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CHEMISTRY PERSPECTIVE 
 

Abstract 
 

Supercapacitors are high-efficiency 
green energy storage devices featuring 
long cycle and shelf life. The attainment of 
high- power density in combination with 
promising energy density is one of the 
main targets of developing hybrid 
supercapacitor electrode materials. Among 
the different electrical double-layer 
capacitance materials, graphene has an 
outstanding role due to its high surface area 
and conductivity. In addition, it can act as 
an excellent matrix for the dispersion of a 
variety of nanomaterials. Among the 
various pseudocapacitor metal oxides, α-
Fe2O3 has the auspicious features of cost-
effectiveness, environment friendliness, 
and natural abundance together with its 
high theoretical capacitance. This review 
target to explore the preparation methods 
and the features of α-Fe2O3/graphene. A 
glance at the greener methods of graphene 
and its nanocomposite preparation is given 
in the review. The future of these materials 
and the directions for further studies are 
also briefly mentioned at the end. 
Keywords: Supercapacitor electrode; α- 
Fe2O3/graphene; Eco-friendly preparation 
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I. INTRODUCTION TO SUPERCAPACITORS 
 

One of the biggest problems the energy sector faces is the creation of effective energy 
storage technologies. Supercapacitors are energy storage devices that can meet today's energy 
demands. The limits of batteries and traditional capacitors are solved by supercapacitors or 
ultracapacitors. Supercapacitors possess exceptional electrochemical characteristics such as 
high cycle stability, shelf life, energy density, power density, quick charge-discharge rate, etc. 
Even though supercapacitors have a lower specific power than normal capacitors, they 
possess a higher energy density than conventional electrolytic capacitors[1–3]. Figure 1 
depicts these features in the Ragone plot[4]. 

 

 
 

Figure 1: Ragone Plot Illustrating Different Energy Storage Devices. 
 

Many charge-discharge cycles are possible with supercapacitors. The method for 
storing charges can lengthen the cycle life. In contrast to batteries, here the charge-storage 
process also utilises physical charge storage at the electrical double layer without the need for 
any chemical reactions[3,5]. Because of their polarisation resistance, batteries' cycle life is 
shortened[3,6]. An ion-permeable separator dipped in an electrolyte and two electrodes make 
up the cell of a typical supercapacitor[7]. The electrodes in symmetric supercapacitors are 
formed of the same material combination, whereas they are different in asymmetric 
supercapacitors[8]. While using the aqueous electrolytes in supercapacitors, the separators 
can be polymer/paper separators, while organic electrolytes performs better using fiber/glass 
separators[9,10]. Aqueous electrolytes typically operate at lower operating voltages, up to 1.2 
V, while organic electrolytes run at potential windows as high as 3 V[3]. 
 

Electrochemical double-layer capacitors (EDLC), pseudocapacitors, and hybrid 
capacitors are the three categories of supercapacitors according to their charge storage 
(Figure 2). Non-Faradaic, Faradaic, and a combination of the two are the respective 
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mechanisms of charge storage. The typical components of an EDLC are carbon-based 
electrodes with a large surface area[11,12]. Electrostatic electrical double layer formation is 
the storage mechanism in EDLC[1]. Here, when potential is supplied, charges are 
accumulated on the electrode surfaces, and then the electrolyte ions are transferred to 
electrodes having opposing charges[1,6,13]. Carbon nanostructures are the electrode 
materials for EDLC’s, such as graphene, carbon nanotubes, carbon aerogels, etc., but 
activated carbon was also widely used for this purpose[2,3]. Between the electrode and the 
electrolyte in pseudocapacitors, the Faradaic charge is stored through electrosorption, redox 
processes, under potential deposition intercalation, etc[14,15]. Even though the 
pseudocapacitor has a higher capacitance and energy density than EDLC, the power density 
is much lower because of the slower Faradaic processes[16]. Metal oxides and conducting 
polymers, showing pseudocapacitive nature displayed poor cyclic stability and low 
mechanical stability[3]. 
 

The drawbacks brought on by individual EDLCs and pseudocapacitors are overcome 
by hybrid capacitors with electrodes displaying both electric double layer capacitance and 
pseudocapacitance. Good power density, energy density, shelf life, etc. are all displayed by a 
hybrid capacitor without degrading the cyclic stability[1,8,17]. A hybrid supercapacitor works 
by using composite electrodes, battery-like electrodes, and asymmetric electrodes[1]. The 
various charge-storage mechanisms used by EDLCs, pseudocapacitors, and hybrid capacitors 
are depicted in Figure 2. 

