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Water has a key role in mediating ecosystem peaseat the global scale, connecting

the atmosphere, lithosphere, and biosphere by posiisg materials across them and
facilitating chemical reactions. Natural waters aexer completely pure; instead, they are a
complex, dynamic blend of suspended patrticlesptlisd inorganic and organic compounds.

On average, water accounts for 60 to 70 perceahafrganism's weight. It fills cells,
giving many tissues shape and support. All of difehemical reactions take place in the
medium of water, and water actively participatesnany of these events. Water is a solvent
that breaks down both the nutrients that cellsiredor survival and the waste products that
cells generate.Water is therefore necessary foitrmesportation of materials to and from
cells.Salts and other substances are dissolved digrwcreating solutions that conduct
electricity. The energy that powers photosynthesaso provided by these fluids, which are
known as electrolytes.
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To prevent communicable diseases and maintainatihigelifestyle, clean drinking
water and basic sanitation are essential. The aggase of dirty water remains one of the
biggest environmental dangers to health for marthefworld's poorest populations. In 2002,
the UN projected that 2.4 billion people lackedemscto proper sanitation and at least 1.1
billion did not have access to safe drinking wakdore than 5 million people every year die
as a result of these deficits, which cause hunddédsiillions of cases of water-related
sickness.

Water shortages are anticipated to worsen as abpuog increase, more people
migrate into cities, and agriculture and industiryggle for dwindling water supplies. Two-
thirds of the world's population will reside in watstressed nations by 2025, as determined
by the United Nations as those whose freshwategplmgpare consumed at a rate greater than.
Reducing the number of people without dependableess to clean water and better
sanitation by half was one of the top targets pati at the UN World Summit in
Johannesburg in 2002.

The minimal essential water demands of all ofrtipejpulation cannot be met by 45
countries, the most of which are in Africa or thedtMe East. The issue of access to clean
water exists in various nations. Accessibility does necessarily equate to affordability. For
instance, a typical low-income household in LimayR uses one-sixth the amount of water
that a middle-class American family does while pgyihree times as much for it. To buy and
purify water, a poor household could spend up te-third of their income if they followed
the government's advice to boil all water to preedolera.

Over the past ten years, investments in rural Idpweent have resulted in notable
advances. Almost 800 million people, or 13% of wwld's population, now have access to
clean water since 1990. The proportion of ruralifi@s that have access to clean water has
increased from less than 10% to around 75%.

|. BIOREMEDIATION

Composting and wastewater treatment are well-kn@axamples of traditional
environmental biotechnologies. Environmental bibtedogy is not a new field. A
biotechnological procedure called bioremediatiomluces or eliminates environmental
contamination. 'Bio' in bioremediation refers toling thing, and'remediate’ means to
address an issue. It is a form of waste managestaategy that employs living things to
either remove or utilize pollutants from a pollutedion.

Food, energy, and other necessities of daily dife in greater demand due to the
growing global human population. These demands west by the Industrial Revolution,
which led to the mass manufacture of several oogamid inorganic compounds. These
procedures cause environmental pollution in a anéways, whether directly or indirectly.
Many various procedures are employed to lessemtpwi, one of which is bioremediation,
in which noxious chemicals or pollutants with loaxicity are neutralized by biological
agents.

Recently, it was thought that bioremediation wasadution for problems with
hazardous contaminants that were emerging andvimgoh variety of microbes, including
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both aerobic and anaerobic bacteria, fungi, algad,both. Living things undergo a reaction
as a part of their metabolic processes to changagonants in this process (Kendaal.,
2011). In this procedure, naturally occurring baatand fungi are occasionally employed to
detoxify or breakdown chemicals that are harmfulht® environment or human health. The
microorganisms may be isolated from another loocatad delivered to the contaminated
locations, or they may be native to the contamupharea.

II. BIOREMEDIATION APPLICATIONS

1 ltis an easy and labor-efficient method.

2 It is a natural process that takes some time wheteba multiply and break down
contaminants, but when contaminants are broken dtvenpopulation of microbes also
declines.

3 Sustainable and eco-friendly.

4 By converting harmful to safe compounds, biorem@uiais useful for the total
eradication of a wide range of pollutants.

5 Pollutants can be destroyed rather than beingfeaes from one environmental medium
to another, such as from land to water or air.

6 Bioremediation can be done locally, eliminating theed to carry trash elsewhere and
reducing risks to both human health and the envient while doing so.

