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AN EXPANDED CAR-FOLLOWING MODEL 

STUDYING EFFECT OF VELOCITY DIFFERENCE 

WITH DRIVER MEMORY 

 
Abstract 

 

In this chapter, we present an 

expanded car-following model studying the 

collective influence of the driver's sensory 

memory as well as the velocity differential 

between the following and leading vehicles 

in the traffic flow process. The stability 

conditions are determined by doing a linear 

stability analysis on three types of traffic 

flows in the headway-sensitivity space: 

stable, metastable, and unstable. 

Furthermore, numerical simulation of the 

space-time evolution of headways and 

headway profiles is performed. The 

numerical simulation results match closely 

with the theoretical conclusions. The 

following car driver's sensory buffer time 

and velocity differential play a crucial 

influence on traffic flow stability, 

according to both analytical and simulation 

data. 
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I. INTRODUCTION 

 

In the last 60 years, the idea of the development of various theories related to traffic 

flow has come into existence. On the basis of different approaches and mathematical 

methods, researchers have given very satisfactory consequences in the field of traffic theory. 

The most common and serious problem with traffic dynamics is traffic jams. Because of the 

tremendous quantitative increase in vehicles, traffic congestion has become a major 

transportation issue. To handle these types of challenges, researchers have developed a wide 

range of traffic flow models and theories. These models are significant for the improvement 

of precise tools for understanding, simulating, and controlling urban transportation systems. 

 

In this chapter, we are concerned with the microscopic approach. As a basic and 

important component of the microscopic approach, car-following theory has been 

theoretically studied. The car-following theory represents and illustrates the relationship 

among leading and following vehicles. In the last few decades, many car-following models 

like the "optimal velocity model by Bando et al. [1], full velocity difference model by Jiang et 

al. [2], generalized force model by Helbing and Tilch [3], GM model [4] etc. have been 

developed. In addition, many extended car-following models have been proposed to analyze 

various real factors of traffic flow such as the honk effect [5,6], ITS environment [8, 9], 

cooperative driving systems [10], driver’s anticipation [11] and heterogeneous vehicles [12] 

etc." However, the preceding traffic flow models did not study the driver's memory effect. In 

this direction, Zhang [13] presented a "macro model" in which the driver's memory impact is 

considered, Peng et al. [14] presented a "driver's memory lattice model," and it is observed 

that the memory of past information plays a crucial role in the driving process of a driver and 

derived a car-following model by introducing the driver's memory effect into account. The 

above-discussed models consider the memory only at earlier time t-  , but avoid the traffic 

states between [t-  ,  ]. 
 

Later, Cao [15] generated a car-following model by assuming the driver’s sensory 

memory (Mean Memory Model) over a period of time [t-  , �] and observed that the 

developed model is more realistic. However, the impact of velocity difference is not 

considered in this model. 

 

Actually, the velocity difference plays a crucial role in the traffic flow. The velocity 

difference effect, not only improved the traffic flow stability but also resolved the problems 

of collision and improbable deceleration. 

 

In our study, we extended the main memory model by introducing the effect of 

velocity difference and presented a new traffic flow model named as “an expanded car-

following model studying effect of velocity difference with driver’s memory”. 

 

The chapter is laid out as follows: in section II, we gave the model equation. In 

Section III, we examined the suggested model's linear stability. Section IV employs 

numerical simulation to validate theoretical findings. The conclusion comes in Section V. 

The findings of the linear stability investigation and numerical simulation reveal that the 

current model is more realistic than previous models. 
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II. NEW MODEL 

 

In this chapter, we proposed a new car-following model by introducing velocity 

difference term into the mean memory model [15]. The new model is given below 

   

  
                                                                                            (1) 

where,    represent the velocity of     car at time t, and   
 

 
 is the “sensitivity coefficient” 

of a driver, ∆ j(t-  ) represents the mean headway in the interval [t-  , t] and    is the driver 

sensory memory time. The term 

∆ j(t) =  j+1(t) -  j(t) 

represents the velocity difference of       and     vehicle at time t, k = 
 

 
 is the reaction 

coefficient of response for velocity difference ∆ j( ) and V represents “optimal velocity 

function”. 

