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Abstract 

 

  The stability analysis of induction 

motor normally uses conventional steady 

state torque-speed characteristics. Study of 

stability during transient conditions is rather 

rare in literature. Rigorous analysis for 

stability based on full nonlinear dynamical 

model is lacking. For this purpose, stability 

analysis using the Lyapunov’s theorem is 

essentially required. Global asymptotic 

stability for induction motor drive using 

Lyapunov criteria is analyzed using the full 

nonlinear dynamical model. The transient 

model is considered in stationary α-β 

reference frame about steady state operating 

point. Equations are derived for energy and 

power balance. The equations can be used to 

obtain an appropriate candidate for Lyapunov 

function for stability analysis. Global 

asymptotic stability condition in the sense of 

Lyapunov is derived at any possible speed, 

with load and without load, with variations in 

parameters and frequency. These generalized 

conditions of stability for any operating 

speed, load, frequency and parameters with a 

case study for confirmation are the outcomes. 
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I. INTRODUCTION 

 

  Induction motor offers a nonlinear, coupled and multivariable dynamics. Induction 

motor control has advanced from scalar control techniques to vector control [1]-[3], and 

decoupling control through state feedback linearization [4]-[10]. On the basis of these 

relatively new control strategies, a lot of modern controllers and estimation techniques, [8] 

have been applied. But, most of the researchers try, experiment and succeed to apply these 

modern control and estimation techniques without sufficient theoretical study of stability. The 

stability analysis of induction motor normally uses conventional steady state torque-speed 

characteristics [9]-[10]. Study of stability during transient conditions is rare in literature. 

Rigorous analysis for stability based on full nonlinear dynamical model is essentially 

required. 

 

  The state feedback linearization and vector control techniques are successfully 

implemented. They assure complete decoupling between motor speed and flux with certain 

motor physical parameters. But, some of the control techniques are sensitive to variations in 

speed, frequency, parameter and load. So, it is pertinent to analyze motor sustaining capability 

at steady state and transient durations. For this reason stability analysis using the Lyapunov’s 

criteria is essentially required. Such a work is reported [11], with induction motor model in 

synchronously rotating reference frame. But, main drawback of synchronously rotating 

reference frame model, is requirement of synchronous angle, θe, which is obtained from a 

phase locked loop (PLL) and integrating the synchronous speed, ωe. This means additional 

cost and complexity of the system, for predicting the stability on-line. This drawback is not 

present, with induction motor model in stationary reference frame. Such type of global 

asymptotic stability analysis using Lyapunov’s theorem for induction motor drive is presented 

in this paper. Global asymptotic stability using Lyapunov’s theorem for induction motor drive 

is discussed taking the full nonlinear transient model in stationary α-β reference frame, about 

a steady state operating point. Considering frequency, synchronous speed, load and motor 

parameters, conditions of stability are derived. The stability using Lyapunov approach is 

studied considering variations in frequency, speed, load and motor parameters. This work 

presents a theoretical demonstration of the stability analysis of the induction motor drive 

system utilizing the Lyapunov’s stability theorem [4]. 

 

II. STATE-SPACE MODEL NEAR STEADY STATE OPERATING POINT 

 

   Many control schemes are developed for the induction motor drive using its model in 

stationary (α-β) reference frame with stator current components (iαs, iβs), rotor flux 

components (ψαr, ψβr) and speed (ωr) as variables [6]-[10]. The mathematical model is 

presented below. 

 

( )x f x bu    (1) 

where, [ , , , , ]T

s s r r rx i i     
,  

[ , , ]T

s s lu u u T  , where 
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where, suffixes (α, β ) denote the direct and quadrature axis equivalent components in 

the stator mounted reference frame.  Ls, and Rs are are the stator inductance and resistance, 

respectively. Lr, and Rr are the the rotor inductance and resistance, respectively. Lm is the 

mutual inductance between stator and rotor. np is the number of pole pair. J is the moment of 

inertia and B is the viscous friction coefficient. Tl  is the load torque. Input stator voltage 

components in the stator mounted reference frame are uαs  and uβs . The leakage coefficient, σ 

is defined as  21 m r sL L L   . The torque coefficient, KT  is defined as
T p m rK n L L .  

