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Abstract 

 

The behavior of the free-surface ina 

single-layer flow over an undulated bottom is 

analyzed. To formulate the problem, it is 

considered that the fluid is incompressible as 

well as inviscid. The physical problem is 

expressed as a mixed boundary value 

problem using linear theory. This governing 

boundary value problem is solved with the 

help of perturbation analysis and Fourier 

transformation. The free-surface profile is 

determined mathematically. Also, the use of 

Fourier transform technique is highlighted in 

a detailed manner. The behavioral changes of 

the free-surface are also studied. Finally, the 

effect of undulated bottom profile is 

explained. 

 

Keywords: Fluid flow; Linear theory; Mixed 

BVP; Froude number; Bottom profile 

Author 

 

Srikumar Panda 

Assistant Professor 

Department of Mathematics 

Vidyasagar College, Kolkata, India 

shree.iitg.mc@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Futuristic Trends in Physical Sciences 

e-ISBN: 978-93-5747-929-5 

IIP Proceedings, Volume 2, Book 14, Part 1, Chapter 1 

BEHAVIOUR OF FREE-SURFACE IN SINGLE-LAYER FLUID FLOW PROBLEM 

 

Copyright © 2022 Authors                                                                                                                            Page | 2  

I. INTRODUCTION  

 

Many researchers considered free-surface flow problems to model diverse 

circumstances occurring in atmospheric science as well as in oceanography. Solutions of such 

fluid flow problems are helpful to analyze the mechanism of wave generation. Various 

challenges have been faced by the scientists to examine the free-surface flow over random 

bottom topography. Hence, the fluid flow problem becomes a topic of importance in 

mathematical as well as in physical sciences.  

 

From the available literature, it is found that the free-surface fluid flow problems in 

the presence of different kind of obstacles are examined by several applied mathematicians 

andphysicists. The consideration of the free-surface flow over arbitrary bottom has been 

increasing rapidly, and a considerable progress has been prepared in this direction. For 

instance, Forbes and Schwartz [1] studied the fluid flow problem in the presence of a semi 

circular obstacle attached to the bottom. They have calculated the wave resistance using a 

numerical approach. Vanden-Broeck [2] explained the similar problem considered in [1] 

numerically, and conferred the subsistence of supercritical solutions. They have shown that 

supercritical solutions depend on the Froude number, a physical quantity. Later on, Forbes [3] 

demonstrated a numerical solution for the free-surface flow in the presence of a semicircular 

obstacle. In the presence of surface tension, Yong[4] considered the fluid flow problem in the 

presence of a concave bottom, and shown the subsistence of nonlinear capillary-gravity 

waves. Dias and Vanden-Broeck [5] considered the fluid flow problem over a triangular 

obstacle, and explained the problem numerically using series truncation method. Shen et al. 

[6] studied the fluid flow problem numerically in the presence of a semielliptical bottom. 

Using numerical method, Dias and Vanden-Broeck [7] analyzed the steady flow problem, and 

confirmed the existence of supercritical flows with downstream waves only. Using a new and 

simpler approach, Panda et al. [8] solved the nonlinear flow over a random bottom. Higgins 

et al. [9] offered seriesmethod to attain the solutions of three different kinds of fluid flow 

problems: supercritical flow, transcritical flow and subcritical flow. It is worthy to mention 

here that the aforesaid studies are based on the consideration of steady flow. In case of 

unsteady flow of a stratified fluid, Grimshaw and Smyth [10] deliberated a theoretical aspect 

with the help of weak nonlinear theory. Stokes et al. [11] applied numerical approach to 

investigate the unsteady fluid flow in the presence of a submerged point sink. For the case of 

time dependent flow (i.e., the submerged obstacle is moving), Milewski and Vanden-

Broeck[12] solved the time dependent problem by applying weak nonlinear theory. From the 

above-mentioned literature, it is clear that a specific type of bottom topography such as semi-

circle [1, 2], semi-ellipse [13], a step [14], triangle [15], is considered in most of the cases 

due to the simplification. Hence, the flow over random bottom topography is continuing 

unanswered. This is because of the governing boundary value problems become mixed and 

coupled and therefore their explicit solutions are not possible always. 