Equation (1) displays that acceleration of     car at time t is calculated by the optimal 

velocity, which depends on mean headway, velocity of     car and velocity difference of 

preceding car       and the following car     at time t. 

Now, expanding the term           in equation (1) by Taylor series about   , we obtain 

 

                   
       

  
 + o(  )                                                                               (2) 

where o(  ) represents the terms containing higher power of   . By neglecting the terms 

containing higher power in equation (2) and then using in equation (1), we get 

 
   

  
              

       

  
                 

                
   

  
                                                                                      (3)                                        

 

Again by Taylor series expansion of V{∆ j(t)-   ∆ j(t)} about   ∆ j(t) and ignoring the 

non-linear terms, we obtained 

 

V{∆ j(t)-   ∆ j(t)} = V{∆ j(t)}-  ∆ j(t)         }                                                            (4)  

 

Where            denotes the derivative of optimal velocity function w.r.t. headway at time 

t. Using equation (4) into (3), we have 

 
   

  
                      

                                                                 (5)             
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j 

 

 

If  1 = 0 and λ = 0, then given model becomes optimal velocity model. 

For model stability analysis, we describe the equation (5) using finite difference method, we 

have 

  (  +  ) =  j( ) +   [ {∆ j(t)}- 1{ j+1( ) −  j(t)} 
′
 {∆ j( )} −  j( )]+k [ j+1(t)- j(t)] 

 

  (  +  ) = [{∆ j(t)}-  { j+1( ) −  j(j)} 
′
(∆ j( ))]+λ[ j+1(t)- j(t)]                                          (6) 

 

Again using finite difference method in equation (6), we get 

 

 j(  + 2 ) =  j(  +  ) +   {∆ j(t)}- 1[∆ j(  +  ) − ∆ j( )]  
′
(∆ j( )) 

  

+λ[∆ j(  +  ) − ∆ j( )]                                                                                                            (7)                                                            

 

The   Following optimal velocity function is used in this model: 

 

V(∆ j) =  1 +  2[tanh 1(∆ j −   ) −  2]                                                                                (8) 

                               

 

                                                                        

where   is the car’s length. The above formula is used in many car- following models. 

The value of all the parameters can be taken as  

                                       and           
 

III. LINEAR STABILITY ANALYSIS 

 

The suggested model is not subjected to linear analysis in this part. Firstly, we assume 

traffic flow stability in terms of uniform flow. This flow is defined as all vehicles travelling 

with the same headway 'h', the optimal velocity V(h), and the relative velocity is set to zero. 

Clearly, the consistently steady-state solution of equation (5) can be represented as 

 

 0   ℎj   V ℎ          (9) 

 

where h denotes the steady-state headway and h =   , L is road length, N is the entire 
number of vehicles, V(h) is the optimal velocity in uniform traffic flow and   

     

represent the location of the vehicle in steady-state. 
Let  j( ) be a small perturbation from the uniform steady state solution   

    , i.e., 

 
 j( )=  

    + j( )                                                                                                                             (10) 

                       
and the corresponding headway is 
 
  j(     ℎ     j( )                                                                                                            (11)                                 
 
Using equations (10) and (11) into equation (5), we obtain 
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      = [  ℎ      (           

  (t)    ℎ      (         ℎ      
         k   

 (t) 

 
Expanding the terms V ℎ     j( )} &     ℎ     j( )} by Taylor series and neglecting the 
higher power of   j( ), then we get the following linear equation: 
 
  
        α   j( )  (h)- 1   

 (t)   ℎ -  
         k   

 (t)                                                          (12) 

 
Where   

       represen s  he second order deriva ive w r    ‘ ’    j( ) =  j+1(      j( ) 

and 

 

   ℎ   
       

   
      

 

Expanding                 (Fourier modes) and let    =   , p is a parameter, we have 

 2
 + [(    − 1)(  ′

(ℎ) - k)+  ]z –  (    − 1)  ′
(ℎ) = 0                                                          (13) 

By expanding z =        +   (  )
2
…, substituting this value of z into equation (13) and 

ignoring the higher order terms, we get 

 

[       +   (  )
2
]
2
 + [{(  ) + 

     

 
 }(  ′

(ℎ)-k)+ ](       +   (  )
2
)  {(  ) + 

     

