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I. INTRODUCTION 

 

 As we know thatMechanics is a branch of physics which deals the motion of objects. 

It is mainly divided into four types on the basis of size and  speed of  objects given in (Table- 

1): 

Table 1 

 

S.No. Mechanics Size of 

object  

Speed of object v Examples 

1 Classical or 

Newtonian Mechanics 

Macroscopic 

(i.e. size 

greater than 

that of 

atoms)  

                    
 

            
 

Motion of 

bicycle, scooter, 

car, train. 

Aeroplane etc. 

2 Quantum Mechanics Microscopic 

(i.e. size 

comparable 

to atoms) 

    
 

Motion of atom, 

molecule, 

electron, 

proton, neutron 

etc. 

3 Relativistic Mechanics Macroscopic      Motion of 

photon,  meson 

etc. 

4 Relativistic Quantum 

Mechanics or 

Quantum Field Theory 

Microscopic      Motion of EM 

radiations 

 

mailto:k_nirdeshsingh@rediffmail.com


Futuristic Trends in Physical Sciences 

e-ISBN: 978-93-5747-671-3 

IIP Series, Volume 3, Book 4, Part 8,Chapter 4  

QUANTUM MECHANICS AT A GLANCE FOR BEGINNERS 

 

   
Copyright © 2024 Authors                                                                                                                    Page | 252  

 
 

1. Courtesy to Google Website: The Latin term for "how much" is where the word 

"quantum" originates. The study of atomic particle existence and interaction is known as 

quantum mechanics. In all quantum theories, discrete amounts of anything are always 

present. e.g. energy       , where              
 

where                                                   

             is a fundamental physical constant occurring in quantum mechanics called 

Planck constant. The sign for the Dirac constant, also known as the reduced Planck 

constant, is = h/2. The two men who developed quantum physics, Niels Bohr and Max 

Planck, each won the Nobel Prize in Physics for their research on quanta. 

 

Between 1900 and 1930, physics experiences a significant change.The study of 

matter and its interactions with energy at the level of atomic and subatomic particles is 

known as quantum mechanics. The Quantum Mechanics (QM) era was during this time. 

Microparticle behavior, including that of electrons, protons, neutrons, hydrogen atoms, 

potential wells, potential barriers, tunneling, etc., is explained using quantum mechanics 

(QM). Max Planck first proposed the concept of quantization in 1900 to describe the 

entire black-body spectrum. Albert Einstein (Photoelectric Effect), Arthur Holly Compton 

(Compton Effect), Werner Heisenberg (Heisenberg's uncertainty relations), Louis Victor 

de Broglie (Matter Waves or de Broglie Waves), Erwin Schrödinger (Schrödinger wave 

equations), Max Born (Wave functions), Paul Adrien Maurice Dirac (Dirac equation), and 

others are among the physicists who are credited with the majority of inventions. When a 

particle reaches a macroscopic size, quantum theory transforms into classical physics. 

Particles in quantum mechanics have wavelike characteristics, and the Schrödinger 

equation, a specific wave equation, determines how these waves behave under various 

conditions. 

 

  The first law of quantum physics asserts that everything is constituted of 

matter and energy and that the barrier between them is never stable or infinite. Different 

atomic levels show the interaction between matter and energy. The quanta of 

electromagnetic energy, the uncertainty principle, the Pauli exclusion principle, and the 

wave theory of matter particles are basically the four key principles of quantum 

mechanics that have been demonstrated experimentally and are relevant to the behavior of 

nuclear particles at close ranges. 
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Lasers and integrated circuits are two examples of quantum phenomena that are 

used in quantum mechanics applications. Understanding how individual atoms are united 

by covalent bonds to form molecules relies heavily on quantum mechanics. Lasers, solar 

cells, electron microscopes, atomic clocks used in GPS, and MRI scanners for medical 

imaging are all examples of practical applications of quantum mechanics.Usually, it is 

used to describe microscopic systems like molecules, atoms, and subatomic particles. The 

discovery that waves could be quantized into tiny energy packets that resembled particles, 

or quanta, led to the development of the field of physics known as quantum mechanics, 

which studies atomic and subatomic systems. 

 

Thus, the field of physics known as quantum mechanics studies how matter and 

energy behave on a scale smaller than that of atoms and subatomic particles or waves. 

Max Born initially used the term "quantum mechanics" in 1924.We'll talk about the Black 

Body radiation spectrum, the Compton effect, the photoelectric effect, and their 

interpretations based on Max Planck's quantum theory in this chapter. Louis de Broglie's 

theory of matter waves and its experimental confirmation by the experiments conducted 

by Davisson-Germer and Thomson. 