7 Compared to other approaches for hazardous wastnugh, bioremediation is less
expensive.

8 Bioremediation preserves aesthetic qualities bykegindustry out of the environment.

9 Contaminants are eliminated, not just distributbdowghout various environmental
media.

10 Comparably simple implementation.

11 Non-intrusive, possibly enabling continuous site.us

[11.TYPES OF BIOREMEDIATION MICROBIAL BIOREMEDIATION

For the removal of harmful pollutants, bacteria &mngi are used as microorganisms.
When a dangerous substance is present and the regommeeis below zero, microbes can
proliferate. The key contributing elements for thegradation of pollutants are the microbial
population, the accessibility of contaminants te thicrobial population, and environmental
conditions such soil type, pH, temperature, oxygentent, and nutrition levels (Sharma,
2020).

1. Phytoremediation: Green plants and the related microorganism are usethis
procedure to purge harmful environmental contantgydom the environment. A number
of processes, including phytodegradation, phytdiidation, phytoaccumulation, and
phytoextraction, are used in phytoremediation. Tealth and yield of soil can be
improved via phytoremediation, which is more affdste than other traditional methods
(Singhet al., 2017).

2. Mycoremediation: In terms of mycoremediation, the method of emplgyfngi to
degrade harmful compounds in the environment. Fliage non-specific enzymes that
can break down a wide variety of substances. 'Whitg fungi' is the
mycoremediationbranch that has seen the highestamwent (Tomeet al., 2021).
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3. Bio- Stimulation: The ability to send the stimulus to the environmientnown as bio-
stimulation. One of the most established methodsi@femediation of hydrocarbons is
bio-stimulation, which has lately made advancementsggeophysics, stable isotope
studies, and molecular microbiology. By first prdivig fertilizers, growth aids, and trace
minerals, then by providing other environmentaltdeg like pH, specific nutrients are
injected at the site (soil/ground water) to stinbellhe activity of native microorganisms,
which include naturally existing bacteria and fusg@ommunities.Secondly, oxygen and
temperature to boost their metabolism. Pollutams are present in modest amounts also
act as stimulants by activating the bioremediagoaymes. The majority of the time,
nutrients and oxygen assist these routes to cantayusupporting local microbes (Kensa
et al., 2011).

4. Bio-Attenuation: The contaminants are changed to a less hazardous daoring
bioattenuation. These transformational processemastly brought on by biodegradation
by microorganisms, to some extent by reactions waturally occurring chemicals, and
to some amount by sorption on geologic media. Nétattenuation is a method for
treating fuel compounds that is specifically ackfemlged as polluted, but not for many
other groups.

Many polluted locations might not need an aggress@pair strategy. According
to Maitra (2018), bioattenuation is effective ambromical.Bioattenuation is dependent
on natural degradation processes. In order to nsmke that the concentration of
contaminants at important sampling points declmes time, a technique of tracking the
natural progression of degradation has been desél(®harmat al., 2020).

5. Bio-Pile Because of its cost-effectiveness, this ex-sitbrigpie enables for the effective
management of operational biodegradation varidtde$?H, Nutrients, Temperature, and
Aeration. The usage of biopiles, sometimes refetiedas bio-cells, bio-heaps, bio-
compounds, and compost piles, helps to lower pairol pollutant concentrations in
excavated soils while promoting biodegradation. sThmethod includes leachate
collection, bed systems for treating leachate i@nits, irrigation, and aeration.

It is also possible to remediate volatile low malec weight contaminants with
the biopile.In order to facilitate constant aircaitation in contaminated piled soil through
air pump, biopile systems were connected to aduitidield ex-situ bioremediation
techniques, such as land farming, bioventing, @ogipg, robust engineering,
maintenance and operation cost, and lack of powgulg at remote sites.

Extreme air temperatures can cause soil to drnaondtundergo bioremediation,
which inhibits microbial activity and promotes vilization rather than
biodegradation.The breakdown of adsorbed petrolpalhutants increased as a result of
the increased microbial activity brought on by ratgal respiration (Sharmet al., 2020).