 
Figure 2: The Charge Storage Principles of (A) An EDLC, (B) A Pseudocapacitor, and 
(C) A Hybrid Capacitor. Reprinted with Permission From 
https://www.greentechee.com/Classification-and-Energy-Storage-Principle-of- 
Supercapacitors_N54[18]. 
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The review here describes how graphene and Fe2O3 work as supercapacitor electrode 
materials. Graphene is now a widely used material for supercapacitor electrodes due to its 
high conductivity, EDLC nature, high surface area, and capacity to incorporate a variety of 
materials, whereas Fe2O3's main merits are abundant nature, good capacitance behaviour, low 
cost, and capacity to form non-covalent bonds with graphene. The review also describes the 
ease of making Fe2O3/graphene nanocomposites and their characteristics, particularly those 
that are relevant for electrode materials. The Fe2O3/graphene supercapacitor performance is 
outlined here, and the final section includes a well-written description of the Fe2O3/graphene 
nanocomposite’s future prospects. 
 
II. GRAPHENE 
 

Graphene, the most well-known EDLC nanomaterial, exhibits a theoretical 
capacitance of 550 F/g[19]. Graphene stands apart from conventional electrode materials due 
to its special characteristics, including high surface area, conductivity, electrical mobility, 
mechanical strength, and chemical stability. Here, the structure, background, characteristics, 
and production techniques of graphene are covered. 

 
The extended π-conjugative network of graphene, the one-atom-thick planar sheet of 

sp2 hybridised carbon atoms, describes the majority of its features. Carbon atoms are 
arranged in a hexagonal structure with alternating single and double bonds[20].The idealised 
structure of graphene is shown in Figure 3. Graphene may be wrapped into 0D fullerenes, 
rolled into 1D CNTs, and stacked into 3D graphite. It is the essential component of all other 
graphitic materials[21]. Wallace, McClure, and Semenoff conducted theoretical investigations 
on graphene in 1947, 1956, and 1984, respectively[20,22,23]. Eizenberg and Blakely 
intercalated carbon to Ni surfaces to generate a monolayer of carbon in 1979[24]. In order to 
obtain FLG, highly oriented pyrolytic graphite (HOPG) was mechanically exfoliated in 1999. 
FLG was then detected using an atomic force microscope (AFM)[25]. Later, Zang and 
colleagues created FLG with a size of 10 nm[26]. Affoune et al. produced nano-sized 
graphene on HOPG in 2001 by thermally treating nanodiamonds at 1600 °C[27]. In a vital 
experiment conducted at the University of Manchester in 2004, Andre Geim and Konstantin 
Novoselov isolated a single layer of graphene using a technique exfoliation using a scotch 
tape called micromechanical cleavage[28]. Both of them received the 2010 Nobel Prize in 
Physics for the rediscovery of the extraordinary 2D substance graphene. 

 
Single-layered graphene (SLG) is a single, isolated 2D hexagonal sheet of carbon 

atoms, whereas bi-layered and few-layered graphene (FLG) include two and up to ten layers 
of carbon atoms, respectively. 

 

 
 

Figure 3: Idealized Structure of a Single Graphene Sheet. 
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1. Properties of Graphene: The electronic, thermal, optical, mechanical, and chemical 
properties of graphene are particularly exciting. Graphene is a leading option for energy 
storage applications and other technological developments due to its futuristic traits[29]. 
Since the properties of graphene is widely revealed a thorough analysis is not included 
here. In a nutshell it can be described as follows. 
 

Graphene is a zero bandgap semiconductor[30]–[32], where the valence band and 
conduction bands meet at K and K0 points, the so-called Dirac/charge neutrality 
points[33].The graphene band structure is depicted in Figure 4. The valence band is filled, 
while conduction band is empty in undoped graphene. The production of massless quasi- 
particles is caused by the transmission of electrons via the conjugative π-network of 
graphene. At normal temperature, the pure graphene's electron mobility is 15000cm2V-1/s- 
1[28]. Graphene has distinct electron and hole mobility between 10K and 100 
K. At normal temperatures, the mobility is slightly constrained by the graphene's 
dominant scattering mechanism by acoustic phonons[34]–[36].The special electronic 
structure and thus derived outstanding conductivity make graphene suitable for a wide 
variety of applications including its use as a supercapacitor electrode material [37]. 

 
 

Figure 4: Graphene Band Structure. Reprinted with permission (Biro et al[38]) 
Copyright (2012) Royal Society of Chemistry. 