 

The motor speed is ωr. The state feedback linearization decoupling and control 

algorithm for motor speed and rotor flux is expressed in [10] as: 

 

 T L
r r s s r s

K TB
i i

J J J
          

    
(2) 
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(3) 

 

  Induction motor is stable at steady state condition for rated slip operation. The 

feedback linearization and decoupling control also ensures the stable motor operation near 

rated slip. In this research work, any possible operating point near steady state condition is 

assumed.  

 

  The steady state point state variable set is xo. 

 

where,  
0 [ , , , , ]T

so so ro ro rox i i     
 

 
  The steady state point is a fixed point. So, the system response about this point is 

given by the equations: 

 
2

2 2

p mm m r
s r so ro ro ro s

r r r

n LL L R
R R i u

L L L
     

 
    

 

 

 



Futuristic Trends in Electrical Engineering 

e- ISBN: 978-93-6252-001-2 

IIP Series, Volume 3, Book 1 , Part 4 ,Chapter 2 

      TRANSIENT STABILITY ANALYSIS OF INDUCTION MOTOR DRIVE USING NONLINEARMODEL 

 

Copyright © 2024 Authors                                                                                                                    Page | 195 

2

2 2

p mm m r
s r so ro ro ro s

r r r

n LL L R
R R i u

L L L
     

 
    

 

 

 

0m rr
ro p ro ro so

r r

L RR
n i

L L
      

 

 

0m rr
ro p ro ro so

r r

L RR
n i

L L
        

 

( ) 0lT
ro so ro so ro

TKB
i i

J J J
           (4)

  

  When the variables and parameters at operating condition of motor drive system 

change, motor dynamic model deviates from its known model at steady state position. If error 

in the variables converge to zero, then after sometime motor drive system operates at steady 

state in another stable position. Theoretical analysis of this drive system error variable set is 

presented below. 

 

  The set of error variables for induction motor drive system is defined as given in (5). 

 

1 2 3 4 5( , , , , )e e e e e e ( , , , , )s so s so r ro r ro r roi i i i                     (5)  

 

  The state space model of this drive system with the errors as variables is obtained 

from (1) as:  
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III. POWER AND ENERGY BALANCE EQUATIONS 

 

  In the stationary reference axes with the induction motor rotor and stator current α-β 

components as variables, the magnetic energy (wf
 
) and mechanical energy equations are 

expressed as in equation (7),  [11]. Then total motor energy defined as (wp) in equation (9). 

 

     2 2 2 21 1

2 2
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21

2
J rw J  (8)  
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p f Jw w w 
  

(9) 

 

  The total motor stored energy in terms of stator fixed α-β axes variables like stator 

current is components (iαs, iβs), rotor flux ψαr, ψβr components and motor speed, ωr  is given by 

[11]. 
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(10)  

 

  Taking the derivatives of (10) and substituting from (1) and simplifying leads to 

equation (11).  
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  Equation (11) is for the power balance of induction motor as in [12]. Equation (11) 

states that the time rate of change of stored energy is the difference of input power and sum of 

mechanical power output with power loss. 

 

Power loss in stator and rotor windings is expressed as in (12). 
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  The power loss equation using the stator current and the rotor flux α-β components is 

given by substituting (13) and (14) in (12), [12]. 
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The power loss equation is derived as given in (15).    
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For the stability analysis using Lyapunov approach, above power and energy balance 

equations are used. The total stored energy wp in terms of error variables is given by (16). 
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The total stored energy at steady state point, wp is given by (17) using the steady state 

point variables.  
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Difference of (16) from (17) gives, where, wp(e) using the error variables, where, 

wp(e)=wp−wp(0) 
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 Arranging (18) in the error product form as in (19): 
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  The derivative of wp is the same as the right-hand side of the power balance equation 

(11), as rewritten below [11]. 

 

2
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( )
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s s ro l
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R
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(20) 

   Equation (20) is expressed in error vector product form as in (21). 

 p T T

w

dw e
e M e s e

dt
  

  
(21) 

 

 where, 
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IV.  INDUCTION MOTOR STABILITY ANALYSIS USING LYAPUNOV 

APPROACH 

 

1. The Lyapunov Function Selection: The first term of equation (19) is taken as a 

Lyapunov function candidate, V. 