6. Bioventing: In order to increase the activities of native mii@e for bioremediation, the
bioventing technique involves controlled airflowinstilation by delivering oxygen to
unsaturated zones. Amendments are made by addingntsl and moisture to increase
bioremediation, which achieves microbial transfaioraof pollutants to harmless state.
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Bioventing is used for efficient bioremediation gEtroleum-contaminated soil.
In unsaturated soils, bioventing can consideratwyer the concentration of a variety of
hydrocarbons and other organic pollutants. Systemisioventing remediation should be
planned to reduce constituent volatilization. Bynghating the requirement for off-gas
treatment, it lowers remediation costs (L&EI., 1993).

Bioremediation of Water Waste of Textile and Dye Industry Textile Dye:
Commercial synthetic dyes are also use in varigpes of industries such as paper,
printing, plastic and pharmaceutical industry, eiéint type of paint and textile industry.
The textile industry plays important role in theoeomic development of different
countries, as China is the largest exporter ofleegtoducts, followed by India, European
Union, The USA and Turkey(Sudarsheiral., 2023).

Textile Waste Toxicity: Adverse effect of Textile dyes on human health saghsome
dyes cause allergic skin reaction, Numerous respydract irritations, skin and mucous
membrane ulceration and mental disorientation whiealed. Improperly disposed textile
dye effluent affecting photosynthetic activity, isancreases heterotrophic activity, which
result lowers dissolved oxygen levels affects whiaysystem(Sudarshanal., 2023.

.TYPES

Bioremediation of textile water waste by Bacteria: Most effective degraders of
synthetic dye are Bacteria and Cyanobacteria, Isecaf their short life cycles plays
important role in secondary waste generation araptadbility to variety of substrates.
Microorganism reduces hazardous chemicals and feranstoxic chemicals into less
harmful. Some bacterial strains, such Bacillus cereus, Pseudomonas putida,
Pseudomonas fluorescence, Pseudomonas desmolyticum and Bacillus sp. have been used
in the biodegradation of azo dyes (Sudarsttah., 2023).

Table 1: Summary of decolorization of various dyes by pure and mixed bacterial
Culture

Sr. Decolorization of
No. Dye Bacteria textiledye References
(in %)

1. Methyl Red Saphylococc| 94 & 97%
us Decolorization Hakimet al.,
saprophyticu | within 24 & 48 hrs. (2014)

SAUCA Resp.
SVE3

2. Reactive Violet 5 Paracoccus | 70%
p. decolorization within | Bheemaraddi
GSv 38 Hrs. al., (2014)
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3. Acid Orange Bacillus 73%
megaterium | Decolorization within | Shalet al.,
PM582 38 hrs. (2014)
4. Reactive Red | Acinetobacte| 96.20%
198 r baumannii | removal after 72hrs. Unnikrishnanet
al., (2018)
5. Reactive Yellow Thiosphaera | 50%
145 pantothropha| decolorization within | Garget al.,
ATCC 35512 | 96 hrs. (2020)
6. Reactive Red Pseudomonag 86%
HESB aeruginosa | decolorization within | Pateét al.,
48 hrs. (2016)
7. Reactive Black b Aeromonas | 76%
hydrophila decolorization within | El Bouraiet al.,
24 hrs. (2016)
8. Reactive Red Shewanella | 99%
120 haliotis decolorization Birmoleet al.,
(2019)
in 2.5 hrs.
9. Congo Red, 65.57% &
Reactive Black| Enterococcus | 72.64 % decolorization
5 faecalis Resp. within Wanget al.,
R1107 48 hrs. (2022)
10. Malachite Pandoraea 85.2% Cheret al.,
Green pulmonicola | decolorization (2009)
11. Reactive Blue | Bacillus 100%
59 odyssey decolorization within
VK3, 60h, 30h. & 24h Patilet al.,
Morganella resp. (2008)
morganii
VK5 &
Proteus sp.
VK7
12. Reactive Orang 100%
16 Pseudomonas | decolorization within | Jadhaet al.,
p. 48 hrs. (2010)
13. Reactive GreenMicrococcus | 100%
19A glutamicus decolorization within | Saratalet al.,
NCIM- 42hrs. (2009)
2168
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14. Direct Black 22 Bacterial 100%
consortium decolorization within | Mohanaet al.,
12 hrs. (2008)
15. Metanil Yellow| Bacillus sp. 100%
AK1 & decolorization within | Anjaneyaet al.,
Lysinibacillus| 27 (2011)
sp. AK2 hrs.& 12 hrs.
Resp.
16. Methyl Red,
Tartrazine,
Ponceaus, Read
Red 35, Evans| Nesterenkonia| <90%
Blue, Acid Red | lacusekhoensi | decolorization within | Prabhakaat al.,
3R, Acid red, | SEMLA3 72 -192 hrs. (2022)
Methyl Orange
Reactive
violet, Red AG
17. Acid Black,
Congo red, Aci 51.2%, 1.9%,
red 27, Bacillus 32.05%, 36.2% Kesebiret al.,
(2021)
Reactive black/ licheniformis | decolorization resp.
Methylene
Blue
18. Congo red,
brilliant blue& | Saphylococcu| 80% and 40%
Bromophenol | shaemolyticus decolorization resp. Li et al., (2020)
blue, Crystal within 3 hrs.
violet
19. Malachite Dietzia sp. 72.05% Bereet al.,
Green decolorization (2016)
20. Amido Black | Chroococcus | 55% Parikhet al.,
10B minutus decolorization (2005)
21. Reactive Dark | Exiguobacteri | 97%
blue um sp. decolorization within | Quetal., (2010
24 hrs.
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V. UTILIZING MICROALGAE FOR TEXTILE WASTE WATER
BIOREMEDIATION

