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PHENOMICS IN ABIOTIC STRESS MANAGEMENT 
 

Abstract 
 
 Several abiotic stresses resulting 
from increased population, global warming, 
and other possible climatic conditions have 
affected the development and production of 
several agriculturally essential crops. 
Drought, flood, salinity, high temperature, 
and other abiotic stressors affect plant 
physiology as well as its appearance which 
can occasionally result in a famine-like 
condition. In this context, plant breeders 
have a difficult problem in developing 
climate-resilient varieties: understanding the 
crops reaction to various stress situations 
and the underlying stress resistance 
processes. Over the last decade, advances in 
molecular tools and functional genomics 
have made the process of cloning and 
characterization of essential genes much 
easier that driving abiotic stress traits. To 
fully assess a genotype's potential under 
stress, however, phenotypic behaviour must 
be evaluated, as well as the components that 
coordinate such reactions. As a result, in 
this post-genomic age, sophisticated 
phenotyping technologies are required for 
optimal use of the huge amount of genetic 
data in climate-resilient breeding. Advanced 
phenomics devices measure shoot and root 
development, chlorophyll content, canopy 
temp, and other morphological features of 
plants in response to various abiotic stimuli 
with a high degree of precision and in a 
short amount of time. As a result, 
phenomics is an important tool for 
narrowing the gap between genotyping and 
phenotyping, and it is highly advisable for 
addressing climate change. 
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I. INTRODUCTION 
 
 The lack of identification and study of abiotic characteristics resulted in a poor 
exploitation of plant genetic resources. As a result, identifying a genotype that possesses 
abiotic stress resistance or tolerance is only achievable if we have accurate and reliable 
phenotyping data of the germplasm. Phenotyping of important abiotic stress traits is generally 
considered as the most laborious and technically challenging because of the repeatable 
experiments are required across many locations and seasons. Chilling stress, heat stress, 
waterlogging, and drought stress all needed a unique environment, and trial management was 
time-consuming. Over the last decade, researchers have shown interest in developing novel 
high throughput phenotyping techniques and methodologies for phenotyping abiotic stress, 
such as imaging, image processing, sensors, spectroscopy, robotics, machine learning and 
high-performance computing. These techniques may be used not only in the lab, but also in 
the field, allowing for high-throughput phenotyping study in both uncontrolled and controlled 
environments. Plant performance evaluation in the field is now much faster, enabling more 
flexible, entire life cycle measurement of plant that is less reliant on destructive tests. The 
sophisticated high throughput facilities like green house, glass chamber, hydroponics and 
aeroponics increases data recording precision and decreased the requirement for field 
replication. As a result of these advancements, the area of reliable and exact phenotyping for 
major features of abiotic stresses has changed, bringing in the age of ‘phenomics’. In the 
present chapter we provided an overview of these developments. We explain in details of 
phenomics, its types based on its utility, different imaging techniques used in phenomics, 
phenomics data management and lastly major achievements gain from phenomics. 
 
II. PHENOMICS 
 
 The overall phenotype of organism is called as phenome [1], i.e., the expression of the 
genome for a characteristic in a specific environment, whereas phenomics refers to the big 
collection of high-dimensional data sets. In fact, phenomics is utilized as a paradigm for 
genetics. But, it is not the same as genomics. Total genome characterization is attainable in 
genomics, but whole phenome characterization is difficult in phenomics due to the variability 
in expression of phenotype across environmental contexts [2]. The term 'phenome' has been 
coined as a counterpoint to the phrase 'genome.' The genome is an entire combination of all 
genes available in an organism. As a result, the phenome would be the sum total of the traits 
express by an organism. The study of plant development, performance, and composition is 
known as plant phenomics. Forward and reverse phenomics are the two kinds of phenomics. 
Forward phenomics applies phenotyping techniques to choose useful genotypes with 
desirable features from a large pool of germplasm. As a result, the 'best of the best' 
germplasm can be identified. The plant breeding cycle have accelerated by screening a wide 
variety of plants at the seedling stage with the use of high-throughput, fully automated, and 
high-resolution phenomics approaches. When the 'best of the best' germplasm with desirable 
characters are already known, reverse phenomics is applied. As a result of reverse phenomics, 
we can learn about the mechanisms that make 'best' germplasm to the best. 
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III. TYPES OF PHENOMICS BASED ON UTILITY 
 