 
TV e Ke   (22) 

 

Derivative of the Lyapunov function using (19), (21) and (22) is obtained as: 

 
( )p T

dw e
V d e

dt
     ( )T T T

oe Me s e d A x g e      

 
As the last two terms in above equation cancel each other, this gives equation (23). 

TV e Me    (23) 

 

where, 
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2. Global Asymptotic Stability of The Induction Motor Drive: For the Global asymptotic 

stability theorem ([4], pp.65) the scalar function V of the state error (e) should have 

continuous first order derivative and satisfy the followings.  

 

(a) V(e) is positive definite 0e  , and (0) 0V   

(b)  
0 0

dV e
e

dt
  

 
(c)  

0 0
dV e

e
dt

       

(d)           V e as e     (24) 

 

For the first condition to be satisfied, the leading principal minors of K need to be 

positive definite. These are verified and mentioned below. 
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
 

 
2

5 2
0

32

s

r

L J
K

L


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 (25)  

 

The principal minors of K are positive definite. The verification confirms that all 

principal minors are positive. For the Lyapunov function defined in equation (22), 

conditions (a) and (d) hold good. Further conditions (b) and (c) are checked as follows. 

 

3. Global Asymptotic Stability of the Induction Motor Without Load: In this case, 

motor load torque is zero. If viscous friction coefficient, B is 0, then developed torque, Te 

is also 0. So, the current components iαro and iβro become zero. So, equations (13) and (14) 

lead to (26) and (27). 

 

             
0m ro

ro so

r r

L
i i

L L
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 
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(26) 

 

              
0

rom
ro ro

r r

L
i i

L L



 


   

   

(27) 

 

Substituting (26) and (27) in (23), matrix M converts to Mo, as given below. 
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(28) 

 

This matrix Mo needs to be positive semidefinite. For this all the principal minors 

of M0 are derived and mentioned in (29) to (33) below.  
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Here it is noted that M0 is positive semidefinite if it satisfies the following 

condition, which is derived from (31) and (32). 
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The left hand side of inequality (34) is dependent on the motor parameters. 

Inequality (34) gives positive value in case of small induction motors [11] and at less 

values of speed. For larger induction motors, the left hand side of inequality (34) becomes 

negative. So, at the time of starting large induction motor it is necessary to increase the 

rotor and stator resistances. This concludes the fact that, smaller induction motors can be 

started directly online at no load without loosing stability. In larger induction motors, rotor 

and stator resistances have to be increased for stability during starting acceleration. 

 

      Condition (c) in (24) leads to: 
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From (28) what follows is (35).
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 Here, an expression in terms motor parameters and error variables is considered as 

given in left hand side of (36) as given below. This expression should be positive or zero. 
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On expanding the above: 
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Subtracting (35) from (37): 
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The left side of (38) will be equal to zero, only when e=0. 

 

4. Global Asymptotic Stability of Induction Motor Drive With Load: When the 

induction motor is loaded the positive definiteness of matrix M is evaluated. This positive 

definiteness of matrix M will be fulfilled if the leading principal minors are positive. The 

derived expressions of leading principal minors are given in equations (40) to (44). 
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2 2 2 2 2

2

5 2 2 2 2 22 2 2 2

p m ro p p p m mr m m rr r r
s ro m so m so ro

r r r r r r m r r

n L n n n LR L L RR R R
M R L i L i B B

L L L L L L L L L
   

 
 

                
                        
                    

     2 22 2 2 2

p p p m m pm r m r
ro m so ro m so m so ro

r r r r r r

n n n L nL R L R
L i L i L i

L L L L L L
     


  

         
              
         

  (44) 

 

 

5. Case Study: Above conditions for positive definiteness of matrix M are verified by taking 

induction motor with specifications as follows. 5 Hp (3.7Kw), 6pole, ∆-connected, 415V, 

1445 rpm. The motor parameters are as follows. Rs=7.5Ω, Lm=0.5H, Ls=0.52H, Lr=0.52H, 

Rr=5.4Ω, J=0.16 kg-m
2
, B=0.035 kg-m

2
/s. 