 
One of the best materials for heat conductivity is graphene, making it useful for 

microelectronic applications. In comparison to pyrolytic graphite at room temperature, 
graphene has a substantially greater theoretical heat conductivity of 5300 Wm-1K- 
1[36].Thethermal conductivity additionally increases with the graphene flake size[39- 
41].CVD graphene possesses thermal conductivities from 1500 – 2500 Wm-1K -1[42,43]. 
A layer of isolated graphene transmits 97.7% of the light that strikes it, and only 0.1% of 
the light is reflected off of the graphene. The optical transparency reduces with the 
number of layers[32,44,45]. 
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Graphene has an intrinsic tensile strength of 130 GPa and a Young's modulus of 
roughly 1 TPa and is incredibly lightweight, flexible, and mechanically 
durable[46,47].Even after being heated at 200 °C for four hours, graphene is highly 
resilient to chemical reactions, and it defends against hydrogen peroxide and prevents 
theoxidation of metal surfaces[48]. Graphene can interact via weak Van der Waal forces 
of attraction, which can further promote functionalization, in addition to covalent 
bonding[49]. By adding potassium ions to the surface of graphene, which is produced 
through epitaxial growth, Ohta et al. were able to demonstrate the n-type doping of 
graphene[50]. When an electron-accepting molecule is deposited on the surface of 
graphene, Chen et al. were able to demonstrate the p-type behaviour of the SiC-derived 
graphene. Graphene is a stand-alone substance as a result of all these peculiar qualities. 

 
2. Preparation of Graphene: For the Preparation of graphene, various top-down and 

bottom-up techniques were used. Many reviews detail about them[51–60]. The various 
preparation techniques for graphene are represented in Figure 5. 

 
 

Figure 5: Various Graphene Preparation Methods[51–60]. 
 

III. GRAPHENE NANOCOMPOSITES 
 

Due to its fascinating features, graphene nanocomposites have a wide range of 
optical, thermal, electrical, and mechanical properties[21]. Pure graphene's use is 
constrained in several cases due to the lack of functional groups in it[61]. By adding 
functions via composite or hybrid creation, graphene sheets can be transformed into 
nanomaterials with a variety of uses in sensors, energy storage devices, photocatalysis, 
heterogeneous catalysis, solar cells, etc[62–65]. Hydrothermal/solvothermal processes, 
electrochemical deposition, physical deposition, photochemical reaction, ultrasonication, 
mechanical mixing, Chemical vapour deposition, electrophoresis deposition, and other 
processes are used to prepare graphene nanocomposites. They can also be made through the 
non-covalent interaction of certain organic and inorganic molecules with graphene[65]. 
Polymers, molecules, and nanomaterials are widely used to functionalize graphene[63,66]. 
The schematic representation of graphene with the majority of above mentioned 
combinations are shown in Figure 6[65]. The use of polymers improves graphene's ability to 
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disperse and results in outstanding conductivity and transparency[66]. The electrical and 
optical properties are additionally enhanced by the functionalization with nanomaterials. 
The development of bio-medical qualities including optical and electrical aspects occurs 
when graphene is coupled with molecules like DNA, RNA, proteins, etc[65]. The 
functional groups in graphene oxide(GO) enable further functionalization[67]. 

 

 
 

Figure 6: Pictorial Depiction of Graphene Functionalized with Various 
Nanomaterials. 

 
Consequently, graphene nanocomposites are prospective candidates in a variety of 

industries. With an improvement in their attributes, composite preparation enhances each 
application's total performance[68]. For better performance, graphene can also be combined 
with other metal oxides. Additionally, dispersed metal oxides can prevent graphene from 
restacking of the layers. Fe2O3 exhibits exceptional behaviour when compared to the other 
metal oxides that. The characteristics of Fe2O3, as well as Fe2O3/graphene nanocomposites, 
are described in the sections that follow. 
 
IV. IRON (III) OXIDE 

 
Among other iron oxides, such as iron (II) oxide (FeO) and iron (II, III) oxide (Fe3O4), 

Fe2O3 or iron (III) oxide is the most relevant iron oxide[69]. Natural ferromagnetism exists in 
Fe2O3[70]. The structure is made up of several crystalline phases, including the α, β, γ, and ε 
phases, the most prevalent of which is the α-phase[71]. 

 
1. Properties of Hematite (α-Fe2O3): Hematite is a non-toxic, readily available, stable, 

environmentally benign, and corrosion-resistant n-type semiconductor (bandgap: 2-1 – 
2.3 eV) substance with a variety of uses[69,71,72]. The reddish-brown-colored odorless 
solid is amphoteric with a rhombohedral crystal system having lattice parameters, a = 
5.036 Å, b = 5.036 Å, and c = 13.749 Å [73,74]. The crystal structure of α-Fe2O3 is 
represented in the Figure 7. 
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Figure 7: α-Fe2O3 cell[74]. 
 

Below its spin-flop transition temperature of 250 K, α-Fe2O3 exhibits 
antiferromagnetic behaviour, and it exhibits a weakly ferromagnetic nature both below 
and above its Neel temperature[75]. It possesses an extremely small 0.002 μB magnetic 
moment. [69,74]. 

 
2. Different Methods of Preparation of Hematite 

 

 
 

Figure 8: Various Hematite Preparation Processes [51,76–80]. 
 