 
 

Figure 1: Different Types of Phenomics based on Utility 
 
1. Shoot Phenomics: The shoot phenomics uses a high throughput platform to identify and 

record various yield contributing traits likes plant height, seed size, plant colour, 
chlorophyll content, aboveground biomass, plant architecture. The table 1 provided the 
different platforms for shoot phenotyping along with their advantages and disadvantages. 
The best imaging-transfer method (plant-to-sensor or sensor-to-plant) is determined by 
the retrieved characteristics, the volume size of the measured species, greenhouse 
capacity, and other factors. The various image sensors were employed to record the 
observations. With the help of sensor many physiological parameters have been recorded. 
Installation of sensor depend on the parameters such as traits that have been record, size 
of plant, greenhouse or field area etc. Sensors are directly attached to the plant or group of 
plants and other way is sensor fixed in one place which called imaging stations and with 
the help of conveyor belt, data of plant is recorded. This is called plant-to-sensor method. 
Plant-to-sensor mode is used by CropDesign, Scanalyzer3D and HRPF. 

 
2. Root Phenomics: Roots are important parts of plant that determine water uptake 

and absorption of nutrients, impacting drought resistance as well as growth and yield. 
Compared to shoot phenotyping, root phenotyping is difficult and complex [3] because 
recording observation below the soil is time consuming and costly as well as laborious. 
Advancement of high throughput root phenomics provided variety of solutions for 
recording various roots characteristics some of which provided in table 1. The different 
root characteristics namely root length, root diameter, root weight, root area, angle, tip 
number and spatial distribution plays important role in breeding especially abiotic stress 
breeding.  

 
The study of these traits were very different in common filed conditions. Use of 

hydroponic, aeroponic, and green house somewhat help in recording of precise root 
phenotyping data. Root system architecture (RSA) phenotyping imaging platform, 
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magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray 
radiation and CT scanning further boost up root phenomics with higher level of accuracy. 

 
3. Ground-based Phenomics: Ground based phenotyping is carried out using fixed or 

mobile platform fitted in filed. Tower equipped with different kinds of sensors are easy to 
build as well as they having less maintenance. These sensors were used to record different 
vegetative and reproductive growth stages of plants as well as monitor different biotic and 
abiotic stresses. Plant height, leaf colour, leaf area index, days to anthesis, nitrogen 
content, tiller density, number of flowers, number of pods, grain yield, moisture content, 
lodging, and dry biomass have all been measured using digital cameras, infrared cameras, 
time-of-flight depth sensors, kinect cameras, stereo cameras and four digital single-lens 
reflex cameras. Mostly the open-air imaging platforms are vulnerable to changing 
environmental conditions.  

 
Many of these issues are addressed by sensors mounted on manually operated 

carts or self-propelled tractors. A cart containing multiple sensors, including an ultrasonic 
sensor, a normalized difference index (NDVI) sensor, a thermal infrared radiometer, a 
portable spectrometer, an RGB camera, and a proximity sensor, was used to obtain 
plant height, NDVI, temperature, reflectance spectra, and RGB imagery for soybean and 
wheat canopy traits [4].  

 
The fixed phenotyping tower had the advantage of being simple to construct and 

maintain, but the problem was that it only provided restricted crop information in defined 
locations, and costs for large-scale experiments were high. One of the ground based 
platform were highlighted in table 1. 