 

In the honour of Max Planck the whole world celebrate World Quantum Day 

on 14 April, i.e. a reference to 4.14due to                           World 

Quantum Day is an annual celebration for promoting public awareness and understanding of 

quantum science and technology around the world. Quantum Mechanics or Relativity (or both) is 

said to be Modern Physics. 

 

When a group of particles are created, interact, or share spatial proximity in such 

a way that the quantum states of each particle of the group cannot be described 

independently of the states of the others, including when the particles are separated by a 

great distance, this phenomenon known as quantum entanglement (also known as 

Entangle Photons) takes place.When a system is in a "superposition" of several states, this 

is when quantum entanglement occurs.  One key aspect of quantum physics that 

distinguishes it from classical mechanics is entanglement.A particular sort of 

superposition called entanglement involves two isolated locations in space. 
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2. Courtesy to Google Website: It is possible to find instances where measurements of 

entangled particles' physical characteristics, such as position, momentum, spin, and 

polarization, are fully coupled. For instance, if a pair of entangled particles is created with 

known zero total spin, and one particle is discovered to have clockwise spin on a first 

axis, the other particle's spin is found to be anticlockwise when measured on the same 

axis.  

 

Examples:  1-if a coin is tossed (or flipped) without being watched for the 

outcome. The man is aware that it will either be heads or tails. Simply put, the man is 

unsure which is which. Superposition indicates that until you look at it (take a 

measurement), it is not just unknown to the other person; it is also not even in its heads or 

tails condition. Similar to this, a photon might collide with a 50/50 splitter to cause the 

entanglement (superposition of two different places) of a collection of images. After the 

splitter, the photon could follow path A or path B. The superposition in this instance is 

between  

 

 A photon in path A and no photon in path B 

 No photon in path A and a photon in path B. 

 

As a typical human being, the individual believes that it is just in one road or the 

other way, and that one simply is unaware of it. However, until you really measure it, it is 

in both. Once more, the average person wants to assert that if I measured it and 

discovered it along path A. 
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EM Wave 




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




E
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  Matter Wave 










p

h
  

1 An oscillating charged 

particle gives rise to the 

EM wave. 

A matter wave is associated with 

a moving microscopic particle. 

2 The speed of an EM 

wave is constant in a 

medium. Its speed is  

 smc /103 8  in 

vacuum. 

Its speed is always greater than 

the speed of light. 

3 Its wave length is 

inversely proportional to 

the energy of photon, 

i.e. 
E

1
 . 

Its wave length is inversely 

proportional to the momentum of 

microscopic particle, i.e. 
p

1
 . 

4  An EM wave can be 

radiated into space by an 

oscillating charged 

particle. 

A Matter wave cannot be emitted 

by a moving microscopic particle. 

5 In an EM wave its 

electric and magnetic 

fields oscillate   to the 

direction of motion. 

A de- Broglie wave is associated 

with neutral and charged 

microscopic particles. A charged 

moving microscopic particle has 

electric and magnetic fields.  

 

3. De-Broglie Concept of Matter Waves: 

 

 

Prince Louis-Victor de Broglie [15
th

August, 1892 – 19
th

 March, 1987]-In 

1924, French physicist first time introduced the idea of matter wave or de 

Broglie wave. In 1929, de Broglie was awarded Nobel Prize for this 

discovery ‘the wave nature of electron’.(Courtesy to Google website) 

 

A matter was regarded as a particle in nature up until 1923.All minuscule 

particles, such as electrons, protons, neutrons, alpha particles, etc., were included in de 

Broglie's expansion of the concept of the dual nature of light. The photons that make up 

light are said to be its constituents, according to the quantum hypothesis. De Broglie 

derived the relationship between particle and wave natures from Einstein's energy-mass 

relation for electromagnetic (EM) waves and Planck's energy formula.  

 101.1.......



c

hhE   

where h is Planck’s constant,  is frequency of EM wave and   is wavelength of EM 

wave 

 102.1.......2cmE   

2cm
ch



or, 

 
 103.1.......

cv 


m

h

cm

h


⇒
 

p

h

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In contrast to and, which are characteristics of waves, E and P are characteristics 

of particles. Thus, the Planck's constant h establishes a relationship between the particle 

and wave natures, giving rise to the EM wave's (or light's) dual nature. 

 

The de Broglie hypothesis, put out by Louis de Broglie, states that a moving 

particle is connected to a wave known as the de Broglie or matter wave. The mechanical 

motion of a moving macroscopic particle is represented by the symbol and the motion of 

a matter wave is represented by the symbol u. 

From eqs. (1.201) and (1.202) we put the value of 









h

cm 2

  and 









vm

h


from the formula of matter wave in equation. 

  c.vsincev204.1
vv

22

 u
c

m

h

h

cm
u  

 

4. Properties of Matter Waves: 

1 These waves are generated only when microscopic particles are in motion. If speed v  of 

the particle is zero (i.e. 0v  ) then the wavelength of matter wave 
 













0vm

h
  on 

the other hand if  v  then
 

0
v





m

h
 .  

