranged as follows. 

 

 
 

3. Objective function and constrains: By minimizing the specified objective or cost 

function over the prediction horizon N p, we can determine the optimal input for the 

magnetic levitation system. 

 

                                   (27) 

 

 
 

where e (τ + j) = [r (τ + j) − yˆ(τ + j |τ )]. The constraints are as follows: 

 

 
 

In this context, r symbolizes the future inputs of the system, δ(j) stands for the error 

weighting matrix, and λ (j) signifies the control weighting matrix. Furthermore, the cost 

function can be articulated as follows: 

 

                   (28) 
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Table 2: Controller parameters 

 

 
 

The linear quadratic function can be derived by substituting equation (26) into equation 

(28) as follows: 

 

                                 (29) 
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where 

 

 
 

 To maintain control stability during each sampling period, the optimization problem 

for the proposed adaptive MPC includes additional input and output constraints. 

 

IV.  RESULTS AND DISCUSSION 

 

 In this research, a linearized model of the magnetic levitation system was created 

using the MATLAB Simulink platform, with parameters set to their nominal values as 

detailed in TABLE I. The initial state variable value for the system was set to zero. 

Controller parameters for both the proposed MPC algorithm and the PID controller are 

provided in TABLE II. The controller’s performance was assessed through simulations using 

two different reference signals. 

 

Case 1: In this scenario, a desired step input signal with an amplitude of 0.3mm is applied to 

the Maglev model. Fig.5 provides a simulated comparison between the proposed MPC and 

the existing PID controller [1] for step signal tracking. Additionally, Fig.6 displays the 

control inputs generated by both the proposed MPC and the existing PID controller. These 

results illustrate that the proposed MPC surpasses the performance of the existing control 

algorithms in terms of regulation response, convergence speed, and minimal steadystate error 

[1]. 

 

Case 2: In Figure 7, the Maglev system’s response to a square wave reference signal with an 

amplitude of 0.3mm and a period of 50s is shown. This square wave input is used to evaluate 

the controller’s ability to handle abrupt changes in the input signal direction. As 

demonstrated in Figure 8, the MPC exhibits significantly improved performance compared to 

the existing PID controller [1]. 
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Figure 5: Step response 

 

 
 

Figure 6: Control input for step signal 

 

 
 

Figure 7: Square response 

 

 Table III tabulates the comparative tracking results of the proposed MPC with the 

existing controllers developed in [1]. As can be observed from Table III, the proposed MPC 

gives 44.70%, 62.25% and 65.92% lower RMSE, ISE and IAE values as compared to PID 
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[1] control algorithm for case 1. While for case2, it gives 4.04%, 7.88% and 51.02% lower 

RMSE, ISE and IAE values as compared to PID [1] respectively. Furthermore, Table III 

shows that the suggested MPC is more energy-efficient than the controllers developed in [1]. 

The proposed MPC provides 11.2% lower kuk2 value for case 1 and 35.76%, lower kuk2 

value for case 2 of PID [1] controller, respectively. 

 

Table 3: Performance analysis for both the cases 

 

 
 

V. CONCLUSION 

 

The paper presents a linear model predictive control (MPC) algorithm developed for a 

highly nonlinear Maglev system. To ensure a fair comparison, an existing PID control 

algorithm with parameters matching those in [1] has been implemented. The efficacy of the 

proposed control algorithm is validated through simulations using three different reference 

signals. The simulation results demonstrate that the proposed controller outperforms the 

existing control algorithm [1] in terms of achieving the desired trajectory tracking. 
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