 
4. Remote Sensing: Drones or unmanned aerial vehicles (UAV’s) provide a versatile 

framework for rapidly collecting data across wide regions and possibly producing high 
spatial resolution photos. Machine learning is a cutting-edge IT technology that can 
process millions of remote sensing photos with great accuracy and speed [5]. As a result, 
remote sensing is frequently utilised to track drought stress response, measure nutrient 
content and growth, spot weeds and diseases, and forecast yield [6]. Multiple imaging 
sensors fitted on UAVs can be utilised to acquire spectral information in visible or near-
infrared bands for plant nutritional diagnostics and stress surveillance. High-resolution 
UAV photography has been used for a variety of phenotyping objectives, including 
estimating leaf area index [6], identifying wheat ears [7], detecting weeds [8], and 
evaluating seeding effectiveness in rapeseed [8]. Multispectral cameras can detect 
spectral information in the red edge and near-infrared regions and have been used for 
chlorophyll-based diagnostics [9] and water stress monitoring [10]. UAV remote sensing 
has showed significant promise for high-throughput phenotyping, which will benefit to 
abiotic stress breeding. Yet, there are certain limitations to the usage of UAVs that need 
be discussed: (1) the fly period and loading capacity are restricted; (2) local flight rules 
and regulations may be a restraint; and (3) rigorous standards for operating technicians 
should be enforced to assure flight safety. 

 
5. Pocket Phenomics: The exponential advancement of mobile phones with high-resolution 

sensors and substantial computer power has resulted in the development of plant 
phenomics apps. Furthermore, components of smartphones technology have been 
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integrated into other customized handheld devices, expanding the range of optical and 
other sensors and improving the connection and mobility of classic phenotyping tools. 
Plant breeders have traditionally employed handheld portable devices to test a variety of 
characteristics such as chlorophyll content in leaf (SPAD) and soil moisture 
(Tensiometer). Many of these devices are inherently difficult, necessitating training, low 
accuracy and close attention. Advance "pocket" or "wearable" phenomics equipment will 
fundamentally alter and speed phenotyping. The opportunities and challenges associated 
with pocket phenotyping include:  
 Combining different sensors into one portable device is difficult and challenging;  
 Required a level of expertise and integral data quality control; 
 Leveraging artificial intelligence techniques to build robust models to face complex 

field conditions.  
  

6. Post-Harvest Phenomics: The harvested portion of the crop is the most commercially 
important, and mechanical techniques for processing and monitoring yield and quality, 
both during the harvesting process are already exist. During the harvesting process, global 
positioning system (GPS) and sensors might be included in the combine harvester to 
examine and record various data automatically. Seed quality evaluation employs imaging 
methods that are easily adaptable to research purposes. The comparatively 
straightforward integration of 2D picture capture, data export and feature extraction and 
has simplified seed phenotyping, allowing for a broad, cost-effective assessment of grain 
type and size variation. Open-source and user-friendly image analysis software, along 
with a low-cost scanner or 2D and 3D camera, enables greater accessibility. SmartGrain, 
PANorama, GrainScan, phenoSeeder, SeedCounter, and P-TRAP are recommended as 
versatile instruments for accurately quantifying post-harvest features (Table 1). 

 
IV. IMAGING TECHNIQUES 
 
 Advanced phenotyping methods employ a variety of imaging techniques to capture 
the association among the crops and light that is transmitted, reflected, or absorbed. The 
intensity, colour and diffraction of light used to assess quantitative phenotypic features with 
the precision and accuracy. The visible-light imaging, infrared and thermal-based imaging, 
fluorescence imaging, spectroscopic imaging, and other integrated imaging techniques are 
now in use for precise phenotyping of crops in a variety of conditions. 
  
