
Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 113

BLOCKEYE: CHASING DEFI ATTACKS ON

BLOCKCHAIN

Abstract

 Decentralised finance, or DeFi, has

recently overtaken other types of

applications as the most popular on several

public blockchains (like Ethereum). In

contrast to conventional finance, DeFi

enables users to take part in a range of

blockchain financial services (such as

collateralizing, borrowing, lending, trading,

etc.) using smart contracts at a minimal trust

cost. On the other side, DeFi's open nature

always presents a wide attack surface,

seriously threatening the participants'

security cash. In the present study, we

suggested BLOCKEYE, a real-time threat

identification framework for DeFi initiatives

on Ethereum blockchain. The two main

skills of BLOCKEYE are: (1) An automatic

security study approach that employs

symbolic reasoning on data flow of critical

service states, such as asset price, to assess

if they may be artificially altered from the

outside, and identifies potentially

susceptible DeFi projects. (2) A susceptible

DeFi project is then given an off-chain

transaction monitor to deploy. For further

security analysis, transactions submitted to

not just that project but other projects that

are connected to it are gathered. When a

crucial invariant specified in BLOCKEYE

is violated, such as when the advantage is

realized quickly and outweighs the cost, a

possible attack is highlighted. We employed

BLOCKEYE in a number of well-known

DeFi projects and identified previously

undisclosed security risks. A BLOCKEYE

video is available at

https://youtu.be/7DjsWBLdlQU.

Keywords: Attack Monitoring, Oracle

Analysis, Defi.

Authors

S. Suganthi

Research Scholar

Department of Computer Science

VISTAS

Chennai, India.

dinesh.suganthi@gmail.com

Dr. T. Sree Kala

Associate Professor

Department of Computer Science

VISTAS

Chennai, India.

sreekalatm@gmail.com

https://youtu.be/7DjsWBLdlQU

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 114

I. INTRODUCTION

 Decentralized finance applications, or DeFi applications, have grown rapidly in recent

years in the public blockchain ecosystem, such as Ethereum [1]. Contrary to traditional

finance, DeFi apps use a decentralized network (such as blockchain) to benefit from its

transparency and openness in order to offer a variety of financial services, like trading,

collateralizing, lending, borrowing, etc., all without the need for middlemen.

 While the popularity and liquidity of DeFi have grown steadily, its openness also

creates a lot of space for outside assaults, which might put the safety of DeFi members' funds

in danger. Consider a real-world assault on the bZx project, a DeFi scheme for lending and

borrowing (see Figure 1). In this instance, the attacker manipulated crypto asset exchange

prices via bZx's oracle depending on other DeFi projects (Kyber and Uniswap), generating a

profit from a single atomic transaction.

 Figure 1 shows a set of six internal transactions that the attacker carried out, including

borrowing (such as transactions 1 and 5), trading (like transactions 2, 3, and 4), and repaying

(such as transaction 6) crypto assets (i.e., ETH and sUSD). Then, in the precise sequence

depicted in Figure 1, such transactions are combined into a single external transaction that

Ethereum executes atomically. The attacker initially borrowed 7,500 ETH obtained from bZx

(transaction 1) to fund the attack, after which they traded 4, 417.86 of their borrowed ETH

for sUSD with other DeFi projects. Because bZx depends on Kyber and Uniswap as its price

feed oracles, both of which are susceptible to large-scale attacks, the attacker has the ability

to manipulate the ETH/sUSD exchange rate in bZx to his or her advantage. This was

followed by transaction 5, which included borrowing 6, 799.27 ETH while holding 1, 099,

841.39 sUSD, and transaction 6, which involved paying back the 7, 500 ETH that was first

borrowed. Thus, the attacker's net gain from transactions 1-6 is 2, 381.41 ETH (after

deducting a minor sum of ETH for the gas fee[1]), or $600K.

 We emphasize that the key to this form of arbitrage—profiting from buying as well as

selling items at several prices—is for an attacker to successfully influence exchange rates of

crypto asset pairings, like ETH/sUSD in Fig. 1, by taking advantage of bZx's data

dependencies on Kyber and Uniswap.

 The DeFi project's security has received relatively less investigation compared to the

smart security contracts, which was the topic of numerous earlier study works and tools [2,

3], [4, 5]. In general, existing techniques for identifying low-level defects in smart contracts

lack both the commercial structure of a DeFi project and the market in which it operates,

making it necessary to fully comprehend both in order to detect these assaults. Below, we

have outlined the difficulties in dealing with security-related concerns in DeFi initiatives.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 115

Figure 1: An Attack on the Bzx Project

Challenge 1: Model DeFi Dependency: Model DeFi Dependency is the first challenge.

