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DOTS 
 

Abstract 

 

A brief overview of Quantum Dots 

and their applications is presented. These 

pseudo-atoms or artificial atoms offer a vast 

range of practical applications since they are 

tunable with respect to their size, shape and 

composition. The essential ingredients for 

the theoretical study of their optical, 

thermal, electronic and transport properties 

is the energy spectra which can be obtained 

through numerical methods. One of the 

simplest and reliable methods is that based 

on the finite difference approach. The basic 

methodology for the same is mentioned. 

Some results for the energy levels of one-

electron GaAs and InAs Quantum Dots are 

presented for spherical and cubical spatial 

confinements for different dot sizes. It is 

found that the effect of shape is independent 

of the type of semiconductor material of the 

Quantum Dot. The energy levels are higher 

in cubical confinement as compared to 

spherical confinement which can be 

explained to be due to the higher surface to 

volume ratio. Also it is found that energy 

values are higher for InAs QD than for 

GaAs QD which is due to the difference in 

the effective mass of the electron in the two 

different materials. 
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I. INTRODUCTION 

 

The advanced semiconductor fabrication techniques led to the possibility of confining 

the bulk semiconductor material in one, two or three dimensions. Once the size of the 

nanomaterial becomes smaller than the bulk exciton Bohr radius in a particular dimension, 

quantum effects come into picture leading to the quantization of the energy levels in that 

dimension. This results in the well-known quantum structures called Quantum Wells, 

Quantum Wires and Quantum Dots (QDs). The field of Quantum nanostructures is well-

studied [1-3]. Efros and Brus [3] present a detailed review covering the range of the 

theoretical and experimental information about the development and properties of QDs. 

 

The confinement in different directions affects the density of states of the 

semiconductor material and hence the carrier concentration and energy distribution of 

carriers. In fact, in zero dimensional structures called QDs, the density of states is a delta 

function representing the discrete nature of the energy levels. Due to the quantization of the 

energy levels, such nanostructures can be considered to be just like atoms and are therefore 

called pseudo-atoms or artificial atoms. Such structures are known to have high surface to 

volume ratio which becomes nearly unity when all atoms are surface atoms. The electronic as 

well as thermodynamic properties are modified due to confinement. For example, the band 

gap in semiconductor nanomaterials become size-dependent. The melting point of metallic 

nanoparticles is comparatively low than the bulk material. With the decrease in the size of the 

QDs, the gap between the maximum of the valence band and the minimum of the conduction 

band increases thus increasing the band gap. This results in an increase in the excitation 

energy of the dot and the change in the color of the light emitted on de-excitation from red to 

blue or violet. This tunability of the band gap also provides control over the optical and 

electrical properties of QDs. 

 

Typically, semiconductor QDs are 2-10 nm in size having diameter corresponding to 

10-50 atoms and may include around 100-100000 atoms, although larger QDs of size 10-100 

nm may be fabricated. A QD may be tuned to confine a precise number of electrons ranging 

from a single electron or a few electrons to several thousand electrons. With the aid of 

electrical contacts, electron transport through QDs is possible. The QD potential can be 

controlled by employing electrostatic gates. Simple QDs are synthesized from a single type of 

material, e.g., from silicon or germanium, so that they have uniform composition. The 

photophysical properties of QDs like luminescence can be increased by coating them with 

another higher band gap semiconducting material thus forming core-shell QDs, e.g., 

CdSe/CdZnS. The properties of QDs can also be tuned by adjusting their composition by 

alloying two semiconductor materials with different band gaps. For example, Ag2SexS1-x, 

GaN–AlGaN and CdTeSe are alloyed QDs. 

 

The optoelectronic properties of Quantum Dots are modified due to the presence of 

electric, magnetic and laser fields [4-6] or may be influenced due to different kind of 

potentials like Kratzer potential [7] and Hulthén-Yukawa potential [8]. The effect of size, 

shape and composition of the semiconductor nano structures on the band gap and electronic 

and optical properties is studied by several authors [9-17]. Higher-harmonic generation in 

different type of Quantum structures are also investigated [18-20]. Liang and Xie [11] 

investigate the influence of different shapes like circular, elliptic and triangular, on the optical 

absorption coefficients of QDs. Popescu et al. [14] mention that size is more important than 
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shape at the nanoscale. 