1. Visible Light Imaging: Visible light imaging has long been used to assess various 

abiotic stress responsive attributes. The various vegetative as well as reproductive growth 
features such as biomass [11], shoot tip elongation, root architecture and leaf 
morphology, panicle and seed morphology, and so on are being studied using visible light 
imaging approaches which were based on two-dimensional (2D) digital images [12]. The 
visible spectrum is susceptible to visible imaging sensors like silicon sensors (CCD or 
CMOS arrays) [13]. This sensor commonly used in imaging. The more advancement in 
imaging techniques carry forward 2d imaging to 3 dimensional imaging technology 
resulted in increases in precision on complex phenotypes. Combination of both combined 
2D and 3D imaging technologies, are used to many crops [14]. Image analyzer tools able 
to capture various abiotic stress tolerance characteristics in small and big populations, 
such as mapping populations or association mapping populations, making it easier to 
conduct genetic research to uncover mechanism driving tolerance-related trait variations. 
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Figure 2: Advanced Imaging Techniques for Accurate Phenotyping 
 

2. Infrared and Thermal based Imaging: Infrared and Thermal Based Imaging is based on 
Stefan–Boltzmann equation (R14T4) in which radiation is recorded and visualized by 
different sensors. It uses internal molecular movements to create infrared rays [15]. Two 
types of band, namely near-infrared and far-infrared bands having bandwidth of 0.9 to 
1.55 m and 7.5 to 13.5 m, respectively are used in infrared imaging technology with high 
throughput sensitive thermal cameras (3–14 m) [16]. Additionally, the combination of 
infrared and visible imaging platform provides a more details imaging phenotyping of 
different abiotic tress attributes likes water content, colour pigments and physiological 
traits with well spectrum distinct spectrum of lights [17]. Infrared imaging technology 
also use to measured canopy temperatures to examining stromal activities in case of 
salinity and drought stresses [14]. At present, a number of intelligible thermal cameras 
having high thermal sensitivity are available to supervise plant canopy temperature. These 
thermal cameras able to produce high spatial resolution pictures with exact measurements 
in broad areas in real-time [16]. Thermal imaging technology is now using to record leaf 
water content and gas exchange. Thermal imaging widely uses in recording various 
abiotic traits. Thermal imaging check temperature variation in plant canopy and 
surrounding air used to measured drought tolerance ability of plants. It is also enables 
osmotic tolerance and Na + exclusion-based assessment of drought and salinity tolerance, 
as well as the measuring of relative chlorophyll content and leaf color [18; 19; 20]. 
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Table 1: Different Platforms used to Study Phenomics with Merits and Demerits 
 
 

 

Applications Platforms Merits Demerits References 
Shoot phenomics  GROWSCREEN; 

Phenoscope; PlantScreen; 
Phenovator; PHENOPSIS 
(DB); 

Relatively inexpensive, 
quick, and automated 

Not recommended for larger 
crops 

[21, 22, 
23, 24, 25] 

 TraitMill; Scanalyzer3D; 
PHENOARCH; HRPF 

Dynamic and automated 
used to acquire shoot 
growth, biomass etc. 

Costly to maintain and upgrade; 
needs diverse skills. 

[26, 27, 28, 
29] 

 PhenoBox Affordably priced and 
simple to maintain 

Large-scale screening is labor-
intensive. 

[30] 

Root phenomics PlaRoM; RhizoTubes; 
GiARoots RootReader3D; 
Rhizoslides; Rhizoponics; 
RADIX 

Obtain 2D root system 
designs at a low cost. 

Required transparent medium for 
root scanning 

[31, 
32, 33, 34, 3
5, 36, 37] 

 GROWSCREEN-Rhizo High-throughput methods 
for acquiring shoot and root 
attributes 

In 2D rhizotrons, root 
development is restricted 

[38] 

 PET–CT; MRI–PET; MRI–
CT 

Obtain 3D root system 
designs. 

Expensive; time-consuming; no 
specialised prototype for 
agriculture research 

[39, 40, 41] 

Ground-based 
phenomics 

CPRS Installing and maintaining 
the system is simple. 

Very little crop information was 
received. 