 

In the present study, a two-dimensional potential flow over a random bottom having a 

small obstruction is analyzed using linear theory. It is considered that the fluid is 

incompressible and in viscid. The physical problem is prepared in terms of a mixed boundary 

value problem (BVP). Using perturbation analysis and Fourier transform technique, the 

aforesaid BVP is solved to find out the analytical expression of the unknown free-surface. In 

addition, the role of the Fourier transform technique is highlighted. Also, the behavior of the 

unknown free-surface is analyzed. 



Futuristic Trends in Physical Sciences 

e-ISBN: 978-93-5747-929-5 

IIP Proceedings, Volume 2, Book 14, Part 1, Chapter 1 

BEHAVIOUR OF FREE-SURFACE IN SINGLE-LAYER FLUID FLOW PROBLEM 

 

Copyright © 2022 Authors                                                                                                                            Page | 3  

II. DESCRIPTION AND FORMULATION  

 

It is considered a two-dimensional potential free-surface fluid flow in which the fluid 

is inviscid and incompressible. The fluid is running from the left to the right over an 

undulating bottom y = B(x) having a small undulation. The domain of the fluid flow is 

depicted in Figure 1. Let us assume that the x-axis is considered along the undisturbed bottom 

and the y-axis is considered vertically upward. It is also assumed that the flow is uniform 

with a constant velocity cat the far upstream. Let H be the upstream depth of the fluid and ρ 

be the density of fluid. Let 𝜙(x,y) be the velocity potential thus the velocity of the fluid,𝑞 , can 

be written as 𝑞 =  
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
 .Let the unknown free-surface is considered as 𝑦 = 𝜂 𝑥 . The 

effect of the surface tension is neglected here and the flow is stationary. Therefore, the partial 

derivatives with respect to the time vanish. They consider problem is prepared on-

dimensional using H and c as the length and velocity scale. Therefore, the study carries on 

solely with dimensionless variables.  

 

 
 

Figure 1: The flow domain. 

 

Due to the aforesaid considerations, the equation of continuitybecomes 
2 2

2 2
0.

x y

  
 

   
 

(1) 

As all fluid particles stick with the free surface, then the kinematic condition becomes 

0,    on    ( ),y x
n





 

  
 

(2) 

where / n  denotes normal derivative at a point (x,y).  

 

Applying Bernoulli’s equation, the other condition at the free surface is obtain as 

 2 21
1 ( ) 1,    on    ( ),

2
F q x y x    

 
 

(3) 

Where /F c gH denotes the Froude number with acceleration of gravityg. Here, the 

subcritical flow is only considered. Hence, the Froude number isconsideredas small. In 

particular it is less than 1 i.e., F<1.  

 

Since there is no incursion of fluid at the bottom, hence the bottom condition at the bottom is 
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0,   on    ( ).y B x
n


 


 (4) 

Further, the conditions at the far upstream are 

,    ( ) 1   as   .q i x x    (5) 

  

The objective of this study is to determine the physical parameters 𝜙(x,y) and 𝜂(𝑥) 
which are unknown at the begging. These parameters can be obtained once the governing 

boundary value problem (1)-(5) is solved. In the subsequent section, the aforesaid BVP is 

solved using the methods: perturbation analysis and Fourier transform technique. 