 

One of the interesting and vital features in the study of QDs is the information about 

their electronic states. Several authors have studied the effect of size and shape on the energy 

levels of QDs [21-24]. Ngo et al. [21] have studied the electronic states of cuboidal, 

cylindrical, pyramidal, conical and lens-shaped InAs/GaAs QDs of different sizes. Kumar et 

al. [23] have considered how the anisotropy of shape and change in size modify the electronic 

structure of GaAs/AlGaAs quantum dots (QDs). Mantashian et al. [24] explore the electronic 

energy spectrum and probability densities for a varied range of shapes, viz., rectangular, 

spherical, cylindrical, ellipsoidal, spheroidal, conical QDs, QRs, nanotadpole QDs, and 

nanostars. The effect of dot size on the energy levels of a hydrogenic impurity in a spherical 

quantum dot is also investigated [25, 26]. Recently, the spectrum of excitons in a spherically 

confined quantum dot with linear potential and ionized donor hydrogenic impurity is 

evaluated in the presence of electric field along with the study of the linear and non-linear 

absorption coefficients [27]. 

 

The electronic states of QDs can be determined numerically or analytically. This 

chapter deals with the calculation of energy levels of InAs and GaAs spherical and cubical 

QDs. Although the shape of the QDs may deviate from an exact spherical to several other 

geometries like spheroidal, cylindrical, conical, lens-shaped or pyramidal, these are the 

simplest and most basic shapes that can be considered in order to get a glimpse of the 

electronic structure of QDs for different dot sizes and shapes. The basic methodology adopted 

for this numerical study is based on the finite-difference approach which is explained in 

detail. Section II highlights some of the important applications of QDs. This is followed by 

Section III giving the description of how the finite-difference method is employed to solve 

the radial Schrödinger equation to get the energy spectra. Some results are also discussed in 

this section. Section IV presents the summary. 

 

II. APPLICATIONS 

 

QDs have a wide range of applications ranging from LEDs, displays, 

photoconductors, photodetectors, biomedicine and catalysis [28]. QD-based devices are the 

base of the future generation technology. Quantum Dot-Based Light Emitting Diodes are set 

to provide a nice alternative to conventional LEDs. Studies to improve their efficiency are 

still underway [29, 30]. Controlled single-electron tunneling through QDs enables them to be 

used in single-electron transistors [31, 32]. These are based on the principle of Coulomb 

blockade and requires the charging energy, i.e., the amount of energy required to add one 

elementary charge to a QD, to be more than the thermal energy of the charge carriers so that 

they are not excited. The possibility of confinement of single electrons in controlled discrete 

energy states of semiconductor QDs makes them favorable for quantum computation [33, 

34]. 

 

Since the semiconductor nonmaterials possess unique and tunable optoelectronic 

properties, they are suitable for many applications in the field of biomedicine. For example, 

various QDs on excitation by the same wavelength are seen to exhibit emission spectra 

depending on their size, shape, composition and doping. This fluorescent property of QDs 

makes them a favorable candidate for biomedical applications like targeted drug delivery, 

biosensors and probes for cellular imaging [35]. Tandale et al. [36] provide detailed 
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information about fluorescent quantum dots including various methods of synthesis and 

probable applications in biological field. Efforts are underway to synthesize materials of 

different sizes and morphologies to be employed in biomedical fields [37]. The rapidly 

evolving field of RNA nanotechnology is very promising for treatment of diseases. 

Sabzehmeidani and Kazemzad [38] discuss about QDs-based nanosensors for detection of 

antibodies. 

 

III. NUMERICAL MODELLING 

 

The electrons in the conduction band of a semiconductor are generally present near 

the minimum where the E-k diagram has a parabolic shape. Their dispersion relation is 

hence just like that for free electrons with their effective mass depending on the curvature 

of the E-k curve. In a similar manner, the holes which are present near the maximum of the 

valence band can be considered to have an effective mass in accordance with the curvature 

of the E-k diagram for the holes for that particular semiconductor. The determination of the 

energy spectra in the conduction as well as in the valence band of the QDs can therefore be 

considered to be a real life example of the usual ‘particle in a box’ problem. The present 

work is based on the same concept and involves the study of the effect of shape and size of 

the confining geometry on the electronic energy states for GaAs and InAs QDs. For the 

cubical confinement, the energy levels are well-known. For the spherical confinement, the 

energies are determined using nine-point finite-difference method. 