 

Substituting the parameter values in the matrix M,  

 

     

     

       
       

   

12.5 0 9.95 0.4 0

0 12.5 0.4 9.95 0

9.95 0.4 19.89 0 1.9 0.95

0.4 9.95 0 19.89 0.95 1.9

0 0 1.9 0.95 0.95 1.9 0.035

r

r

r ro so

r so ro

ro so so ro

iM

i

i i

 

 

   





 

 

 

   
 

 
  
 
   
 

        

(45) 

 

The minors of matrix, M are 

 

          

2

1 12.5m
s r

r

L
M R R

L

  
    
      

(46) 

 

        

2
2

2 156.3m
s r

r

L
M R R

L

  
    
   

  (47) 

 

       

2 2
2 2

3 2 2 2 2

p m ror m r m m rr
s s

r r r r r

n LR L R L L RR
M R R

L L L L L

         
             
             (48) 

 Solving for higher principal minors 

 

     

     

     

     
4

12.5 0 9.95 0.4

0 12.5 0.4 9.95

9.95 0.4 19.89 0

0.4 9.95 0 19.89

s

s

s

s

M









   
 

 
  
 
  

 
 

 

 



Futuristic Trends in Electrical Engineering 

e- ISBN: 978-93-6252-001-2 

IIP Series, Volume 3, Book 1 , Part 4 ,Chapter 2 

      TRANSIENT STABILITY ANALYSIS OF INDUCTION MOTOR DRIVE USING NONLINEARMODEL 

 

Copyright © 2024 Authors                                                                                                                    Page | 203 

   

 

 

      

41

2 2 2

41

2

41

12.5 0.4 9.95

12.5 0.4 19.89 0

9.95 0 19.89

12.5 12.5 19.89 19.89 0.4 19.8 9.95

35711.88 980537.125

s

s

s

M

M

M









 
 

  
  

  

 

 

 

   

   

 

       

44

2 2

44

2 4

44

0 12.5 0.4

0.4 9.95 0.4 19.89

0.4 9.95 0

0.4 12.5 0.4 19.89 0.4 9.95 0.4

590090.78 15553873.82

s

s s

s

s s s s

M

M

M



 



   

 

 
 

   
   

    

  

    
4 41 43 44

2 2 2 4

4

4 2

4

35711.88 980537.125 14812.5 390449.94 590090.78 15553873.82

15553873.82 2 590090.78 20899.38

M M M M

M

M

   

 

  

     

   

 
 

The foregoing equation is solved to find the real roots. If: 

 

         

2 2

2

15553873.82 2 590090.78 109843.12 0

0.13, 0.13

0.36 0.36 0.36 1 0.36

0.64

1.36

x x x

x x

s

s

s







     

    

       




  

The matrix M is related to motor current and flux values at steady state. So, for 

testing the positive definiteness the following three sets of observations (Table-I) have 

been considered [10]. 

 

 Induction motor running at 52.19 rad/s (500 rpm) under no load. 

 Induction motor running at 52.19 rad/s (500 rpm) subjected to 10 N.m load torque. 

 Induction motor running at 104.7 rad/s (1000 rpm) under no load.   

 

During the stability study test following results are obtained for determinant of the 

matrix M5 and principal minor M4 as shown in Table-I. 

 

Table 1: Stability Test Results for Three cases 

 

ωro (rad/s) Tl (N.s) 
iαso(A) 

 iβso(A) 

ψαr0 (V.s)  

ψβr0 (V.s) 

Principal 

Minor 

52.1 0.575 
2.17 

1.947 

0.45 

-0.48 

M4=8.1e4 

M5=2.12e4 

52.02 10.1 
-5.415 

-8.468 

0.220 

-0.427 

M4=8.1e4 

M5=2.72e5 

104.7 0.4 
-1.78 

-3.965 

-3.965 

-0.48 

M4=1.16e8 

M5=5.9e6 
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V. CONCLUSION  

 

  The global asymptotic stability using Lyapunov’s theorem for the perturbed induction 

motor drive near steady state operating point has been analyzed without load and with load. It 

has been noticed that stability depends on slip at the operating point and motor parameters at 

the operating condition. The rotor resistance has more predominant effect than other 

parameters. The fact that increase of rotor circuit resistance through addition of extra 

resistance increases the starting torque thereby making the motor capable of accelerating 

stably is confirmed and reestablished through stability study. The sufficient condition for 

stability is also derived. This stability analysis helps to understand the stability and instability 

of the induction motor drive.  
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