[42] 

 Field Scanalyzer High picture resolution; 
integration of several optical 
sensors 

Expensive; imaging area is 
restricted; ambient light is varied 

[42] 

 BreedVision Integration of many optical Wet soil and climatic conditions [43] 
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sensors; steady imaging 
circumstances; picture 
region that is not restricted 

limit its ability to grow (rainy 
and strong breeze) 

Remote sensing Drones or UAVs equipped 
with multiple sensors 

Various sensors are 
integrated; the imaging 
region is not restricted; and 
the imaging process is 
quick. installation and usage 
flexibility 

Information cannot be obtained 
below the canopy; stringent 
operational and local aviation 
rules must be observed to ensure 
flight safety. 

[6] 

Pocket phenomics PocketPlant3D Affordably priced, versatile 
to use, and simple to 
promote 

Limited features and a single 
purpose; absence of strong 
models for dealing with complex 
field situations 

[44] 

Post-harvest 
phenomics 

Seed Evaluation Accelerator 
(SEA) 

 automatically threshed and 
yield-related features that 
can be measured quickly 

Grain and panicle qualities in 3D 
are not available. 

[45] 

 PANorama; P-TRAP There is no requirement for 
threshing to quantify grain 
properties. 

Manual separation of plants is 
required; 3D grain 
characteristics are not available. 

[46, 47]  

 PhenoSeeder With excellent precision, 
extract 3D characteristics 
from individual seeds. 

Low measurement speed; 
threshing required 

[48] 

 CT scan, X-ray    Without threshing, extract 
3D grain features. 

Expensive; time-consuming; 
new species require a custom 
image analysis methodology. 

[49,50] 

 Hyperspectral imaging Determine the amount of 
protein in a sample and 
other physiological or 
biochemical data. 

Difficult and expensive; 
physiological or biochemical 
markers necessitate bespoke 
image analysis and model 
updates. 

[51] 
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3. Fluorescence Imaging: Fluorescence is generated after the emission of low-wavelength 
light that has been absorbed. Fluorescence imaging shines blue light (500 nm) on the 
plants, which causes fluorescence light to be produced in the red spectrum at 600–750 
nm. In fluorescence imaging different fluorescent spectrum were recorded and converted 
into colour signals using computer algorithms [52]. In phenomics, chlorophyll 
fluorescence is commonly measured to reveal the impact of various stresses on plant's 
capacity to deal with photosynthesis efficiency [52]. Stomatal mobility, plant metabolite 
and phloem loading and unloading studied using fluorescence imaging [53; 54]. 
Fluorescence emission is captured by single excitation wavelengths in the red to a far-red 
area (360–740 nm) and the blue to a green region (360–740 nm) [14]. The chlorophyll 
fluorescence imaging (ChlF) were used in rice [26] and Arabidopsis [24] has been 
employed to determine plant growth and development, its morphology, colour of leaves 
and photosynthetic performance under salt stress. 

 
4. Spectroscopy Imaging: Spectroscopy imaging uses the interaction of solar radiation with 

plants and it is captured with hyperspectral and multispectral cameras. Furthermore, 
Hyperspectral imaging separates pictures into bands, resulting in an electromagnetic 
spectrum [17]. NDVI (normalized difference vegetation index) analyses PRI 
(photochemical reflectance index), red and near-infrared reflectance, CRI (carotenoid 
reflectance index) defines three wavebands in the yellow area, and connects the 
functional state of no photochemical energy conservation [54]. In the near-infrared range, 
leaf and canopy architecture to be measured through radiation reflected from higher 
leaves to lower leaves. Furthermore, when the wavelength and absorption rise, the 
reflectance of the leaf falls, indicating its water content. This spectral reflectance data is 
used to generate vegetation indices and allows for NDVI detection. Penuelas and Filella 
[55] and Din et al. [56] found that vegetation indices are linked to pigment content, water 
status, and active biomass. 

