
Trends in Contemporary Mathematics 

e-ISBN: 978-93-6252-737-0 

IIP Series, Volume 3, Book  2, Part 3,Chapter 2 

DYNAMICS OF A PREY AND TWO PREDATORS MODEL WITH DISTRIBUTED TYPE TIME DELAY 

 

Copyright © 2024 Authors                                                                                                                          Page | 75  

DYNAMICS OF A PREY AND TWO PREDATORS 

MODEL WITH DISTRIBUTED TYPE TIME DELAY 
 

Abstract 

 

This chapter describes stability 

analysis of a Prey and Two predators 

Ecological model. Two predators are 

competing for same prey and they have 

alternative food resources other than prey. 

Distributed type delay is incorporated in the 

interaction of prey and second predator is 

taken for investigation. The system is 

described by a system of integro-differential 

equations and local stability is studied at its 

interior equilibrium points. The global 

stability is addressed by constructing a 

suitable Lyapunov function. The effect of 

Time delay on the dynamical behaviour of 

the system is studied using exponential delay 

kernels. The delay kernels with different 

strengths are identified in which prey 

population growth is significant is shown 

using Numericalsimulation. The weight 

kernel dynamics is compared with the system 

when no delay arguments are present. 
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I. INTRODUCTION 

 

Mathematical methods are well known in the field of ecological classifications. 

Ecological stability drive intention of many mathematicians in to this field in recent era. The 

ecological interactions are broadly classified in to prey-predation, competition mutualism, 

ammensalism etc. Prey-predator models always draw the attention of many researchers The 

ecological models with mathematical treatment areinitiated by Lokta [1] and volterra [2]. 

Later on, Kapur[3,4] discussed various models related to ecology. May [5], Freedman [6], 

Paulcolinvaux [7] contributed a lot to this field.  The modelling of ecological system is 

mainly by differential equations. Braun [8] and Simon’s [9] explain the applications of 

differential equations in this area. Prey-predator interaction has immense importance. A lot 

research has been done on prey-predator models.Recently stochastic prey-predation 

interaction and prey-refuge and additional food by A. Das, G.P. Samanta [18,20]. Bapan 

Ghosh [19] studied the stability switching and hydra effect in a predator–preypopulation.  

 

Three species models are also well versed in ecological systems Vidyanath e.t al [21] 

studied the dynamics of one -predator and two preys. Shiva Reddy et.al [22,23] the dynamics 

of the three species model with two predators and one prey as well as prey, predator and 

super predator models. 

 

Much work is done in two species dynamics. Time delay are very common in 

ecological phenomenon. A time delay occurs in any ecological interaction. These delays 

cause a cascade effect in stability of the ecological system. A small delay can cause a big 

change in the system stability. Naturally the delay can be classified as discrete, continuous 

and distributed. The nature of the delay depends upon the past history the models can be well 

explained by using distributed type delays. 

 

The distributed time lags are more appropriate to represent the ecological patterns 

where time delays are depending on past history. The stability aspects of distributed time lags 

are widely studied by Cushing, J.M [10], and Sreehari Rao [11], Gopalaswamy. K [12]. Time 

delay in interactions in three species models with a prey, predator and competitor models are 

discussed by paparao [13-17]. In spite of this, we proposed a three species ecological model 

with asingle prey with two predators with logistic growth type. The system dynamics is 

studied at interior equilibrium point. Numerical simulation is carried out for different delay 

kernel strengths in support of stability analysis. 

The chapter divided in to five sections in which the delay dynamics of the model studied both 

locally and globally with suitable numerical simulation. 

 

II. MATHEMATICAL MODEL: 

 

The model consisting of a single prey (x) and two predators namely first predator(y), 

second predator (z). Here two predators are competing for the same food (x). A time delay is 

induced in the interaction of prey and second predator (Gestation period of the prey). 

Predators are of generalist type and can sustain in absence of prey population. The ecological 

system is considered with all three population are non-zero and the interaction coefficients 

are positive in nature. The model equations are formed using the following system of   

integro - differential equations. 
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The parameters are described with the following notations  

 

x ,y&z  are Density of prey, first and second predator respectively. 

        : Growth rates prey, first and second predator  

   ,            : interaction coefficient among three populations. 

        : Interaction among predators. 

               : Kernel strengths. 