 

III. SOLUTION PROCEDURE 

 

It is supposed that the undulating bottom topography is specified by ( ) ( )B x f x where

 is a small non-dimensional quantity and represents the maximum height of the undulating 

bottom. As the height  is small, then the solution of the boundary value problem (1)-(5) can 

be derived with the help of perturbation expansion. Now, the velocity potential and the free-

surface profile can be stated asymptotically as  
 

 2

1( , ) ( , ) ,x y x x y O      (6) 

  

 2

1( ) 1 ( ) ,x x O      (7) 

  

Where 
1( , )x y and 

1( )x  denote the first-order velocity potential and free-surface 

profile, respectively. As ε is very small, the consideration upto the first-order terms are 

enough. Now, ( , )x y and ( )x can be derived once the parameters
1( , )x y and 

1( )x  are 

evaluated. Hence, the parameters
1( , )x y and 

1( )x will be determined in the following part. 

Using equations (6) and (7) in (1)-(4); and then relating the first-order terms of  on both 

sides of entire system of equations, the below mixed boundary value problem is obtained: 

 

2

1 0 in the fluid region,   
(8) 

 

1, 1( )              on    1,y x y    (9) 

 
2

1, 1( ) 0       on    1,xF x y     (10) 

 

1, '( )                on    0,y f x y    (11) 

 

Where '( )   f x and 
1( )  x are, respectively, the first order derivatives of f(x)and 

1( )x

with respect to x.  

 

To solve the above mixed boundary value problem (8)-(11), the first-order potential 

1( , )x y and the bottom profile f(x)are assumed such that the Fourier transforms of 1( , )x y and 

f(x) exist, which are well-defined as 

 

1 1
0

ˆ ( , ) ( , )sin( ) ,k y x y kx dx 


   
(12) 
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With inverse 

1 1
0

2 ˆ( , ) ( , )sin( ) ,x y k y kx dk 




   
(13) 

 

And 

0
( ) ( )cos( ) ,f x M k kx dk



   
(14) 

 

Where M(k) fixes the bottom profile. For the free-surface profile, let us define 
1( )x as 

 

1
0

( ) ( )cos( ) .x a k kx dk


   (15) 

Using Fourier transform and its inverse; and applying the equations (14) and (15), the 

solution of the BVP (8)-(11) is attained as 

 

1
0

( ) ( )cosh
( , ) cosh (1 ) ( )sinh (1 ) sin( ) ,

sinh

M k a k k
x y k y a k k y kx dk

k


  
    

 
  (16) 

  

Where 
2

1

( )
( )

( )

F kM k
a k

E k
  (17) 

 

With 
2

1( ) cosh sinh .E k F k k k   
 

(18) 

 

It is worthy to note here that the relation 

1( ) 0E k   (19) 

 

is called as dispersion relation. It can be proved (confirmed in Section IV) that the dispersion 

relation (19) has two real roots: one is positive root and another one is negative root having 

the same magnitude as that of the positive real root. It should be noted that the positive real 

root of the dispersion relation plays a very crucial role in the study of fluid flow problem as it 

indicates the wave number of the downstream waves. It can also be observed, from relations 

(15) and (17), that the first-order free-surface profile 
1( )x (hence the free-surface ( )x ) 

depends on the profile of the bottom. Hence, it is very much important to know the shape of 

the bottom profile. In the present work, the below bottom profile is chosen to establish the 

further outcomes: 

1
1 cos , ,

2

( )

0, otherwise,

x
L x L

L

f x

   
      

  


 




 (20) 

Where L indicates the half length of the bottom obstacle. 

 

Applying relations (14), (17) and (20), a(k) is derived as 

 

 

2

2 2 2

1

sin( )
( ) .

( )

F kL
a k

k L E k







 (21) 

 

Again, applying the value of a(k) into the relation (15), the first-order free-surface profile is 

derived as 
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2

1 2 2 2
2 2

1 12 2

sin ( ) sin ( )
( ) .

4
( ) ( )

F k x L k x L
x dk dk

L
k E k k E k

L L




 







 
 

   
    

     
     

   (22) 

 

From the relation (22),it is clear that the integrals contain a simple pole on the real 

axis at the zero of E1(k). Therefore, we can use the Cauchy principal value having an 

indentation below the singularity to determine the above integration (22). Applying the 

residue theorem, we have obtained the following free-surface profile: 

 
2 2

0 0

2 2
2 '

0 1 01 2

sin( )sin( )
,            for   ,

( )( )     

0 for   ,

k x k LF
x L

L
k E kx

L

x L









 
   

 
  

 (23) 

 
 

Where k0 indicates the positive and real root of the dispersion relation (19).  