2 These waves are independent of nature of microscopic particles, i.e. either the particles are 

charged or neutral.  

3 3. Speed of matter waves is always greater than the speed of light  smc /103 8 , i.e. 

cpv  .     

Note- A matter wave cannot be split as electromagnetic waves do this. 

Davisson-Germer and G.P. Thomson provided the experimental evidence for the 

de Broglie wave for slow electrons, respectively. C.J. Davisson and G.P. Thomson shared 

the Nobel Prize in 1937 for their work confirming matter waves through experiment. 

Application ofde Broglie wave- Bohr’s condition for the quantization of angular 

momentum 

Let's say that an electron of mass is moving rapidly in the nth circular orbit of radius 

around the atom's nucleus (for example, a hydrogen atom). The de Broglie wave's 

wavelength can be calculated using the following formula: 

 ii
m

h

e

n .......
vn

  

Here, the motion of the electron can be thought as the wave of n  traveling 

along the circumference of the orbit. Thus, for a circular path its circumference is integral 

multiple of the wavelength, i.e.  

  3,2,1.......2  nwhereiiinr nn   

nv
2

e

n
m

h
nr 

⇒
 

 

n
h

nrmJ ne 
2

vn  
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(Courtesy to Google website)It representsBohr’s condition for the quantization of 

angular momentum 

 

Example 1: Does, de Broglie hypothesis have any relevance to macroscopic matter? 

 

Solution 1-de Broglie relation can be applied to both microscopic and macroscopic. For 

example A car (i.e. a macroscopic object) of mass 100 Kg is moving at a speed of 100 

m/s then it will have de- Broglie Wavelength     
          

        
             

The automobile is made up of very short wavelengths that match high frequencies. 

Particle-antiparticle annihilation occurs in waves below a given wavelength or above a 

certain frequency to produce mass. De Broglie wavelength or wave nature are therefore 

not apparent in macroscopic materials. 

5. Phase velocity (or wave velocity)


pv  : The velocity with which a point of constant phase 

moves is referred to as the phase velocity when a single wave with a fixed wavelength 

passes through a medium. 

The formula for wave propagation along the positive x-axis is:  

 

 011.2........., 0



















 rkt

etr


  

where 0  is amplitude of the wave, 


k  is wave vector, 


r  is position vector and   is 

angular frequency of the wave.  

The phase of the wave is 


 rkt  

When the phase is constant at a point then  constant0 


rkt  

Or,  021.2.........0





t
k

r  

Thus, phase velocity 


pv  is given by: 

 031.2.........ˆ
td

r
vp k

k

d 





⇒

 

 

The term "non-dispersive" (or "dispersive") media" refers to a medium in which 

a wave's wavelength is higher (or lower) than the distance between two adjacent particles 
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in that medium. It is constant in a non-dispersive medium, meaning that waves of various 

frequencies and wavelengths move at the same speed. Examples- (i) Electromagnetic 

waves cannot disperse in empty space. (ii) Sound waves cannot disperse in the air. (iii) 

Transverse waves generated in a continuous string cannot disperse in it. Not continuous in 

a non-dispersive medium.  

6. Group Velocity (or Particle Velocity


v )


gv  : From the relation between particle velocity 



v  and de Broglie wave velocity 











pvu  we have:  

   always.c vSincev
v

v p

2

p  c
c

u  

The above term makes it very evident that a material particle cannot be 

compared to a single wave.  Erwin Schrödinger was able to overcome this challenge. He 

made the assumption that the moving material particle is equivalent to a wave packet 

rather than a single wave. A collection of waves is known as a wave packet. The 

wavelength and speed of each wave are marginally different. Each wave's amplitude is 

selected in such a way that, within a limited area of space where the particle can be 

localized, they interfere constructively, and outside of this area, they interfere 

destructively. As a result, the amplitude of the resulting waves rapidly decreases to zero.   