If discharged without adequate treatment, wastéewfrom the textile industry
contains a variety of pollutants, the majority diieh are dyes and have negative effects on
aesthetics, eutrophication, a reduction in photthstic activity, and bioaccumulation of
toxins in aquatic ecosystems.

A viable alternative to the current standard metbd waste water treatment is the
growing of microalgae in the textile dye effluefithe conventional treatment process by
using microalgae for bioremediation of textile effhts provided valuable biomass that can
be processed into bioproducts, biofuels, and biagneThe treatment using microalgae
reduces color and nutrient load of textile efflyemthich reduces numerous negative
environmental impacts caused by its discharge mattoiral environment (Premaratbieal .,
2021).

Table 2. Summary of Some Recent Studies on Phycoremediation of Textile Dye
Wastewater Using Microalgae

Decolorization
Sr. No| Textiledye Decolorizing Removal References
Microalgae per centage
1. Indigo Blue Scenedesmus 100%
guadricauda decolorization | Chiaet al., (2014)
ABU12 within 4 days
2. Congo Red Chlorella 98% Mahalakstetnal .,
(2015)
vulgaris Decolorization
3. Direct Red 5B Comamonas 100% Jadhawet al., (2008)
sp. UVS decolorization
4. Congo Red Haematococcu | 98% Mahalakshmt al.,
S sp. Decolorization | (2015)
5. Azo dyes Nostoc muscourm  68%
Decolorization in| Omaret al., (2008)
6 days
6. Methylene Blu 98.6%
& Malachite | Desmodesmus sp| decolorization in | Beraet al., (2016)
Green 6 days
7. Direct Red 31| Chlorella 80.12 %
pyrenoidosa decolorization | Behletal., (2019)
within 180 min
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8. Indigo Blue Chlorella vulgaris| 49.03 %
decolorization Revathiet al., (2017)
within 24 hrs.
0. Disperse Scenedesmus 98.14%
orange 2RL | obliquus Decolorization | Hamoudeet al.,
(2022)
10. Cl Reactive | Shewanella 91.04% Chaielet al., (2008)
Red 66 algae B29 Decolorization
11. Remazol Blac Chlamydomon 72.97%
5, Reactive areinhardtii Decolorization | Sanet al., (2015)
Blue
12. Remazol BlackPhormidiuman 99.96 % Bayazitet al., (2020)
B imale decolorization

VI.UTILIZING FUNGI FOR BIOREMEDIATION OF TEXTILE WASTE WATER

The biological method—which employs a variety atmorganisms and fungi—is
thought to be the most efficient and least enenggrisive way to remove the majority of
pollutants from water.

Industrial dyes are removed by fungus throughdsoiption mechanism, however in
some fungi, such as White Rot fungus, both adsm@nd degradation can take place at the
same time. The decolorization of textile colorsngsFunaliatrogii pellets, a white rot fungus.
The dye concentration, amount of pellet, tempeeatiand media agitation all had a
substantial impact on the decolorization activity.

White rot fungus, which can release ligninolytitzzgmes that bind to non-specific
substrates and then degrade a wide range of r@fyacbmpounds (i.e., pollutants including
dyes), can deculturate dyes (Jebapeiyal., 2013).