 

From the above relation (23), the following observations are made:  

 

1. The free-surface represents oscillatory nature which indicates a train of waves. 

2. At the downstream, the free-surface possesses waves whereas at the upstream there is no 

wave. 

3. At the upstream, the region is free-of wave i.e., wave-free region. 

4. The amplitude of downstream wave is constant.  

 

IV. RESULTS AND ILLUSTRATION 

 

In the present section, some of the numerical results which are important for the 

present study are discussed. For instance, a detail discussion on the real roots (i.e., the wave 

number) of the dispersion relation (19) is provided in a tabular form. Also, effects of several 

physical parameters on the free-surface profile ( )x are presented.  

 

The roots of the aforesaid dispersion relation are determined with the help of 

Newton’s method for several values of Froude number (F) for D = 0.7 and γ = 1. These roots 

are tabulated in Table 1. From this table, it is evident that the dispersion relation has two real 

roots. Out of these two roots, one is positive (indicates the wave number) and another one is 

negative having same magnitude. This affirms the theoretical observation reported in Section 

III. In addition, it is also clear (referTable 1) that the wave number decreases, i.e., the 

wavelength increases with the Froude number F. 
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Table 1: Roots of the Dispersion Relation (19) 

 

Parameter 

value 
F=0.2 F=0.3 F=0.4 F=0.5 F=0.6 

Real roots 
24.99999,  

-24.99999 

11.11111,  

-11.11111 

6.24995, -

6.24995 

3.99730, 

-3.99730 

2.75541, -

2.75541 

 

Figure 2 illustrates the behavior of the free-surface ( )x  for two distinct Froude 

numbers such asF=0.5 and 0.6 with  =0.1 and L=1. From the figure, it is remarked that the 

nature of the free-surface is oscillatory with same peak. This phenomenon indicates that the 

free-surface profile represents downstream waves having constant amplitude. The wavy 

nature arises due to the interaction of the fluid with the undulated bottom. It is also clear 

(referFigure 2) that the amplitude of the downstream wave increases as the Froude number 

increases. It is well known that the wavelength increases as the speed of the fluid increases. 

Again, from the relation / ,F c gH the speed of the fluid increases as the Froude number 

increase. Hence, the wavelength of the downstream wave increases as the Froude number 

increases. This phenomenon is also observed in Figure 2.  

 

 
 

Figure 2: Free-surface profile ( )x  for  =0.1, L=1. 

 

Figure 3describes the outcome of the height of the undulated bottom on the free-

surface. In the present figure, the free-surface ( )x is shown for three distinct values of the 

bottom height  = 0.01, 0.05 and 0.1 with F=0.6 and L=1. From the physical intuition, it is 

obvious that the amplitude of the downstream wave increases with the growth of bottom 

height. This phenomenon is also noticed(refer Figure 3) in the present study. In this figure, 

we have kept the Froude number same (i.e., F = 0.6) for each free-surface profile(or 

downstream wave). And we have noticed that the wavelengths of the downstream waves are 

same (refer Figure 3). This is completely consistent with the phenomenon that the 

wavelength depends on the Froude number.     
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Figure 3: Free-surface profile ( )x for F=0.6, L=1. 

 

V. SUMMARY 

 

Problem involving fluid flow in a single-layer having an undulated bottom is studied 

using linear theory. Perturbation analysis and Fourier transform technique is employed to 

solve the governing mixed boundary value problem. The behavioral changes of the free-

surface are examined. It is observed that the free-surface represents downstream waves 

having constant amplitude. Also, the amplitude of the produced wave increases with the 

growth of bottom height. Further, the wavelength of downstream wave increases with Froude 

number. 
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