 

A wave packet is a discrete area of constructive interference created by 

superimposing two or more waves with similar amplitudes but slightly differing angular 

frequencies. Assume that these waves are traveling along the x-axis while having the 

same amplitude but slightly varying angular frequencies and wave numbers. Suppose that 

these two waves are represented mathematically as: 

 

   041.2.........sin1 xktay    

      051.2.........sin1 xkktay    

Applying the principle of superposition we have: 

      xkktaxktayyy   sinsin21  

             







 







 


2
cos

2
sin2

xkktxktxkktxkt
a



 








 


















 








 
 x

k
tx

k
kta

22
cos

22
sin2


  

Since d  and kd  are very small quantities, then 


 



2

and k
k

k 



2

. Thus, 

above equation becomes as: 

     061.2.........sin
22

cossin2 xktAx
k

txktay 






 



 


  

where 






 



 x

k
taA

22
cos2


is the amplitude of the wave packet. It changes both 

in space and time by a very slow-moving envelope of frequency 
2


 and wave number
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2

k
. It forms a standing wave which can be imagined by combining two identical waves 

moving in opposite directions. This represents beats. The phase of the wave packet is

 xkt   
 

 
 

7. Courtesy to Google Website: The observed velocity of the wave group or wave packet is 

called group velocity gv . It is defined as:  

 packet.  wavea form  to waves two theofion superpositFor 
2

2
vg

kk 










 

 Relation between phase and group velocities- From the formula of phase velocity, we 

have the angular frequency kpv . 

kd

d
k

kd

kd

kd

d p

p

p

g

v
v

v
v 


 














d

d

d

d








 












2

p

p

p

p
2

v2
v

2

v2
v )06.1.......( C

⇒

 

For normal dispersive medium 
d

d pv
is positive. This shows that pg vv   . 

For anomalous dispersive medium 
d

d pv
is negative. This shows that pg vv   . 

For non- dispersive medium 
d

d pv
is zero. This shows that pg vv   . 

 (Relation between particle v'' , phase 'v' p  and group 'v' g   velocities- According to de 

Broglie hypothesis, a moving microscopic particle consists of a group of waves. The 

total energy ''E  and momentum '' p   of the particle are given  

Case (i) relativistic mechanics: Total energy ''E  is given by  




d

d p

pg

v
vv 
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2cmE  or,  207.1.........

c

v
1

c

v
1

2

2

02

2

0 c

h

m
c

m
h























   

Angular frequency   is given as: 

 081.2.........

c

v
1

c

v
1

22
2

2

02

2

0



























cm
c

h

m
 ,             

 where 
2

h
  

 091.2.........

c

v
1

vv
v

c

v
1

v2

2

1

23
2

0

23
2

22

0






















































 















dm
d

ccm
d  

 101.2.........

c

v
1

v
v

2

0












m

mp  

Wave number k  is given as: 

 111.2.........

c

v
1

v22

2

0















m

h

p
k






 





































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



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


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


































































 












22

23
2

0

223
2

2
0

c

v
1

v

c

v
1

v

c

v
1

v
v

c

v
1

v2

2

1
v

c

m
dd

cm
kd




 

 121.2.........v

c

v
1

23
2

0 d
m



























 

On dividing eq. (1.211) from eq. (1.212), we havephase velocity 
)06.1.......( D  

vvg 
kd

d
 

 g

2

p
vv2

2
v




m

h

h

cm

k








⇒

 

Case (ii) In Non- relativistic mechanics: Total energy ''E  is given by 

2

gp vv c  
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 131.2.........
2

v
v

2

1 2
2

h

m
mhE    

From de Broglie concept, we have: 

 
 141.2.........

vv g


m

h

p

h
  

The phase velocity is given by: 

gm

h

h

m

k v2

v

2

2
v

2

g

p  







⇒  

Ex. 1.201- Calculate the phase velocity given by                     with a 

frequency of 5 GHz and a wavelength in the material medium of 3.0 cm is  

Sol. 1.201- Given:                                            

    
        

    
  

 
 

                                 

Ex. 1.202- Estimate the phase velocity of a wave having a group velocity of 6 x 

10
6
 is  

Sol. 1.202- Given:                

                
  

  
 

         

      
  

       

 
                          

Q.1.203 1 MHz plane wave travelling in a dispersive medium has a phase 

velocity         . The phase velocity as a function of wavelength is given 

by       , where K is a constant. Calculate the group velocity. 

Sol. 1.203 -Given: f = 1 MHz,              &        

        
   

  
          

     

  
           

 

 

 

  
  

    

 
 

       
  

 
  

     

 
              

 

8. Heisenberg’s Uncertainty Principle (or the Principle of Indeterminacy): 

  

 

Werner Karl Heisenberg [5
th

 December, 1901 – 1
st
 February, 1976]- 

Werner Karl Heisenberg was a German theoretical physicist and 

philosopher who discovered (1925) a way to formulate quantum 

mechanics in terms of matrices.In 1927 he published his uncertainty 

principle. He got Nobel Prize in Physics 1932 for this work.(Curtsey of 

Google) 

 

in case of microscopic particlesit is impossible to determine exactly the position 







r and 

momentum 








p of them simultaneously. Heisenberg's approach was to quantum 

mechanics as being matrixalgebra.Similarly, some others canonical variables (e.g. energy