Hematite is often synthesised using the standard methods for preparing metal 
oxides, such as electrochemical deposition, the sol-gel process, 
solvothermal/hydrothermal treatment, etc[51,76–80]. Figure 8 shows various hematite 
preparation techniques. 
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V. Fe2O3/GRAPHENE NANOCOMPOSITES 
 

Due to their complementary features, Fe2O3 in combination with graphene exhibit a 
conductive nature and redox behaviour that makes highly stable composites suitable for a 
wide range of applications[81,82]. Fe2O3 nanoparticles are prevented from aggregating by the 
graphene sheets, and Fe2O3 limits the ability to restack graphene layers[81,82]. Due to their 
simplicity of synthesis and exceptional activity, Fe2O3/graphene nanocomposites are used in 
the manufacture of supercapacitor anodes, rechargeable batteries, gas sensors, fuel cells, 
electrochemical sensors, catalysts, and adsorbents, etc[81]. Effective approaches of the 
composite comprise hydrothermal/solvothermal treatment, the sol-gel method, thermal 
pyrolysis, electrodeposition, exfoliation of iron intercalated graphite (Fe-GIC), etc[76,83,84]. 
Normally, all synthetic techniques for Fe2O3 can also be employed to produce the composite 
in a way that includes adding the Fe2O3 precursor to the graphene dispersion. In the 
production of composites, some innovative Fe-GIC methods are also used, and here, the Fe 
precursor also serves as an exfoliant of graphite[85,86]. The FeCl3-GIC method of making 
graphene nanolayers is depicted in Figure 9. The exfoliation of graphene sheets is improved 
by the intercalation of foreign species. Intercalant iron particles additionally decrease the 
interaction between the graphite sheets[83]. Anhydrous FeCl3 was used as the precursor in a 
non-oxidation procedure by Qi et al. to create FeCl3-GIC[87]. The interlayer gap between the 
graphene sheets gets wider with the intercalation process. Fe2O3/graphene was produced by 
high-pressure homogenization of Fe-GIC using the thermal annealing process, according to 
Qi and colleagues. They have prepared sandwich-structured α-Fe2O3/graphene[83]. This 
process typically demands inert, strict conditions for the growth of hematite nanoparticles. 
We have designed a simple substitute for Fe-GIC-assisted Fe2O3/graphene and thus derived 
graphene synthesis[88,89]. 
 

 
Figure 9: (a) High-Pressure Homogenization Procedure Illustrated in a Diagram (b) 
Graphene Preparation by FeCl3-GIC Exfoliation. Reprinted with Permission (Qi et al[83]). 
Copyright (2017) American Chemical Society. 
 

Song et al. synthesized Fe2O3-rGO aerogel using a hydrothermal process for 
supercapacitor applications[90]. By in-situ precipitation followed by chemical reduction, Xia 
and colleagues prepared rGO/Fe2O3/SnO2 for lithium-ion batteries[91]. Thermal casting was 
used by Feng et al. to develop mesoporous Fe2O3/graphene nanosheets, which were used in 
Li-O2 batteries[Figure 10][92].Likewise, many investigations looked into the use of 
Fe2O3/graphene nanocomposite. 



Futuristic Trends in Renewable & Sustainable Energy 
e-ISBN: 978-93-6252-921-3  

IIP Series, Volume 3, Book 6, Part 1, Chapter 1 
  PREPARATION METHODS, CHARACTERISTICS, AND PROSPECTS OF Α-Fe2O3/GRAPHENE 

SUPERCAPACITOR ELECTRODES IN A GREEN CHEMISTRY PERSPECTIVE 
  

Copyright © 2024 Authors                                                                                                                       Page | 10 

 
 

Figure 10:Thermal casting of Fe2O3/graphene nanosheets.Reprinted with permission[92]. 
Copyright (2013) American Chemical Society. 

 
For use in photocatalytic applications to degrade Congo red, Kumar et al. produced a 

hydrothermal Fe2O3-graphene oxide nanocomposite at 102 °C[93]. Jedrzejewska conducted a 
study in ethanol to compare two pressure methods: microwave solvothermal reactor 
preparation and autoclaved solvothermal synthesis[94]. The developed Fe2O3/graphene 
composites' characteristics were examined, and it was found that they were similar. Thin 
films of Fe2O3/GO and powder Fe2O3/GO, which were produced using the electrodeposition 
method, were used to perform rhodamine B (RhB) degradation. For the generation of powder 
catalyst, the impregnation method using drying of GO-FeCl3 dispersion was used[95]. Wang 
et al. established a photo Fenton catalyst that is highly effective at degrading dye pollutants 
using a self-assembly approach for γ-Fe2O3 produced on Fe plates along with GO[96]. High- 
performing rGO/Fe2O3 composite was employed by Zhu et al. as an anode for lithium-ion 
batteries[97]. Urea and hydrazine were utilised as precipitating and reducing agents, 
respectively, while microwave irradiation was used to produce the composite. Excellent 
supercapacitor performance was achieved using the solvothermal approach to generate the 
Fe2O3/graphene gel, where the electrode was made over nickel foam[98]. Mokhtarifar et al. 
employed rGO and γ-Fe2O3 nanoparticles together to enhance the self-cleaning capabilities of 
TiO2 which is shown in Figure 11[99]. From the studies, they found suitable amounts of rGO 
and γ -Fe2O3 nanoparticles in the TiO2 composite for maximum performance. 
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Figure 11: Preparation of a γ -Fe2O3 - rGO - TiO2Composite Film through the Sol Gel 
Technique (Mokhtarifar et al[99]). 