 
} ′

(ℎ) = 0 

Comparing the coefficients of (    and      on both sides, we get 

  

 
      ℎ 

   
     

  
              ℎ   

        

 

                                                                    (14)                      

 
For small disturbance of long wavelength, the uniform traffic flow is unstable if      
while stable if      

Therefore, the neutral stability condition is given by putting    = 0. i.e., 

   ℎ 

 
              ℎ       ℎ      

                                           ℎ  
       

      
                                                                          (15)                    

Consequently, the uniform traffic flow is stable for long wavelength 
if,  
 

                                           ℎ  
       

      
                                                                          (16)            

              

            The neutral stability curves are shown in Figures 1, 2 and 3 with the help of stability 
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condition (16) in the parameter space (∆ ,  ). 

 

From the figures, it is clear that different critical points (ℎ ,   ) for distinct sets of (λ, 

 ) are obtained for the neutral stability curves. The peaks of each curve show the critical 

point. If α>   , the uniform steady state is always linearly stable irrespective of vehicle 

headway and if α<   , the uniform steady state in neighbourhood of ℎ  is unstable. 

 

These stability curves divide the region into two sub-regions (a) stable (b) unstable. 

Above the neutral stability curves traffic flow is stable while below the curves it is unstable. 

Therefore, traffic congestion will not appear in the stable region which we will also prove in 

the simulation result. 

 

It can be easily seen from the fig. 1 that the increasing the value of sensory memory 

coefficient p, the height of stability curves increases i.e., the stable region decreases with 

increasing the value of p. Similar results hold for λ = 0.3 and λ = 0.5 as shown in fig. 2 and 

fig. 3, respectively. 

 

From Figures 1, 2 and 3, it is found that for a particular value of ‘p’ the amplitude as 

well as critical sensitivity decrease with an increase in the value of  λ i.e., stable area 

improves with an increase in the value of λ. Therefore, we can conclude that velocity 

difference plays a crucial role in reducing the traffic congestion. 

 

 
 

Figure 1: Neutral Stability Curves in the headway-sensitivity Space for λ = 0 and distinct 

Values of p 
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Figure 2: Neutral stability curves in the headway-sensitivity space for λ = 0.3 and distinct 

values of p. 

 

  
 

Figure 3: Neutral stability curves in the headway-sensitivity space for λ = 0.5 and distinct 

values of p 

 

IV. NUMERICAL SIMULATION 

 

The suggested study is numerically simulated to investigate the effect of driver 

memory and velocity difference on "spatial-time evolution of headway" and "headway 

profile" when a tiny disturbance appears. In order to simulate the current model, we rewrite 

equation (7) in terms of headway as follows: 
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Simulation is performed under periodic boundary condition. Initially, assume that there are 

J = 100 vehicles are uniformly distributed on a road of length(L) = 1500m. The initial 

conditions are chosen as follows: 

 

                            
 

 
 ,                       j = 1,2,3,…,100 

                
 

 
 ,                   

                   ,         j = 1 

                             j = 2 

 

Other input parameters are as follows: 

              
 

 
       

 

where J = 100 and L = 1500m. 

Figures 4 - 7 represent the “spatiotemporal evolution of the headway” after t = 10000s for 

distinct values of p when λ = 0. From the figures 4 - 7, it can be easily seen that the initial 

uniform perturbation converts into “kink-antikink density wave” which are the solution of 

mKdV equation. These density waves propagate over time in the opposite direction as shown 

in figure and these observations are same as that happen in real traffic. As we enter into stable 

region for p = 0, these traffic wave evolves straight line. 

 

 
 

Figure 4: Headway evolution in space and time after t = 10000s for λ = 0 and p = 0 

, 
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Figure 5: Headway evolution in space and time after t = 10000s for λ = 0 and p = 0.1 

 

 
 

Figure 6: Headway evolution in space and time after t = 10000s for λ = 0 and p = 0.2 
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Figure 7: Headway evolution in space and time after t = 10000s for λ = 0 and p = 0.3 

 

Figures 8 - 11 represent the graph between headway profile after t = 10000s for 

different values of p when   = 0. Figure 8 shows that density wave dies out and the kink- 

antikink waves convert into a single line which represents that there is no traffic congestion. 