2

v
vp

p
  

https://www.britannica.com/science/uncertainty-principle
https://www.britannica.com/science/uncertainty-principle
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 E  and time  t ; angular momentum 







J and angular displacement    ) cannot be 

determined simultaneously.Heisenberg’s uncertainty relations are: 
2


 rp , 

2


 tEk

&
2


 J where   denotes uncertainty 

 

There is an interesting story of Heisenberg, when he was driving a vehicle very 

fast and suddenly the beaked his at red light, he is stopped by a policeman then  his 

answer is quoted in fellow as: 

 

 
(Curtsey of Google) 

 

9. Applications of Heisenberg’s Uncertainty Principle: 

 Electrons cannot exists inside a nucleus 

 Existence of protons and neutrons inside the nucleus of an atom 

 Radius of Bohr’s first orbit 

 Binding energy of an electron in an atom 

 Zero point energy of a harmonic oscillator  

 Zero point energy of a particle in one dimensional box 

 Finite value for the natural width of a spectral line  

 

10.  Wave Function and its Physical Interpretation: 

 

The height of the water surface (or level) fluctuates periodically in a water 

wave. The quantity that changes on a regular basis in a sound wave is the medium's 

pressure. Similar to this, a variable quantity in a matter wave is referred to as a wave 

function. Greek letter is used to indicate it. phi '' . The value of the wave function 

 

Max Born (11 December 1882 – 5 January 1970) was a German physicist 

and mathematician who developed quantum mechanics. He won the 

1954 Nobel Prize in Physics for his "fundamental research in quantum 

mechanics, especially in the statistical interpretation of the wave function". 

The term "quantum mechanics" is due to Born. He also made 

contributions to solid-state physics and optics and supervised the work of a 

number of notable physicists in the 1920s and 1930s.(Curtsey of Google) 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Solid-state_physics
https://en.wikipedia.org/wiki/Optics
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associated with a moving microscopic particle in particular position  zyx ,,  and time '' t

is concerned to the finding the probability there. Thus, displacement of a de Broglie wave 

is a wave function of space and time, i.e.   tzyx ,,, . In general, a wave function 

 tzyx ,,,  is a complex quantity (real and imaginary parts). Let   is represented as:  

     
 

                
   

 
  
 

      
                 

where, A and B are real functions;  0  is amplitude of the wave; 


k  is wave vector; 

 kzjyixr ˆˆˆ 


 is position vector. The complex conjugate of    is given as: 

 021.4......., 0






















 trki

eBiAtr


  

    20

2222,,  






















BABBAiBAiABiABiAtrtr  

It implies that probability is always real and positive quantity.  

Although it is hard to pinpoint a minuscule particle's location, it is possible to determine 

the odds of seeing it in any given location.  The quantity   
2

, the square of the 

absolute value of , shows the intensity of matter wave. The likelihood of finding the 

particle in a given unit volume at a given time is represented by the probability 

density. Wave function   itself is not a measurable quantity but its probability density 
2

 is measurable. Note-The displacement of any matter wave may be positive, negative 

or zero at any time but its probability can never negative.  

The complex nature of the wave function is no concern to us. Here, we are interested 

only in a single dimension (say x- axis) along the observing direction and for a given 

time.  

Max Born interpretation of wave function - The likelihood that a particle will be 

discovered in the minuscule interval surrounding the point, represented by  dxxp  is  

       031.4......,, dxtxtxdxxP    

where  tx,  is complex conjugate of  tx, . 

The probability that a particle be in a particular space and time must lie between 0 (i.e. 

the particle is not there) and 1 (i.e. the particle is there). Let us consider an intermediate 

probability is 0.3, i.e. there is 30% chance of finding the particle in the given space and 

time. The probability that the particle will be found in a certain region  21 xx   is the 

integral of the probability density over the region is given by: 

 

 

 

For a microscopic object, if the probability of finding the object 

over all space is finite then it is somewhere, i.e. 

 1
2222

1111

,,

,,

2






zyx

zyx

dx ⇒ Normalization condition of a wave function 

Besides being nonmalleable of the wave function , it must be single valued, since the 

probability density has only one particular value at a certain place and time and 


2

1

21

2

,

x

x

xx dxP   
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continuous. Every wave function can be normalized by multiplying it by a proper 

constant.  






0
2222

1111

,,

,,

2
Kdx

zyx

zyx

  is not normalized. It can be normalized if    is divided by 

the square root of the constant K, i.e. K . 

 function.  wavefor thecondition ity Orthogonal0
2222

1111

,,

,,

2






zyx

zyx

dx  

This shows that the particle does not exist there. 

 A wave function must meet the following requirements in order to be considered 

acceptable across a certain interval:  

(1)   Must be continuous and single valued everywhere. 

(2) Its partial derivatives i.e. 
z

and
yx 









 
,  must be continuous and single valued 

everywhere. 