 
Utilizing sodium alginate and chitosan or carrageenan as graphene precursors (by 

pyrolysis in an environment of argon), α-Fe2O3/graphene composites were made 
hydrothermally, and the systems worked well as photocatalysts for the breakdown of 
RhB[100]. The researchers prepared the graphene using a more environmentally friendly 
technique than GO-based methods, and they came to the conclusion that alternatively 
metal oxide/graphene-based systems may be developed in a more environmentally 
friendly manner. Figure 12 displays a few relevant uses for Fe2O3/graphene[81]. 

 

 
 

Figure 12: Various Applications of Fe2O3/Graphene where Electron Mobility is Important. 
Reprinted with Permission (Lu et al[81]). Copyright (2019) John Wiley & Sons, Inc. 

 
VI. GRAPHENE AS A SUPERCAPACITOR ELECTRODE 
 

Graphene, the most well-known EDLC nanomaterial, has a theoretical capacitance of 
550 F/g[19]. Graphene stands apart from conventional electrode materials due to its special 
characteristics, including high surface area, conductivity, electron mobility, mechanical 
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strength, and chemical stability. However, due to the decreased conductivity, layer 
agglomeration, and re-stacking, practically bare graphene exhibits a lower capacitance than 
the theoretical value[19]. In an ionic liquid electrolyte, graphene was shown to have a 
specific capacitance value of 75 F/g, according to Vivekchand et al[101]. Chemically altered 
graphene was developed by Stoller and his team, and it displayed a capacitance value of 135 
F/g in KOH and 99 F/g in TEABF4/AN[102]. Re-stacking lowers the energy density and 
Coulombic efficiency, whereas metal oxides prevent these issues[3,93]. The electrochemical 
performance of graphene was much improved by the synergistic features obtained by 
combining with various metal oxides and other nanomaterials[103]. The well-distributed 
metal oxides additionally utilise graphene as a conducting network[104]. For supercapacitor 
investigations, Liu et al. developed cauliflower-like Co3O4/3D graphene that attained a 
specific capacitance value of 675 F/g[105]. Similar to these, a number of researchers reported 
several methods displaying the use of graphene in supercapacitors[106,107]. 

 
VII. Fe2O3/GRAPHENE SUPERCAPACITOR ELECTRODE MATERIALS 
 

The most crucial component of a high-performance supercapacitor is the electrode 
material. A hybrid supercapacitor that couples an EDLC and a pseudocapacitor could be a 
candidate for high performance[108]. The advantages of both work together to make energy 
storage highly effective. The supercapacitor's electrochemical stability and performance can 
be improved by graphene's EDLC behaviour and Fe2O3's pseudocapacitance, which can 
increase its specific power, specific energy, shelf life, conductivity, cyclic stability, etc[109]. 
Fe2O3 has a relatively high theoretical capacitance of 3625 F/g, however because of its 
weaker electrical conductivity, it performs electrochemically less well[107–110]. To solve 
the issue, an effective dispersion of Fe2O3 on a conductive matrix is required. Thus, the 
electrochemical characteristics of Fe2O3 can be strengthened by the conductive graphene 
network. Fe2O3 nanoparticles can also be used in graphene sheets, to hinder the re-stacking of 
graphene layers[113]. Additionally, the combination may allow for quick electrolyte ion 
transport towards the electrode, which allows high rate capability and cyclic stability 
overall[114]. Fe2O3/graphene can therefore function as a worthy competitor electrode, 
displaying extremely high specific capacitance and noteworthy electrochemical performance. 
Colloidal electrostatic self-assembly followed by hydrothermal reduction enabled the 
synthesis of a Fe2O3/reduced graphene oxide composite with high specific capacitances of 
908 Fg-1 and good cyclic stability retention of 69% and 714 Fg-1 @2Ag-1 having 42.6% 
capacitance even at 30 A/g[113,114]. With a very high cyclic stability, a microwave 
treatment produced a specific capacitance of 577.5 Fg-1 at 2 A/g [Figure 13][117]. 
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Figure 13: Microwave Method for Synthesising Fe2O3/Reduced Graphene Oxide 
Composite. Reproduced. from ref[117] with Permission from the Royal Society of 
ChemistryFe2O3 nanoplates were integrated into 3-dimensional porous GO, which 
displayed an areal capacitance value of 572 mF cm-2 at 1 mA cm-2[117]. Supercapacitors 
with Fe2O3 nanosheet films, nanotube arrays, etc. as electrode materials, with the addition 
of graphene resulted in an enhancement in their capacitive behaviour[Figure 14-15][115–
118]. 