 

Put
  

  
 =    , 
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 =     and t-u = w, we get the following system of equations 
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Choose the kernels k1 and  k2  such that 

 

        
 

 
             

 

 
          

 

 
               

 

 
 

 (2.3) 

 

Assume the solutions for the above model (2.3) as 

 

      
            

            
   

 

and substituting in (2.3) we get the following system of equations 
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III.   CO-EXISTING STATE 

 

The co-existing state is obtained by equating system of equations (2.4) and given by   

   

  
                                                               

                                                                  
 

   

  
                                                                         

                                                                  
 

     
                                                               

                                                                  
 

  .                      (3.1) 

This equilibrium state exist only when,     ,     ,      (3.2)                                          

 

IV.  LOCAL STABILITY ANALYSIS 

 

Theorem4.1: The system (2.4) locally asymptotically stable at co-existing state             . 

 

Proof:  Let the variational matrix is given by  

   
                       
                 

                      
                                           (4.1) 

   

With The characteristic equation      
          

 
                    (4.2)

  

Where                        

                                                     
                      

 

                                                                
  12 23 31 2( )− 13 21 32 1( )       

 (4.3) 

 

Calculate the Routh-Hurwitz determinates     ,          and            

If all the determinates are positive, the system becomes stable otherwise system becomes 

unstable. 

 

Clearly                         
 

 

By algebraic calculations  

              
                 

        
                              

           
                 

        
                 

   

                                          
                                   

              
   

                                                     

 

 

 1 2 3 0bb b  (Majority of the terms are positive)           (4.4)  
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Also  3 1 2 3 0b bb b   

Hence the co-existing state               is locally asymptotically stable  

 

V. GLOBAL STABILITY 

 

Theorem 5.1:  The co-existing state E           is globally asymptotically stable  

 

Proof: Consider the Lyapunov function be   
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The time derivate of ‘V’ along the solutions of equations (2.4) is  
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by proper choice of 
1 2 3, &a a a  

                     

 

 

           

                       

           

 

 

                       

 

 

Substitute the above in equation (5.2) we get  
                                                                               

        (5.3) 

Using the inequality 
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dV

dt
 Therefore, the system is globally stable at interior equilibrium E            

 

VI.  NUMERICAL SIMULATION 

 

Example 1:  Let a1=2.5; a2=1.5; a3=2.5;  12=0.05;  13=0.05;  21=0.05;  23=0.05;  31=0.05; 

 32=0.05; x=15, y=15, z=15; L1=100;L2=100;L3=100. 

 

The system of equations (2.3) with above parametric values are simulated using  
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MATLAB without infuse delay arguments. The system is stable and converging to the 

fixed equilibrium pointE (63, 89, 95). The graphs are given below with 6.1 (A) time series 

plot & 6.1 (B) phase portrait.    

 
 

                   Figure 1: (A)                 Figure 1: (B) 

 

Choose the exponential kernel given by                                 

Then the Laplace transform of              are defined as 

1 2

0

( ) ( ) t at a
k k e ae dt

a

 




   
  

 

Using the above intervention simulate the results with different values of a and ‘ ’ along with 

the parametric values in example 6.1. 

 

Case (i) :=0. 001, a=0.5. 

 

 
  
                     Figure 2: (A)                   Figure 2: (B) 

 

The system is stable and converge to the fixed equilibrium point E (80,99,80). The 

prey and first predator population are slightly increase and second predator population is 

slightly decreases when no delay arguments are present in the system. 

 

Case (ii) :=1.0, a= 1.5.E (74,96,87) 
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                 Figure 3: (A)                 Figure 3: (B) 

 

The dynamics the system is stable and converging to fixed equilibrium point E (74, 

96, 87). In this case also prey and first predator population is slightly increases and second 

predator population is decrease when compared with system has no delay arguments. 

 

Case (iii) =1.0, a= 0.5 

 

 
 

                           Figure 4: (A)                  Figure 4: (B) 

 

For the above set of delay kernel strengths, the prey and first predator populations 

show significant growth and second predator population decreases when compared system 

with no delay arguments. The system remains stable to fixed equilibrium point E (69, 93, 91). 

 

VII. CONCLUSION 

 

The proposed model with distributed delay is stable both locally and globally. The 

weight kernels are identified and solved the system numerically observed that the delay 

strengths significant.  The system without delay   arguments converges to the equilibrium 

point E (63, 89, 95).  For the kernel strengths (i) =0. 001, a=0.5, (ii) =1.0, a= 1.5 (iii) 

=1.0, a= 0.5, the significant growth is identified in prey & first predator population, decay in 

the second predator population. The model does not possess any instability characteristics 
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