Table 3: Summary of Decolorization of Various Dyes by Fungi

Sr. Species Dye Per centage References

No. Removal

1. Aspergillusversicolar | Reactive Black § 98%
decolorization | Huanget al., (2016)
within 420 min

2. Pleurotus eryngii Reactive Black 5 93.57 %

decolorization Hadibaratat al .,
within 72 hrs. (2013)

3. Funalia trogii Reactive Black 3§ 100%
decolorization | Mazmancet al.,
within 48 hrs. (2005)
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4. Pleurotus eryngii Methyl Orange 43%
decolorizatiom | Akpinaret al., (2017)
with 5 min
treatment.
5. Coriolopsis gallica Reactive Black § 82%
decolorization | Benetal., (2022)
within 120min
6. Penicillium sp. QQ Reactive dark 97%
blue decolorization | Quetal., (2010)
within 24 hrs
7. Penicillium oxalicum Methylene Blue | 99.17%
decolorization | Mathuret al., (2021)
within 6hrs
8. Penicillium Reactive Black | 92% Muthukumararet
simplicissimum 5 decolorization | al., (2017)
0. Penicillium Reactive lack 5 | 88% Muthukumararet
chrysosporium & Direct red 81 | decolorization | al., (2017)
10. Penicillium sp. YWO1 98.23 9
Malachite Green decolorization | Yangetal., (2011)
within 6 days
11. Umbelopsisisabellinna 100%
& Penicillium Reactive Black 3 decolorization | Yanget al., (2003)
geastrivorous within 16-48 hrs.
12. Aspergillus niger Cibacron Black | 33% Biyilet al., (2012)
W-NN decolorization
13. Cyathus bulleri Reactive Red 80 % Chhabreet al., (2008
198, Reactive | decolorization
Orange

Various dyes like Malachite Green, Commercial Xane, Rhodamine B, Brilliant
Green, Azo dyes, Metanil Yellow and Methyl Orangads to Carcinogenic, Genotoxic,
Mutagenic and Neurotoxic against humanhealth argkrotiving organism, also affect
immune system and reproductive as well as respyratgstem of living organism (Sudarshan
et al., 2023).

VII.PESTICIDE BIOREMEDIATION

In agriculture, the use of pesticides boosts agitical output and lowers crop loss.
Agricultural discharges of pesticides into watesr@ase their toxicity and harm aquatic life
(Singhal et al., 2021). According to the FAO (2018), Asia uses 52.8%6the world's
pesticides, followed by the USA (30.0%), Europe.T%), Africa (2.2%), and Oceania
(1.3%).
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Pesticide removal is influenced by two factor finst is the biome's ideal conditions
for survival and activity, and the second is thstisgde's chemical composition and factors
related to organisms (microalgae), such as thetdyani suitable organisms, the biological
substrate, the availability of water, oxygen tensamd redox potential, surface bonding, the
presence of substitute carbon substrates, and eletron acceptors. (Neeal.,2020).
Pesticides have significantly increased crop yidldsn agriculture by helping to manage
pests on a global scale, yet applying pesticidesvilyeto agricultural land has negative
effects on the environment, the human body, andamurnealth. For this reason, the
development of a quick method of pesticide detoatibn is particularly crucial. The
detoxification of environmental pesticide residuiss greatly aided by bioremediation.
Pesticides can be detoxified or degraded by a tyagk microorganisms, including fungi,
bacteria, and algae.

The composition of pesticides in contaminated esater, treatment costs, and ease
of use are the main factors influencing pesticiggatinent methods. In order to construct
treatment facilities that are intended to removeemgyimg pollutants like pesticides from
wastewater, a thorough investigation of influenaretcteristics and the coupling of the best
treatment technology are necessary. For the elimmaf pesticide degradation in aqueous
medium, physical, chemical, and biological appreachave been widely applied (Miel.,
2020).

VIII.EFFECTS OF PESTICIDESAND HEAVY METALSON HUMAN HEALTH

Organophorus (op), Carbamate (CB), and OC pesscide among the most harmful
because they work by interfering with the nervoystesm's normal operation (Riodeffial .,
2014). These pesticides lead to plenty of hazarddiects on human, animals, plants and
environment. Table 4 depicts examples of some @de with their adverse effects on
human health.