 

 
 

Figure 14: The Asymmetric Supercapacitor Combination of Ni-graphene-Fe2O3 and Ni- 
graphene-CoMoO4 is Depicted Schematically. Reprinted with Permission (Chi et al[118]). 

Copyright (2017) American Chemical Society 
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Figure 15: Fe2O3/rGO Production through Solvothermal Method with Improved Specific 
Capacitance is Depicted Schematically. Reprinted with Permission (Ma et al[121]). 
Copyright (2014) American Chemical Society. 

 
Phytic acid was utilised as the reductant in Gupta et al.'s environmentally friendly 

approach of GO reduction. They developed a composite using Fe2O3, GO, and 
polyaniline, and the development of a two-electrode device proved the composite's 
potential performance as a supercapacitor electrode (Figure 16)[122]. 

 
 

 
 

Figure 16: Fe2O3/Graphene/Polyaniline Composite and Two-Electrode Manufacturing Aided 
by Phytic Acid. Reprinted with Permission (Gupta et al[122]). Copyright (2020) American 

Chemical Society. 
 

It is evident from the aforementioned literature search that the majority of 
investigations used the hydrothermal technique of preparation for the Fe2O3/graphene 
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composite synthesis, with GO serving as the graphene source. Asymmetric 
supercapacitor construction was described by Tian et al. to examine the supercapacitor 
behaviour of individual electrodes in combination and to increase the potential window 
utilising an aqueous electrolyte[Figure 17][123]. 

 

 
 
Figure17: Asymmetric Supercapacitor Combination of Fe2O3/Graphene/Carbon Nanotube 
Composite Showing Promising Capacitance Behaviour. Reprinted with Permission (Tian et 
al[123]). Copyright (2019) American Chemical Society. 
 

Table 1 gives the specific capacitance values at different current densities/scan rates 
of various Fe2O3/graphene-based nanocomposites in supercapacitor applications. 
 
Table 1: Literature Data on the Electrochemical Performance of Fe2O3/Graphene-Based 

Systems 
 

Electrode material Specific 
capacitance 
(F/g) 

current 
density 

Electrolyte References 

Fe2O3@C-rGO 211.4 F/g 0.5 A/g 1 M Na2SO4 [124] 
Fe2O3 nanotube/rGO 215 F/g 2.5mV/s 1 M Na2SO4 [125] 
N-doped graphene/ Fe2O3 698 F/g 1 A/g 1 M KOH [126] 
Fe2O3/N-rGO 618 F/g 0.5 A/g 1 M KOH [121] 
N-rGO/ Fe2O3 268.4 F/g 2 A/g 1 M KOH [127] 
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Fe2O3–graphene 226 F/g 1 A/g 1 M Na2SO4 [128] 
Fe2O3/GNs/CNTs 675.7 F/g 1 A/g 6 M KOH [129] 
α-Fe2O3/graphene 306.9 F/g 3 A/g 1 M Na2SO4 [130] 
Fe2O3/graphene 504 F/g 2 mA/cm2 1 M Na2SO4 [131] 
Fe2O3/graphene 151.8 F/g 1 A/g 2 M KOH [132] 
Fe2O3/graphene 224 F/g 25 mV/s 1 M Na2SO3 [133] 
Fe2O3 nanodots@NG 274 F/g 1 A/g 2 M KOH [134] 
α-Fe2O3/rGO 903 F/g 1 A/g 1 M KOH [135] 
Polyaniline/Graphene/Fe2O3 1124 F/g 0.25 A/g 1 M H2SO4 [122] 
α-Fe2O3/rGO 255 F/g 0.5 A/g 1 M Na2SO4 [136] 
N-graphene/Fe2O3 260.1 F/g 2 A/g 1 M Na2SO4 [137] 
rGO/Fe2O3 577.5 F/g 2 A/g 1 M Na2SO4 [117] 
GNS/Fe2O3 320 mF/cm2 10 mA/cm2 6 M KOH [138] 
α-Fe2O3/graphene 343.7 F/g 3 A/g 1 M Na2SO4 [139] 
Flower-like Fe2O3@multilple
 graphene 
aerogel 