Attacks against DeFi usually consist of more than one project. Since information flow

between two DeFi projects is a significant dependency among DeFi projects, its accurate

modelling is necessary for identifying such attacks. An abstract analysis can overlook

significant high-level business semantics whereas a complete analysis might add excessive

complexity.

Figure 2: The General BLOCKEYE Workflow

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 116

Challenge 2: Understand End-To-End Transactions: Understanding End-To-End

Transactions is the second challenge. Additionally, end-to-end analysis, which contrasts the

advantages and costs of the transaction sequence, plays a significant role in determining if a

sequence of transactions is thought to be malicious. However, utilizing the current

infrastructure for blockchain research, such insights are challenging to build and provide.

 The BLOCKIE Method. We developed and created BLOCKEYE, the 1st automated

threat identification technology for blockchain DeFi initiatives, to address the aforementioned

issues. Behind BLOCKEYE are two important realizations. In order to rationalize significant

data flow (such as asset price) among related DeFi projects, BLOCKEYE first does a

symbolic analysis. This method finds initiatives that could be at risk. Then, in order to

quickly identify possible attacks on exposed DeFi projects, BLOCKEYE instals a runtime

monitor. In particular, an “end-to-end economic” study is carried out to note fraudulent

transactions on the basis of predetermined heuristics, such as excessive gains earned quickly.

Then, using BLOCKEYE, we identified possible threats against a number of well-known

Ethereum DeFi initiatives.

II. DETECTION OF ATTACKS FOR DEFI

1. Overview: Figure 2 displays BLOCKEYE's typical procedure. BLOCKEYE specifically

operates in two phases. In 1st step, BLOCKEYE conducts a symbolic analysis of smart

contracts from a particular DeFi project. In order to do this, our team extended SERAPH

[6, an underlying smart contract analyzer]. The purpose of present stage is to represent the

inter-DeFi oracle dependence, or how the services offered by one DeFi are impacted by

the oracle data given by another. We mark the DeFi as possibly susceptible when we see

Oracle-dependent state modifications. In order to identify external assaults, BLOCKEYE

instals a runtime monitor for susceptible DeFi projects during the second phase.

In order to gather similar transactions based on extracted attributes, such as

address, BLOCKEYE, in particular, uses a transaction observation. Then, “end-to-end

transactions” are examined using pre-established heuristics, such as turning a sizable

profit quickly. When an unusual pattern of transactions is discovered, BLOCKEYE looks

for potential threats. Additionally, BLOCKEYE creates a survey report to aid blockchain

service suppliers in identifying the issues they have found.

2. Analysis in Oracle: As mentioned earlier, BLOCKEYE does oracle analysis to ascertain

whether a DeFi is based on an oracle offered by other DeFi. We concentrated particularly

on the asset price feed exchanged via oracles.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 117

Figure 3: The EMN Project uses Oracle

III. BLOCKEYE DESIGN

1. Architecture: As can be seen in Figure 4, BLOCKEYE is developed as a “web platform

with front- and back-end services”. The five functional elements that make up this design.

At the base, BLOCKEYE adds Oracle analysis capabilities to the smart contract analyzer

that was provided before. In this section, Z3 [7] is used as SMT solver.

Figure 4: Blockeye General Architecture

2. Main Performances: The I/P and O/P BLOCKEYE interfaces are now described, with

screenshots revealed in Figures 5 and 6.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 118

Figure 5: The Blockeye Input Interface

According to Figure 5, BLOCKEYE anticipates the input to be DeFi smart

contract source code. Both entering the URL of a deployed DeFi project and typing code

into the code editor are options available to users. Then, BLOCKEYE will attempt to load

the required source code with “Etherscan's source code” retrieval API. The START

button may be clicked by users to begin security research on the chosen DeFi project as

soon as the smart contract code is made accessible.

An instance of BLOCKEYE output is shown in Figure 6. The findings are broken

down into 2 sections: “Oracle Analysis, which displays possible Oracle dependencies

observed in the DeFi source code, as well as Attack Monitoring, which gives details on

actual attack transactions that transgress the heuristic invariants mentioned in Section II-

C. For instance, BLOCKEYE found a dependence between an oracle contract and four

smart contract functions in Figure 6, where the oracle contract is defined on line 154 of

the code and is triggered by the function compute Continuous BurnReturn in line 168.