(3)   Must be nonmalleablei.e. it must has a finite value 1. 

(4)   Must be a solution of Schrödinger’s wave equation  

Physical significance of a wave function 






 

tr, - A wave function describes how a 

particle behaves at a specific place (r) and time (t). Where there is a high likelihood of 

discovering the particle, the wave function has a big magnitude, and the opposite is also 

true. As a result, a wave function calculates the likelihood of a particle being in a specific 

location. 

 

11. Applications of Wave Functions: 

 To determine probability of finding a particle in a given space.  

 To determine average or expectation value of a physical observable quantity f is given 

as: 

      
 

 
                 

 

  

 
 
              

 

  

                   where           

In case of normalized wave function                 
 

  
   the denominator of the 

above expression becomes unity, then 

 

 

 

Examples:  (i) Expectation value of position 

vector  : 

                          
 

  

                                     
 

  

 

(ii) Expectation value of momentum or velocity    or v:  

                                                
 

  

 

  

 

                           
 

  
    

 

  
   

 

  
            

 

  

 

(iii) Expectation value of total energy E: 

                            
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                                        
 

  
         

 

  

 

  

 

                          
 

  
          

 

  

 

(iv) Expectation value of potential V:                              
 

  
 

 

12. Time-Dependent Schrödinger Wave Equation: 

 

 

Erwin Rudolf Josef Alexander Schrödinger [12 August 

1887 – 4 January 1961, Austrian theoretical Physicist]- 

Schrödinger, along with Paul Dirac, won the Nobel Prize in 

Physics in 1933 for his work on quantum mechanics. He is 

most known for his "Schrödinger's cat or Quantum Cat" 

thought experiment. He is known as father of wave function 

and cosmologist.(Curtsey of Google) 

 

Schrödinger's cat or Quantum Cat- It is not a reality but 

a paradox that after consuming the poison by the cat there is 

certain probability of the live or alive. This concept is used 

in case of probability of finding a particle: across a barrier, 

outside the finitely deep potential well etc. which is 

impossible in real sense. (Curtsey of Google) 

 

According to de- Broglie concept a matter wave is associated to a moving 

particle. The wavelength of the matter wave is given as: 

   
 

 
       

 

 
 

  

  

  

  
       011.5......  

Where p  is momentum of the particle, h  is Planck’s constant, 
2

k




 
 
 

 wave number 

and
2

h



 
 
 

h . 

The particle's total energy (E) is determined by the Planck-Einstein energy relation, which 

is as follows: 

      
  

  
             502.1...... where  2   is angular frequency of the 

wave. 

 Motion of the particle along positive x-axis is given as: 

            
                           

Putting the value of k and  from equation (1.501) and equation (1502) in equation(i), we 

get. 

            
 

 
                     1.503......  

where ( , )x t
r

 is wave function which is a complex and measurable quantity taken in 

quantum mechanics, 0  is initial amplitude of the wave and i = -1 

On partially differentiating equation (  0703) w r t  ‘ x ’, we get  
( . )

0

( , )
( , )

x

i
p x Et

x xip ipx t
e x t

x


 


 



r r

h

r
r

h h
 

https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
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On multiplying by ‘i’ on both sides in above equation and arrange it, we have  

  
        

  
             504.1......

⇒
 x op
p i

x


 


h Operator form of momentum 

On partially differentiating equation (  0803) w r t ‘t’, we get: 

        

  
     

 

 
   

 

 
                      

 

 
                   

On multiplying by ‘i’ on both sides in above equation and arrange it, we have: 

  
        

  
            506.1......

⇒
opE i

t





h Operator form of energy 

In non-relativistic case total energy of the particle is the sum of kinetic energy (K.E.) plus 

potential energy (P.E. or U) given as: 

             
  

  
              where m is the particle's mass. 

Multiplying on both sides in above equation, we have: 

          
  

  
                                 

Now, putting the value of E and p in operator form in above equation we have: 
2 2

2

( , ) ( , )
( , ) ( , )

2

x t x t
i U x t x t

t m x

 


 
  

 

r r
h r r

h  

It is Schrödinger’s time dependent equation in one dimensional motion of the particle  It 

can be given in three-dimensional motion of the particle by replacing 

ˆˆ ˆi j k
x x x x

    
    

    
 and x r

r r
then above equation becomes as: 

2
2( , )

( , ) ( , ) ( , )
2

r t
i r t U r t r t

t m


 


   



r
h r r r

h It is 3-D time dependent Schrödinger 

Wave Equation 

 

13. Time-Independent Schrödinger Wave Equation: If the potential energy is a function of 

position only, i.e.   rU , then the time dependent SWE is separable. Thus, a plane 

monochromatic wave can be written as: 