1119 F/g 1 A/g 3 M KOH [140] 

Fe2O3 nanodots/graphene 347.4 F/g 1A/g 2 M KOH [141] 
α-Fe2O3/graphene 551.5 F/g 1 A/g 6 M KOH [142] 
α-Fe2O3/rGO 894 F g−1 0.5 A g−1 1 M H2SO4 [143] 
Fe2O3–graphene 226 F/g 1 A/g 1 M Na2SO4 [144] 
α-Fe2O3/RGO/Fe3O4 337.5 mF/cm2 20 mA/cm2 2 M KOH [123] 
Fe2O3/GNs/CNTs 675.7 F g-1 1 A g-1 6 M KOH [145] 
3D-Fe2O3/graphene 264 F/g 2.5 A/g 2 M KOH [146] 
RGO/Fe2O3 50 F/g 0.1 V/s 0.5 M H2SO4 [147] 
Fe2O3/rGO 1083 F/g 2 F/g 1 M KOH [148] 
Fe2O3 - graphene 
oxide/polypyrrole 

442 F/g 1 A/g 1 M KCl [149] 

 

Iron oxide/RGO 406.5 mF/cm2 10 mV/s 5 M LiCl [150] 
α-Fe2O3/Graphene 788.6 F/g 1 A/g 3 M KOH [151] 
α-Fe2O3/r-GO/GCN* 810 F/g 1 A/g 6 M KOH [152] 

$ 

rGO/su-GC@Fe2O3 
1978 F/g 1 A/g 2M Na2SO4 [153] 

α-Fe2O3/SnO2/rGO 821 F/g 1 A/g 6 M KOH [154] 
@ 

G/Fe2O3 
378.7 1.5 A/g 1 M KOH [155] 

MoS2/Fe2O3/G
# 98.2 mAh/g 1 A/g 2 M KOH [156] 

rGO/Fe2O3 703.91 F/g 1 A/g 3 M KOH [157] 
α-Fe2O3/graphene 815 mF/cm2 0.5 

mA/cm2 
2 M KOH [88] 

 
*α-Fe2O3/r-GO/Graphitic carbon nitride 
$2D carbon embedded in Fe2O3 decorated with reduced graphene oxide 
@Graphene/Fe2O3 

#MoS2/Fe2O3/Graphene 
 

It is clear from the data in Table 1 that the researchers used diverse types of 
graphene, including GO, reduced graphene oxide (rGO), graphene aerogel, and less-
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defective graphene. The most extensively studied electrolytes for Fe2O3/graphene 
supercapacitors are KOH and Na2SO4. Due to the fact that graphene amounts frequently 
differ from the initial amounts of graphite used in preparation, only a small number of 
publications discuss the ratio of Fe2O3 to graphene[86,106,158]. Fe2O3/graphene have been 
mainly used as anode materials in asymmetric supercapacitors. 

 
VIII. PREPARATION METHODS OF GRAPHENE IN A GREEN CHEMISTRY 

AND ECONOMICAL PERSPECTIVE 
 

As can be seen from the data in Table 1, the majority of the reported graphene/Fe2O3 
systems function well as supercapacitor electrode materials. Graphene can be prepared using 
a variety of techniques, however most of the experiments included in the table used graphene 
that was obtained from GO. This is a result of the low cost, high yield, scalability, and regular 
practice of using established well used technologies or processes. GO/rGO contains 
functionalities that make it easier to bind with metal oxides than pure graphene does. GO is 
also hydrophilic. These characteristics allow stable graphene-metal oxide composite materials 
to be developed. As a result, GO is used to manufacture 99.9% of metal oxide/graphene 
composites. 
 

Modern chemists adhere to green chemistry principles while developing materials 
since they are more concerned with sustainable development. When graphite oxide (GrO) is 
made from graphite, dangerous oxidizing combinations like concentrated H2SO4, KMnO4, 
HNO3, etc. are used, creating extreme oxidizing conditions that result in the massive 
generation of toxic gases. For best outcomes, the GO preparation should be closely checked 
at all times and the temperature should be managed. Due to the integration of oxygen 
functions, the resulting GrO became aqueously processable, and during sonication, became 
exfoliated to GO. Hydrazine hydrate is a frequently utilized reductant for GO, which is also 
toxic. As a result, the entire process is risky, and alternatives are always favoured from an 
environmental standpoint. Even if many GO reductants today are safe for the environment 
and even derived from plants, the manufacture of GrO is still dangerous[159]–[162]. 
Although rGO's functionalities and defects make it useful in a variety of applications, 
including membranes and catalysis, they can be problematic for those in which the aromatic 
conjugative π-network of graphene plays a significant role. 
 