Table4: Harmful Effect of Pesticides on Human Health

Sr Pesticides Health effects
no.
Aldrin Nervous system effec
Probable carcinogen.
2. Dichlorodiphenyltrichloroethidervous system effec
ne (DDT) (tremors, seizures).
Probable carcinogen
3. Chlordane Nervous syster digestive

system, liver effects,
Headaches, irritability,
confusion, weakness, visi
problems, vomiting, Greenetal., (2004)
stomach cramps, diarrhoea,

and

jaundice for lowe doses.
4, Dieldrin Nervous system effect

U7
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Probable carcinogen.
Uncontrolled muscle
Movement.

5. Heptachlor Nervous system damag
liver and adrenal gland
Damage, tremors.

IX.MICROALGAL BIOREMEDIATION OF CONTAMINATED BY PESTICIDES

Algae likely make up to 27% of the total microbdmass in the soil, making them a
significant part of the soil microflora. It is criatfor the nitrogen economy of soils and helps
sustain soil fertility and oxygen generation. Algaerease BOD by fixing carbon dioxide
(CO2) and releasing oxygen (0O2) during photosynsheédgae are used as biofertilizers or
soil conditioners. contribute significantly to thomonitoring and regulation of organic
pollutants in aquatic ecosystems (MNieal., 2020).There are several pesticide elimination
mechanisms used in bioremediation, including bicsoggtion, bioaccumulation, and
biodegradation. 2020 (Nigt al).

The method of bio adsorption is passive (Ardahl., 2014). According to a recent
study (Mishaqgaet al., 2017), grown algae were able to remove 87-96%a ofariety of
pesticides from aqueous phase, including atrazisiejazine, molinate, isoproturn,
carbofuran, propanil, dimethoate, metolachlor, pmethalin, and pyriproxin.

According to Ardadt al. (2014), bioaccumulation is an active process taat be
expressed by the bio-concentration factor (BCFroiding to Wanget al. (2014), variations
in the bioconcentration mechanism, bioavailabibfychemicals, physical barriers, methods
of determining the BCF, dissolved organic mattegtabolism, ionization of ionizable
compounds, and environmental conditions have aifsignt impact on the values of the
BCF. According to additional data, BCF values vaw®pending on the concentration.
Additionally, pyrometryne BCF values at 2.5 (or)5diL concentrations were higher than
those at 10.0 (or 12.5) g/L concentrations in grgae (Jiet al., 2012).

Pesticides in the environment undergo biodegradats a result of different enzymes'
metabolism. Pesticide degradation is a multi-steyegss that involves enzyme metabolism.
Steps include (i) activating pesticides withoutdtional groups by cytochrome P450 through
oxidation, reduction, and hydroxylation reactiomms groduce more hydrophilic, soluble,
degradable, and less toxic compounds; (ii) transigrenzymes in the cytosol to pesticides
that are activated functional groups forming coajumn with glutathione, glucose, and
malonate; and (iii)Glutathione transporters arg@oesible for moving these conjugates into
vacuoles (Ghasenst al., 2011; Kumar and Singh, 2017; Lawsaal., 2013; Mauet al.,
2017).

Studies have been done on the co-culture of mgaeaand beneficial bacteria for
pollutant removal. The ability of microalgae to guce oxygen for photosynthesis to support
bacterial development and microalgae to use carbmxide produced by bacterial
metabolism as,
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Table5: Summary of Bioremediation Potential of Pesticides by Algae

S. Percentageof | References

No. Microorganism | Pesticides Removal

1. Sreptomyces sp. | Sole carbon 84% o Bouferachet al.,
ML thiamethoxam (2022)
Streptomyces sp. | Dichlorophenol | 40%
ov

2. Monoraphidium | Bisphenol 48% Gattuli al.,
braunii (2012)

3. Scenedemusa Dimethomorph | 24% Oletteet al .,
guadricauda pyrimethanil 10% (2010)

Isoproturon
58%

4. Sdenastrum benzo(a)pyrene| 99% Laserat al.,
capricornutum (2016)
Scenedesmus 95%
acutus

5. Nannochloris Lindane 73% -68.2% Perez- legaapi
oculate al.,

(2016)

6. Chlamydomonas| Organophosphru 100% Waret
reinhardtii sTrichloforn al.,(2020)

7. Chalamydomona| Fluroxypyr 57% Zhangt al .,
S (2011)
reinhardtii

8. Chlamydomonas| Trichlorforn 51.3% Wante
reinharditi al.,(2020)

9. Chlorella Malathion Nickle 99% Abdel-razeket al.,
vulgaris Lead 95% (2019)
Scenedesmus Cadmium 89%
quadricuda 88%

Soirulina
platensis

10. Nostoc Malathion 91% Ibrahinet
MuSCorum al.,(2014)

S platensis

11. Serratia Chlorpyrifos 58.9% Cycoret al.,
mar cescens Fenitrothion 70.5% (2013)

Parathion 82.5%
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12. Serratia
liquefaciens
Serratia

mar cescens
Pseudomonas sp.