 

1. Time-Independent Radial Schrödinger Equation: In order to get the electronic spectra, 

the time-independent Schrödinger equation is solved for the case of spherical confinement. 

The spherical boundary is taken into account by assuming that the form of the potential is 

       for      and        for      so that the wave function vanishes beyond 

  . This is known as hard wall or infinite spherical well confinement potential. 

 

Due to the spherical symmetry, spherical coordinates may be employed to represent 

the Hamiltonian. In order to solve the Schrödinger equation, it is separated into radial and 

angular parts by the usual separation of variables technique. The wave functions are 

written as                             , where n, l and m are the principle, angular 

momentum and magnetic quantum numbers, respectively.          are the spherical 

harmonics. The radial Schrödinger equation which needs to be solved is written in terms 

of the reduced radial wave function                as 
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In terms of the effective potential,              
  

   

       

  
, (1) takes the form 
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 For the hard wall confinement, this equation is solved only within the spherical 

boundary where      is zero.  

 Therefore the effective potential consists of only the centrifugal term 
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2. Finite-Difference Method (FDM): The finite-difference method (FDM) is an 

approximate technique for solving partial differential equations with given boundary 

conditions and is very useful in solving many problems which cannot be solved 

analytically. FDM consists in discretizing the domain over which the equation is to be 

solved by forming a grid. For solving (2), the grid points are taken as          , 

where            .N, so that the domain [ ,  ] is divided into   intervals. The number 

of grid points are adjusted so as to gain sufficient convergence. 

 

 The derivatives in the equation are replaced by finite difference approximations 

at each grid point. For example, the second order derivative in (2) may be replaced by 

the three-point central difference formula given by 

 

        
                      

  
      ,                           (3)                                 

 

where       represents the order of error. Equation (2) is written as 
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Putting             , a set of N linear simultaneous equations is formed. The 

terms corresponding to r0 and rN+1 in the first and last equations are ignored. The system 

of equations is written in a matrix form as 
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 In order to avoid the singularity at the origin and to take the boundary condition into 

account, the first and last rows and columns are deleted and the problem reduces to solving 

a system of     equations. Equation (5) is an eigenvalue problem involving (N-2) x (N-

2) matrices, which may then be solved by the standard commands of programming 

platforms like MATLAB. It is solved using the atomic units where the mass of free 

electron, reduced Planck’s constant and charge of an electron are taken as unity, i.e., 

        . The eigenvalues give the energy levels and the eigenvectors provide the 

corresponding        and hence the wave functions. In order to enhance the accuracy, 

more accurate nine-point finite-difference method is employed in the present case. 

 

3. Results and Discussion: First the energy levels for the simple case of an electron 

confined in a spherical cavity of radius    and a cubical cavity of length   are compared. 

The values of    and   are chosen so that they correspond to the same volume for the two 

geometries. Table 1 shows the first four energy levels for both the confining geometries 

for different dot sizes ranging from a radius of 5 nm to 15 nm for the spherical case and 

the corresponding side lengths of the cubical case. For the cubical QD, the first four 

distinct energy levels are considered. The energy increases for smaller dimensions in both 

the cases, which is the usual effect of confinement. It is observed that there is an increase 

of 15.45 percent in the ground state energy for cubical confinement with respect to the 

spherical confinement. The first, second and third excited states are similarly found to 

increase by 12.87, 2.91 and 5.83 percent, respectively. That is, different energy levels are 

affected to different extent but the ground state is affected the most. 

 

Table 1: First four energy levels for spherical and cubical Quantum Dots of same 

volume as a function of the radius    and length  , respectively 

 

Spherical QD 

 

Cubical QD 

   

(nm

) 

    

(meV) 

 

    

(meV) 

    

(meV) 

    

(meV) 

  

(nm

) 

     

(meV) 

     

(meV) 

     

(meV) 

     

(meV) 