 
5. Integrated Imaging Techniques: Various technological advancements, such as 

functional imaging and optical 3D structural tomography, have switched toward live 
imaging of plants. Under the functional imaging category, positron emission tomography 
(PET) and ChlF imaging assess photosynthetic performance by concentrating on 
physiological changes under stress [57]. PET is a non-destructive imaging technique that 
employs positron-emitting radionuclide metabolite compounds tagged with C11, N13, or 
Fe52 [58]. Magnetic resonance imaging (MRI) is an improved technique that creates 
images by combining magnetic fields and radio waves and is used to capture root 
architecture in pots and internal physiological processes, as well as water diffusion and 
transportation via xylem and phloem in crop plants such as tomatoes, tobacco, poplars, 
and castor beans [59, 60]. The combination of MRI and PET creates a new picture that 
may be used to track real-time changes in plant function and structure. By combining 
PET and MRI with [C11]-labeled CO2, Jahnke et al. [40] investigated photo assimilation 
in sugar beet taproots and shoot-to-root carbon fluxes. Radiometric fluorescence sensors, 
Forster resonance energy transfer (FRET) is a more sophisticated and exceptional 
noninvasive or nondestructive method for molecular phenotyping [61]. A single FRET 
sensor can identify a variety of different routes and dynamic activities in plants. FRET 
has effectively identified calcium and zinc dynamics in real-time in roots during sugar 
transport, as well as subcellular spatial and temporal resolution [61]. FRET's strong 
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phenotyping capability allows it to answer all of the fundamental questions about plant 
growth and development. 

 
Selecting the right imaging sensors and imaging-transfer methods are both 

important in developing phenotyping facilities that are dependent on the various 
experimental aims. RGB, fluorescent, thermal, hyperspectral, and 3D imaging all have 
advantages and disadvantages: (1) While RGB imaging (also known as visible light 
imaging) is the most cost-effective and extensively used method for measuring plant or 
organ morphological features, biomass, and plant development [28], it does not give 
physiological information. (2) Fluorescent imaging, when equipped with particular 
excitation light, may reflect physiological signals such as photosynthetic function and 
reactive oxygen species signal [62]. (3) Thermal imaging (also known as far-infrared 
thermal imaging) may be used to determine the temperature of a plant or leaf, which is 
also impacted by external variables [10]. Furthermore, neither fluorescence nor thermal 
imaging can offer enough spectrum information. (4) Hyperspectral imaging may give a 
wealth of spectral (visible and near-infrared) and spatial information at the same time, 
allowing it to be used to detect illness severity, hydration status, and other physiological 
features. However, the hyperspectral sensor is expensive, and processing hyperspectral 
data (gigabytes each sample) might be challenging [63]. (5) When compared to 2D 
imaging, 3D imaging approaches, primarily image-based [64] and laser scanning-based 
[65], can produce 3D models and gain more spatial and volumetric features. The current 
tendency is to mix numerous imaging techniques based on the strengths of the various 
imaging technologies. Several studies have compared the various imaging methods used 
in plant phenotyping [66, 67]. 

 
V. PLANT PHENOMICS DATA MANAGEMENT: 
 
 High-throughput plant phenotyping technology generates a vast quantity of data, 
which needs adequate collection, storage, backup, processing, and maintenance. In-plant 
phenomics, modeling, and analysis of phenotypic data are critical activities. Differences 
between the picture and actual measurement will be reduced using proper phenotypic data 
processing methods. For a better understanding of phenotypic data and its linked gene 
function, we require clever categorization and management tools. Big data should be 
integrated and managed for its intended application. The efficient administration of large 
plant phenotypic data may become one of the most difficult tasks in plant phenomics in the 
future. Data management processes primarily consist of data collection, storage, 
documentation, and data quality enhancement which were summarized below; 
 