For purposes like supercapacitor electrodes, graphene should therefore be prepared 
under milder conditions. Some of those technologies, like CVD and epitaxial growth, are 
challenging to implement because of their low yield and high cost. However, there are 
effective eco-friendly, low-cost methods of exfoliating graphite that have a high yield of 
graphene, including surfactant-assisted liquid phase exfoliation, electrochemical techniques, 
ball-mill assisted techniques, and interlayer catalytic exfoliation of Fe-GIC, among 
others[52,54,58]. Although the aromatic π-conjugative network is intact in those, assuring 
good conductance, the lack of active sites for interaction between the components prevents 
these graphenes from forming composites without defects or functions. Here, there will be 
the least amount of interaction with foreign species, including electrolyte ions. Thus, it is 
recommended to functionalize these graphene sheets without affecting the aromatic π- 
conjugative network when using them as electrodes. The introduction of edge functionalities 
to graphene by ball-mill aided graphite exfoliation enables the covalent binding of metal 
oxides at the edges to generate useful hybrid materials. 
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The other approaches' extension of producing composites to achieve synergistic 
qualities is constrained since, in the absence of functional groups, covalent functionalization 
with graphene is not possible. However, Fe can combine strongly with aromatic moieties to 
yield stable compounds like ferrocene. Since similarly less defective/defect-free graphene 
sheets can form stable complexes with α-Fe2O3, the combination can function as superior 
supercapacitor electrodes while keeping the conductivity of graphene. Additionally, the 
hydrophilic Fe2O3 can conduct redox reactions and interact strongly with electrolyte ions, 
which facilitates pseudocapacitance. Thus, these composites can exhibit exceptional specific 
capacitance and metallic conductance[88]. Recent studies using XPS analysis show the Fe-C 
interaction in α-Fe2O3/graphene[88]. Raman spectrum analysis provides clear evidence of 
those graphene samples' less defective character.[86,163–165]. 
 
IX. FUTURE DIRECTIONS IN THE FABRICATION AND USE OF Α- Fe2O3/ 

GRAPHENE NANOCOMPOSITES 
 

The search for more economical and environmentally friendly ways to prepare 
graphene for composite production is now more important than ever for the successful 
fabrication of graphene-based supercapacitor electrodes. Electron mobility and conductivity 
play a significant part in the uses of these materials, which can also be employed for other 
graphene applications. The introduction of Fe2O3, which is amphoteric and has redox 
characteristics for greater performance in addition to its affinity with aromatic species, can 
overcome the low affinity of less-defective graphene towards foreign species. Less defective 
graphene and Fe2O3 can be combined for developing a hybrid material that exhibits EDLC 
and pseudocapacitance. This can further be extended for the incorporation of other metal 
oxides to this combination. 

 
High specific capacitance, power density, and energy density—three characteristics 

that are essential for supercapacitor materials—can result from this combination. The 
lightweight and flexibility of graphene-based composites, which can be investigated in the 
development of portable electronics and flexible devices, are an additional benefit of using 
them in supercapacitor formulations[88, 166, 167]. These devices can also be employed in 
health monitoring and other applications because even performance is unaffected by bending 
and twisting. Since Fe2O3/graphene supercapacitor electrodes combine high performance (in 
terms of specific capacitance, power density, energy density, rate capability, conductivity, 
etc.), low-cost methodology, and environmentally friendly preparation of a highly stable 
nanohybrid electrode material, upgrading them to devices and immediately exploring them in 
practical applications could change the face of graphene supercapacitor technology. Figure 
18 depicts a pictorial summary of various preparation methods for graphene, as well as the 
performance characteristics of an electrode made of Fe2O3/graphene that is suitable for 
supercapacitor applications and the difficulties that Fe2O3/graphene resolves. 



Futuristic Trends in Renewable & Sustainable Energy 
e-ISBN: 978-93-6252-921-3  

IIP Series, Volume 3, Book 6, Part 1, Chapter 1 
  PREPARATION METHODS, CHARACTERISTICS, AND PROSPECTS OF Α-Fe2O3/GRAPHENE 

SUPERCAPACITOR ELECTRODES IN A GREEN CHEMISTRY PERSPECTIVE 
  

Copyright © 2024 Authors                                                                                                                       Page | 19 

 
 

Figure 18: A Diagram Summarizing the Fe2O3/graphene Synthesis Processes, 
Supercapacitor Performance Metrics, and Commercialization Aspects. 

 
X. CONCLUSIONS 
 

This review focused on supercapacitors, which are promising energy storage devices 
with an electrode composition mostly composed of Fe2O3/graphene. Also briefly discussed 
the significance of graphene-based composite materials. It also emphasized Fe2O3, its value 
as a material for pseudocapacitors, and its role in the synthesis of composites with graphene. 
The review provided a clear explanation of the necessity for an economical, low-cost, and 
high-yielding method of producing graphene. At the conclusion of the review, the 
perspectives on the graphene preparation processes and the significance of Fe2O3 in the 
formation of hybrid nanomaterial are well-explained. 
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