 
     508.1......, 00 tTrReeetr

tE
irp

i
tErp

i








 




















   

where,  












rp

i

erR 

0  and  
 tE

i

etT


   

Using eq. (1.508) in3-D time dependent Schrödinger Wave Equation, we get: 

   
     tTrRrU

mt

tTrR
i 















 2
2

2


  

Or,  
 

         tTrRrUrRtT
mt

tT
rRi 






 2
2

2


  

On dividing in above equation by    tTrRtr 







, , we get: 
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 
   

 
 

   
   rUrR

tTrR

tT

mt

e

tTrR

rR
i

tE
i










2
2

2






 

or, 
 

 
 

   rUrR
rRm

tT
Ei

tT
i 










  2
2 1

2

1 


  

 

 

 

 

 

II. APPLICATIONS OF TIME INDEPENDENT 

 

1. Motion of a Particle in One Dimensional Infinitely Deep Potential Well: A particle is 

restricted to one dimensional motion between the barriers of length ''a . The height of the 

potential barriers goes to infinity. The one dimensional region  x can be divided 

into three parts (I, II and III) (Fig. 1.5 a). To solve this problem we use initial and 

boundary conditions. 

Initial conditions-    ixU .....axand0xfor   

   iiaxU .......x0for0   

Boundary conditions-    iiixatx .....00   

   ivaxatx  0   

 

In regions I and III the time independent SWE is given as:                     

 
     501.1......0

2
22

2

 xE
m

xd

xd





 

 

 

 

 

 

 

 
                                                 Free Electron 

                                                  

 

 
                                  x= 0                                                  x= 0    

 

Figure 5 a- Motion of a Free Electron in Infinitely Deep Potential Well 

 

As   xU  at the boundaries of the potential well then   0x .  

Therefore, LHS also becomes zero so the above equation is ignored because its both sides 

become zero. 

 

In region II the time independent SWE is given as: 

         rRHrRrUrR
m

rRE 


 2
2

2


 

 

 II III 

U = 0 

∞

↑

U 
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 
    00

2
22

2

 xE
m

xd

xd





 

 v
Em

kLet .......
2

2

2


  

or, 
 

   502.1.......02

2

2

 xk
xd

xd



 

Here, it is convenient to write the solution of eq. (1.602) as a sum of sines and cosines 

than as a sum of exponential terms, i.e. 

   vixkBxkAx ..........sincos   

On applying boundary condition (eq. iii) in the wave function, we have: 

  0sin0cos0 kBkA  , or  A0  

   503.1sin xkBx    

On applying boundary condition (eq. iv) in the wave function, we have: 

  akBa sin  

or, 0sin0  BakB  Otherwise wave function will be zero. 

 

or,   504.1......
a

n
k


 , where, 03,2,1  nbutn   

Substituting the value of k from eq. (1.504) in eq. (1.503), we have: 

   504.1......sin x
a

n
Bx


   

Substituting the value of k from eq. (2.604) in eq. (v), we have: 
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Figure 6: Beigen Functions & Eigen Values in Infinitely Deep Potential Well 

 

To calculate the wave function, we must normalize the wave function, i.e.     
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 or,     506.1......

2

a
B   

Substituting the value of B from eq. (1.606) in eq. (1.604), we get: 

⇒ 

 

 

 

Wave or Eigen function corresponding to n
th

 energy level is given by:      
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III. MOTION OF A PARTICLE IN THREE DIMENSIONAL INFINITELY DEEP 

POTENTIAL WELLS 

 

 It is the application of time independent SWE. Here, the wave function must be a 

function of three spatial coordinates, i.e.  zyx ,,  only. Thus, the SWE is given as: 

         508.1.......,,,,
2

,, 2
2

zyxrUzyx
m

zyxE  





 

 Here, we assume that a particle can only move in three dimensions between obstacles 

of length, and along the x, y, and z axes, respectively, or it can move freely inside a box with 

the dimensions (a, b, and c). We utilize the same method as when we used a one-dimensional 

infinitely deep potential well to solve this problem (identify wave functions and energy 

levels). The wave functions must be 0 at the walls and beyond because the box's closed walls 

are infinite potential barriers. So, with U = 0, we resolve the SWE inside the box. The particle 

is free inside the box. As a result, the wave functions' x, y, and z dependent portions must be 

independent of one another. The result of the equation above is: 

     azyx
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Its solution is given as: 

         509.1........sinsinsin,, 321 zkykxkAzyx   

A is a normalization constant in this case. Boundary conditions are applied in order to 

ascertain the quantities. 