5 

15.0412

1 

30.7705

4 

50.6231

9 

60.1648

5 8.06 

17.3651

4 

34.7302

8 

52.0954

3 

63.6721

9 

6 

10.4452

9 

21.3684

3 

35.1549

9 

41.7811

4 9.67 

12.0591

3 

24.1182

5 

36.1773

8 

44.2168 

7 7.67409 

15.6992

5 

25.8281

6 

30.6963

5 11.28 8.85977 

17.7195

3 

26.5793 32.4858

1 

8 5.87547 

12.0197

4 

19.7746

8 

23.5018

9 12.9 6.78326 

13.5665

2 

20.3497

8 

24.8719

5 

9 4.64235 9.49708 

15.6244

4 18.5694 14.51 5.35961 

10.7192

2 

16.0788

4 

19.6519

1 

10 3.7603 7.69263 12.6558 

15.0412

1 16.12 4.34129 8.68257 

13.0238

6 

15.9180

5 

11 3.10769 6.35755 

10.4593

4 

12.4307

5 17.73 3.58784 7.17568 

10.7635

2 

13.1554

1 

12 2.61132 5.34211 8.78875 

10.4452

9 19.34 3.01478 6.02956 

9.04434 11.0542 



Futuristic Trends in Physical Sciences 

e-ISBN: 978-93-5747-478-8  

IIP Series, Volume 3, Book 2, Part 2, Chapter 5  

             NUMERICAL MODELLING OF QUANTUM DOTS 

                 

Copyright © 2024 Authors                                                                                                                        Page | 184  

13 2.22503 4.55185 7.48864 8.90013 20.96 2.56881 5.13762 
7.70642 9.41896 

14 1.91852 3.92481 6.45704 7.67409 22.57 2.21494 4.42988 
6.64482 8.12145 

15 1.67125 3.41895 5.6248 6.68498 24.18 1.92946 3.85892 
5.78838 7.07469 

 

The effect of the semiconductor environment is now taken into account by 

introducing the effective mass in the Schrödinger equation. The electronic states of an 

electron confined in GaAs and InAs QDs are determined for the two cavity shapes. The 

electron effective mass is taken to be 0.0665   for the GaAs QD and 0.04   for the InAs 

QD [ngo2006]. Figure 1 shows the first four energy levels for the two different 

semiconductor materials for different dot sizes for (a) a spherical QD of radius     and (b) a 

cubical QD of length  . 

 

 
 

Figure 1: Variation of first four energy levels for GaAs and In 

As Quantum Dots for (a) a spherical QD of radius    (b) a 

cubical QD of length  . For the cubical QD, the first four 

distinct energy levels are considered. 

 

Analysis of the data shows that the percentage increase in the magnitude of energies 

with the change in confinement geometry from spherical to cubical is the same as for the 

corresponding case of an electron confined in these geometries as seen from the data given in 

Table 1. The increase in energy due to reduction in the size is of course evident. It may be 

mentioned that the shape and size effect is less apparent for comparatively higher dot sizes in 

absolute terms. Also, the percentage increase in energy for smaller dot sizes is more but the 

percentage increase in energy due to shape effect remains the same. This increase in the 

energies for the cubical case as compared to the spherical case is due to comparatively high 

surface to volume ratio. 

 

It is also observed from Figure 1 that for InAs, the energy levels are placed higher as 

compared to those for GaAs. This can be easily explained on the basis of the nature of the E-

k diagram since the effective mass of an electron in InAs is less than of that in GaAs. The 

effective mass is inversely related to the curvature of the E-k diagram. Hence a lower value of 

effective mass means higher curvature of the E-k curve which means higher energies for 
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lower k values. 

 

IV. SUMMARY 

 

 The electronic energy spectra is determined for an electron in spherical and cubical 

confining geometries and also for an electron in GaAs and InAs spherical and cubical QDs. 

The energies are found to increase with confinement in all cases as expected. Also they are 

greater for cubical confinement than for spherical confinement although the dimensions of 

confining shapes are chosen such that the volume is held constant. It is observed that the 

shape effect is of similar nature for a single electron confined in a spherical or cubical 

geometry as for an electron confined to a semiconductor QD of the same dimensions. It is 

also found that the different energy levels are affected to different extent but the ground 

state is the most affected. Also, the energies are enhanced when the effective mass of the 

electron is lesser as for InAs in comparison to GaAs. 

 

 The knowledge of the dependence of the electronic spectra on the shape and material 

of the QDs provides information about how the electronic transition energies will be 

affected and is therefore important for understanding and predicting the behavior of QDs in 

important practical applications.  
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