Diazin 80%-92% Cycod al.,(2009)

X. DIFFERENT PESTICIDES CAN BE BROKEN DOWN BY BACTERIA IN BOTH
LIQUID AND SOIL ENVIRONMENTS.

Potentials for bacterial bioremediation are adagebus from an environmental and
financial standpoint. The parent ingredient of stjpede must be completely oxidized in
order to produce carbon dioxide and water, whialegimicroorganisms energy. Pesticides
are discovered to be degraded by Bacterium Rataulsgl. (Uguakt al., 2016).Group of
bacteria are present in high concentration in smléed actinobacteria(Alvarezal., 2017).
Most representative pesticide- degrading generaabihobacteria such as, Arthrobacter
Rhodococcus, Sreptomyces, Frankia, Janibacter, Kokuria, Mycobacterium, Nocardia, and
Psuedonocardia (Alvarezet al., 2017).

Table 6: Summary of Bioremediation Potential of Pesticides by Microoraganism

S Microorganism Pesticides Percentage of |References
No. Removal
1. White rot fungi Aldicarb Atrazine |47% Haieet al.,
Alacholar 98% (2011)
62%
2. Pseudomonas Crude oil 73.7% Magaeh al .,
(2010)
3. B. cereus Methomyl 88.25% Royetal.,
B. safensis 77.5% (2017)
4. Bacillus sefensis Diazinon 63% Alyet
al.,(2017)
5. Phanerochaete velutina | Polyaromatic 96% Winquistet al.,
Hydrocarbons (2014)
PHAs
6. Pleurotus ostreatus Polychlorinatrd 50.5% Stelleet al .,
biphenyls (PCBs) (2017)
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7. Rhizopus sp. Petroleum 36% Lopez et
Pencilliumfuniculosm | hydrocarbon (TPH) al.,(2008)
Aspergillus sydowi Aliphatic

hydrocarbons(AH) |30%
Polycyclic aromati
hydrocarbon(PAH) |17%

8. T. versicolar (R26 an(Dieldrin Trifluralin |80% Fragoeiret
R101) Simazine al.,(2005)
P. ostreatus

9. Pleurotus cystidious Simazine Trifluranin50% Magaet
Pleurotus sajor-caju Dieldrin al.,(2010)
Trametes socotrana

Polystictus sanguime aus
Trametes veriscolar

Phanerochaete
chrysosporium

10. Novosphingobium Strain| 2,4- 50and 95% Diet al.,(2005
DY4 dichlorophenoxyaceti

c acid
11. Pseudomonas Atrazine Carbofuran90% Echeverriat
Glyphosate al., (2020)
12. Trichoderma Dichlorvos 100% Povedat al.,
Glyophosate (2022)

13. Aspergillus oryzae Glycophosate 60% Correa
Penicillium et al., (2019)
Trichoderma

14. Senotrophomonassp. |[DDT 81% Xie et al.,

DDE 55% (2022)

15. Sphingomonas trueperi | Allethrin 93% Bhattet
CW3 al.,(2020)

16. Brucella spp. Dimethoate 83% Ahmaet

al.,(2022)

In comparison to other bacteria, fungi are mogaificant to pollution because they
can quickly colonize and their hyphae can penetsaié to access contaminants faster
(Readdy and Mathew 2002; Haretsal., 2011).

Fungal enzymes like lignin, degrading enzymescdae, oxidoreductases, and
peroxidases have the notable ability to removepisicides and insecticides residue from
contaminated soil. Fungi are eukaryotic organishas are diverse throughout the world in
any environmental condition. They also have a Higlremediation potential to degrade
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pesticide residue. Pesticide degradation is inflednby soil's physical and chemical
characteristics, contaminated microorganism kiralsd concentration levels(Khatoos
al.,2021).
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