The relevant state access operation, which is an inquiry to transfer DAI with a dependent

quantity of value”, is found on line 242. Additionally, BLOCKEYE indicates a list of the

most recent suspicious transactions in Figure 6, every with extensive data. Intrapersonal

process. Finally, BLOCKEYE shows a graph of the top attackers and the total amount of

attack transactions, which might help users with their future research.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 119

Figure 6: The Blockeye Output Interface

IV. PRELIMINARY EVALUATION

 We first assessed BLOCKEYE to confirm its efficiency in identifying oracle-

dependent state modifications. The following eight Ethereum DeFi projects were especially

taken into account: Aave, DDEX, dYdX, bZx, Compound, Oasis, Nuoand Eminence.

We contrast BLOCKEYE with “Codefi Inspect” [8] in Table I for the purpose of identifying

Oracle-dependent state modifications. The findings demonstrate that BLOCKEYE

determines each susceptible DeFi in turn, without issuing any false negative or positive

alarms. Contrarily, Codefi Inspect improperly disregards DDEX defects, producing a FN

(False Negative) outcome.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 120

Table 1: “A Comparison of Blockeye and Codefi Inspect in the Oracle-Dependent

State -Update Detection. TP: True Positive; TN: True Negative; FN: False Negative;

N/A: Not Available”.

“Defi Codefi Inspect Blockeye

bZx TP TP

DDEX FN TP

Aave TN TN

dYdX TN TN

Compound TN TN

Nuo N/A TN

Oasis N/A TN

Eminence N/A TP”

Table 1: With actual transactions on the Ethereum mainnet, we further assessed

BLOCKKEYE.

V. RELATED WORK

 Recent years have seen a significant increase in media coverage of smart contract

security vulnerabilities [4], [5], [3], [2], [6]. For smart contracts, Luu et al. identified four

categories of vulnerabilities [2]. Ethereum smart contracts are transformed into datalog

logics [9] using a verification approach Tsankov et al. presented [3]. Inductive verification

of smart contracts has been also addressed by Permenev et al. [10]. Liu et al. suggested a

statistical method to find probable code odours in addition to safety concerns [5]. Previous

work has paid relatively little consideration to the security of DeFi initiatives. A number of

mathematical and economic models were presented [11], [12], [13], and [14] to conceptually

comprehend the risks of DeFi.

VI. CONCLUSION

 We have emphasized “BLOCKEYE” as an open platform for identifying DeFi assaults

on the blockchain in this paper. In comparison to other smart contract analyzers,

BLOCKEYE provides crucial capabilities to model relationships across DeFi projects and

quickly identify possible end-to-end assaults. The fundamental concepts of BLOCKEYE are

pattern-based runtime transaction validation and symbolic oracle research. With the help of

BLOCKEYE, we were able to identify possible threats that had not yet been made public in

numerous well-known DeFi initiatives on Ethereum.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow

Paper, vol. 151, 2014.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,

2016, pp. 254–269.

[3] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev, “Securify: Practical security

analysis of smart contracts,” arXiv preprint arXiv:1806.01143, 2018.

[4] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard: finding reentrancy bugs in smart

contracts,” in ICSE (Companion). ACM, 2018, pp. 65–68.

Futuristic Trends in Management

e-ISBN: 978-93-5747-923-3

IIP Series, Volume 3, Book 7, Part 2, Chapter 5

 BLOCKEYE: CHASING DEFI ATTACKS ON BLOCKCHAIN

Copyright © 2024 Authors Page | 121

[5] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards semantic-aware security auditing for

ethereum smart contracts,” in ASE. ACM, 2018, pp. 814–819.

[6] Z. Yang, H. Liu, Y. Li, H. Zheng, L. Wang, and B. Chen, “Seraph: enabling cross-platform security

analysis for evm and wasm smart contracts,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering: Companion Proceedings, 2020, pp. 21–24.

[7] “Microsoft z3 smt solver,” https://z3.codeplex.com/, 2019.

[8] “Codefi inspect,” https://inspect.codefi.network/, 2020.

[9] T. Eiter, G. Gottlob, and H. Mannila, “Disjunctive datalog,” ACM Transactions on Database Systems

(TODS), vol. 22, no. 3, pp. 364–418, 1997.

[10] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and

 M. Vechev, “Verx: Safety verification of smart contracts,” Security and Privacy, vol. 2020, 2019.

[11] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi ecosystem with flash loans for fun

and profit,” arXiv preprint arXiv:2003.03810, 2020.

[12] J. Kamps and B. Kleinberg, “To the moon: defining and detecting cryptocurrency pump-and-dumps,”

Crime Science, vol. 7, no. 1, p. 18, 2018.

[13] B. Liu and P. Szalachowski, “A first look into defi oracles,” arXiv preprint arXiv:2005.04377, 2020.

[14] L. Gudgeon, D. Perez, D. Harz, A. Gervais, and B. Livshits, “The decentralized financial crisis:

Attacking defi,” arXiv preprint arXiv:2002.08099, 2020.