0 at ax  , by   and cz  , we have: 
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n
k
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1  , 

b

n
k

2
2   and 

c

n
k

3
3   

where 1n , 2n  and 3n  are integers whose values varies  ,2,3 …… 

Thus, we have 

 

 

On partially differentiating eq. (1.509) w.r.t. x, we get: 
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Similarly we get: 
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For cubical box  cba   we have       2
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 For ground state 321 1 nnn   we have: 
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 As a result, the first excited state, which is a threefold degenerate state, corresponds to 

three wave functions. When there are several wave functions for a given energy, an energy 

state or level is said to be degenerate. The symmetry of the cube in this instance is what 

causes the degeneracy. Degeneracy is caused by specific features of the potential energy 

function. '' 







rU  which explain the system. The degeneracy can be eliminated by a 

perturbation of potential energy. Degeneracy can also be eliminated by adding external 

magnetic (Zeeman effect) or electric (Stark effect) fields. If the box had three unequal sides, 

such as a cuboid, the degeneracy would also be eliminated because the three quantum 

numbers (211, 121, and 112) would produce three distinct energies. Degeneracy can also be 

found in classical systems, such as planetary motion, where orbits with varying eccentricities 

may have the same energy. 

 

IV. QUALITATIVE ANALYSIS OF FINITE POTENTIAL WELL 

 

 A potential well with a finite depth is called a finite potential well. An infinite square 

well potential is analogous to a one-dimensional one, with the exception that in this instance, 

the potential is allowed to be zero in regions II and to be finite in regions I and III. The 

following is the time-independent SWE for regions I and III: 
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constant. It  2  is positive because EU  .   The solution of eq. (1.513) has exponential 
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forms xe  and xe  . The positive exponential must be rejected in region III where ax   to 

keep  xIII  finite as x ; similarly the negative exponential must be rejected in region I 

where 0x  to keep  xI  finite as x . Thus we have   x

I eAx    and

  x

III eBx   . The coefficients A and B are determined by matching these wave functions 

smoothly onto the wave function in the interior of the well. We require  x  and its first 

derivative 
 
xd

xd
 to be continuous at 0x and ax  . This can be done only for certain 

value of E  which corresponds to allowed energies for the bound particles. The wave 

functions join smoothly at the boundaries of the potential well.  Figure 2.7 b shows the wave 

functions and probability densities corresponding to three lowest allowed particle energies. 

The de Broglie wave outside the well is increased when the wave function at the walls is 

nonzero. 

In the region II, time independent SWE is given as: 
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Instead of sinusoidal solution of solution of eq. (2.702), we write it in term of exponential as: 

 ieDeC xkixki

II

  
 

 On applying boundary conditions, i.e.   axandxatx  00  Quantized 

energy quantities and specific wave functions are obtained. There is a limited chance that the 

particle will be outside the well. In this case, the wave functions exponentially approach zero 

outside the well and connect seamlessly at its edge. In quantum mechanics, the particle can 

exist outside of the well, even though it is not allowed in classical mechanics. owing to the 

wave functions' exponential decline in both and. The likelihood that the particle will go 

farther than to drastically reduce. 

 The distance   is known as penetration depth. 

 ⇒    
 

    
 

 

 

If  U then 0 , i.e. the wave function will not come out in case of infinitely deep 

potential well. For first energy state 1E , 1EU   is very large therefore 1  is small. 

 For second energy state 2E , 2EU   is smaller than 1EU   

therefore 2  is larger than 1 . The penetration length is directly related to Planck's constant, 

as the preceding equation makes evident, which undermines the idea of classical physics. 

Since the particle needs a very high energy uncertainty in order to be in the well, this result is 

likewise consistent—or favorable—with the uncertainty principle. Heisenberg's uncertainty 

relation states that this can only happen for extremely brief periods of time. (i.e. 

2 tE  ). The wave function's amplitude has decreased to some distance beyond the 

well's limits and, in regions I and III, it is approaching zero exponentially.  
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 On either side of the potential well, the outer wave is therefore inescapably zero 

beyond penetration depth. In case of electrons tunneling through semiconductors and nuclear 

alpha decay the value of penetration depth is 10  and 20 .  

Here, the allowed energies are given by the expression of energy by replacing 2 aa , 

i.e. 

 

 

 It is clear from eq. (2.703) and eq. (2.704)  is energy dependent and smaller than 

length a  of the well. When it gets closer to, where becomes infinite, the approximation 

entirely breaks down and is most effective for lower-lying states. The particles possessing 

energies are therefore not restricted to the well; rather, they have a similar likelihood of being 

discovered in the external areas I and III. 

 

V. EIGEN FUNCTIONS AND EIGEN VALUES IN VARIOUS CASES ARE SHOWN 

IN BELOW FIGURE 

 

 
 

 (From Quantum Physics of Atom, Molecules, Solids, Nuclei & ParticlesRobert 

Eisberg& Robert Resnick) 
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