1. Data Collection: The raw data collection and storage procedure in phenotyping platforms 

is the first step in the data management process. Sensors are still insufficient for 
phenotypic data gathering, whether digital or manual phenotyping is used. To assist in 
successful data interpretation, data formats are required [68]. Imaging sensors can acquire 
a high number of pictures in a short amount of time. In picture collecting and storage, the 
frame size and frame rate of the data package are essential. High-throughput phenotyping 
platforms have been developed to collect phenotypic data of plants used for data 
collection presented in table 2. 
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Table 2: Image Analysis Programs and Phenotyping Platforms 
 

Plant 
Tissue 

Software Purpose References 

Roots WinRhizo Tron Root area, volume, length http://www.regent.qc.ca/pro
ducts/rhizo/RHIZOTron.ht
ml 

Root reader 3D Root system architecture [35] 

EZ-Rhizo Root system architecture [69] 

RootTrace Counting and measuring 
root morphology 

[70, 71] 

DART Root system architecture [72] 

SmartRoot Quantification of growth 
and architecture in root 

[73] 

Gia-Roots Root system architecture [34] 

Leaves TraitMill Measurement for various 
agronomic characteristics 

[74] 

PHENOPSIS Measurement of water 
deficit-related traits 

[75] 

LeafAnalyser Rapid analysis of leaf 
shape  

[76]  

HTPheno Measurement for various 
shoot characteristics 

[77] 

LemnaTec 3D 
Scanalyzer 

Leaf color, shape, size, 
and architecture 

[78], 
http://www.lemnatec.com 

Seeds WinSEEDLE Volume and surface area 
measurements of seeds  

http://www.regent.qc.ca 
products/needle/WinSEED
LE.html 

SHAPE Measurement of seed 
shape 

[79,80] 

SmartGrain Measurement of seed 
shape 

[81] 

 
2. Data Storage: The organization of files is an essential aspect of data storage. In datasets, 

keeping track of documents and their versions, such as directory structure names and file 
naming rules, is crucial.  Raw data is uploaded and kept on the file server for multisite 
projects. The output files are saved on the file server after being processed by scripts, and 
copies may be downloaded by each participant [68]. To organize and gather plant 
phenotypic data, phenotype data is maintained in numerous public databases [82]. 
Following are the different databases that are in the public domain (Table 3). 
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Table  3: Publically Available Databases of Different Crops 
 

Sr. 
No. 

Databases Purpose Online Link References 

1 Soybase It is a comprehensive database 
of soybean genetics, genomics, 
and associated data resources. 

http://soybase.org [83] 

2 MaizeGDB It provides data on maize 
sequencing, stock, phenotype, 
genotypic and karyotype 
variation, and chromosomal 
mapping. 

http://www.maizeg
db.org 

[83] 

3 PHENOPS
IS DB 

A public information system 
was created for the storing, 
browsing, and sharing of online 
data as well as offline data 
gathered by experimenters and 
experimental metadata. 

http://bioweb. 
supagro.inra.fr/phe
nopsis 

[22] 

4 Gramene Gramene offers publicly 
accessible data sources for 
cereals such as rice, sorghum, 
and maize. It also displays map 
domains, markers, genes, 
proteins, pathways, and 
phenotypes, as well as 
Quantitative Trait Loci (QTL) 
and genetic diversity/natural 
variation. 

http://www.grame
ne.org/db/diversity
/diversity_view 

[84] 

5 IonomicsH
ub 

IonomicsHub is a collaborative 
worldwide network for many 
species such as Arabidopsis, 
rice, soybean, maize, and 
Brassica. Ionomics is the 
measurement of an organism's 
overall elements composition to 
solve biological challenges. 

http://www.ionomi
cshub.org 

[85] 

6 Rice 
mutant 
database 

It contains data on more than 
129,000 rice T-DNA insertion 
lines and mutant phenotypes. 

http://rmd.ncpgr.cn [86] 

7 Oryza tag 
line 

The Oryza tag line provides 
information on 21,588 T-DNA 
lines and 13,000 rice 
phenotypes. 

http://oryzatagline.
cirad.fr 

[87] 

8 T3 
Triticeae 
toolbox 

It contains SNP, phenotypic, 
and pedigree data from 
Triticeae CAP wheat and barley 
germplasm.  

http://triticeaetoolb
ox. org 

[88] 
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9 Tomato 
mutant 
database 

The Tomato mutant database is 
a large population of tomato 
mutants.  

http:// 
zamir.sgn.cornell.e
du/mutants 

[89] 

 
3. Documentation and Metadata: Data documentation, also known as metadata, will aid in 

the detailed understanding of data and will assist other researchers in finding, using, and 
correctly citing the data. Structured or tagged information, such as the Data 
Documentation Initiative (DDI) standard's XML format, is ideal since XML provides 
flexibility in presentation while still being preservation-ready and machine-actionable. 
The W3C (World Wide Web Consortium) created XML (eXtensible Markup Language), 
which is the governing organization for all Web standards. Because the format allows for 
machine action and metadata reuse, structured XML-based metadata is appropriate for 
recording research data. 

 
4. Data Quality: Effective knowledge extraction from large-scale phenotypic data 

necessitates improved data quality. Data cleaning, data quality monitoring, and data 
integration (Herbert and Wang 2007) are the three strategies for managing data quality for 
biological data. Data cleaning is the process of finding and eliminating mistakes, 
anomalies, and inconsistencies from data to enhance its quality [89; 90]. One approach is 
to use data mining techniques to find outliers to clean up the data [91]. A dynamic filter 
has been designed to detect and eliminate anomalies in phenotypic data to reduce the 
number of biological discoveries that are lost [92]. There are three main steps in a 
dynamic filter: 1) find abnormal candidates, 2) fine-tune abnormality detection, and 3) 
recognize abnormalities iteratively. After going through all data management steps, the 
effective data should be shared and preserved for the research process as well as the 
researchers themselves. A well-designed data repository not only makes data more 
accessible to all project participants but also decreases the chance of data loss. 

 
In recent years phenomics were widely used for screening the different abiotic 

stresses on crops. Recording of abiotic stress trait data is difficult and often misleading 
with other factors such as nutritional deficiency or excessively, environmental changes 
and biotic stress. Precise scoring of abiotic stress and its interpretation is necessity to 
developed and/or identify suitable genotypes resistances to abiotic stresses as well as 
future breeding strategies. The different phenomics instrument used for scoring 
morphological traits, physiological traits as well as abiotic resistance traits. Advancement 
of imagining technology, drone technology, machine learning and sensors boost up the 
phenomics in abiotic stresses breeding. Theses technology provided accurate result 
without any errors result in precise analysis of data and getting perfect outcome of 
experiments. Many researchers developed and used different instrument, sensors, 
platform, and algorithms for scoring and analysis of abiotic stress data. This information 
was surly helpful for many researchers for their future abiotic stress breeding 
experiments. Furthermore, lowering the cost of these revolutionary phenotyping 
technologies and enhancing their dependability and extendibility might aid future gain 
in abiotic stress breeding. 
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VI. CONCLUSION 
 
 This chapter discusses current advances in plant phenomics. Second, it emphasizes 
how advances in plant phenomics status and dynamic changes across many spatial-temporal 
scales and disciplines in agriculture have enhanced agriculture research. It looks at how these 
phenotyping and modeling techniques have helped breeders improve their methods. Finally, 
it notes that while the above-mentioned phenotyping developments have solved certain 
breeding and management concerns, there are still obstacles to overcome. It discusses 
anticipated developments in low-cost, high-spatial-resolution, multi-functional facilities, 
multi-dimensional applications with algorithm attempts, open-source, and big data that will 
transform our understanding of plant phenotyping, modeling, and breeding and management. 
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