 

Further from figures 9, 10 and 11, we can observe that the amplitude of density waves 

rises with an increase in the value of p which shows that the region of traffic congestion 

growths with increase in the value of p. 
 

 
 

Figure 8: Headway profiles at t = 10000s, for λ = 0 and p = 0. 
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Figure 9: Headway profiles at t =10000s, for λ = 0 and p = 0.1 

 

 
 

Figure 10: Headway profiles at t =10000s, for λ = 0 and p = 0.2 
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Figure 11: Headway profiles at t =10000s, for λ = 0 and p = 0.3. 

 

Figures 12 - 15 represent the “spatiotemporal evolution of the headway” after t = 

10000s for distinct values of p when λ = 0.3. For p = 0, we are in stable region, therefore, the 

initial perturbation dies out. As we increase the value of p from 0.1 to 0.3 shown in figures 13 

- 15, the initial uniform disturbance changes into “kink-antikink density wave,” which are the 

solution of mKdV equation. These density waves propagate in backward direction with time 

as happen in real life traffic. 

 

We can observe that the height of density waves rises with rise in the value of p from 

figures 16 - 19, which shows that the area of traffic congestion grows with increase in the 

value of p. 

 

The “spatiotemporal evolution of the headway” and “Headway profile” are shown in 

figures 20-23 and 24-27 respectively, for distinct values of p when λ = 0.5. Similar kinds of 

affect have been found for this case also. 

 

From these figures, we observed that the quantity of stop and go wave rises as the 

value of p increases which implies that the traffic jam rises with increase in the value of p. 
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Figure 12: Headway evolution in space and time after t = 10000s for λ = 0.3 and p = 0. 

 

 
 

Figure 13: Headway evolution in space and time after t = 10000s for λ = 0.3 and p = 0.1. 
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Figure 14: Headway evolution in space and time after t = 10000s for λ = 0.3 and p = 0.2 

 

 
 

Figure 15: Headway evolution in space and time after t = 10000s for λ = 0.3 and p = 0.3 
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Again from Figures 11, 19 and 27, it can be easily seen that the number of stop and go 

wave in Figure 11 is more than that of 27 which shows that traffic jam is more serious in 

figure 11 than that of 26 due to velocity difference. 

 

 
 

Figure 16: Headway profiles at t =10000s, for λ = 0.3 and p = 0 

 

 
 

Figure 17: Headway profiles at t =10000s, for λ = 0.3 and p = 0.1 
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Figure 18: Headway profiles at t =10000s, for λ = 0.3 and p = 0.2 

 

 
 

Figure 19: Headway profiles at t =10000s, for λ = 0.3 and p = 0.3 
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Figure 20: Headway evolution in space and time after t = 10000s for λ = 0.5 and p = 0. 

 

 
 

Figure 21: Headway evolution in space and time after t = 10000s for λ = 0.5 and p = 0.1.



Trends in Contemporary Mathematics 

e- ISBN: 978-93-6252-737-0 

IIP Series, Volume 3, Book 2 , Part 5, Chapter 4  

  AN EXPANDED CAR-FOLLOWING MODEL STUDYING  

EFFECT OF VELOCITY DIFFERENCE WITH DRIVER MEMORY 

 

Copyright © 2024 Authors                                                                                                                       Page | 163  

 
 

Figure 22: Headway evolution in space and time after t = 10000s for λ = 0.5 and p = 0.2. 

 

 
 

Figure 23: Headway evolution in space and time after t = 10000s for λ = 0.5 and p = 0.3.
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Figure 24: Headway profiles at t =10000s, for λ = 0.5 and p = 0. 

 

 
 

Figure 25: Headway profiles at t =10000s, for λ = 0.5 and p = 0.1 
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Figure 26: Headway profiles at t =10000s, for λ = 0.5 and p = 0.2 

 

 
 

Figure 27: Headway profiles at t =10000s, for λ = 0.5 and p = 0.3 
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V. CONCLUSION 

 

In this chapter, an extended car-following model is presented by assuming collective 

effect of velocity difference and driver’s memory in the traffic flow. The stability criterion of 

this model is found by linear stability analysis. The outcomes show that the stability of traffic 

flow decreases with increase in the value of driver’s memory time, also it is found that for a 

particular value of ‘p’, the stable region increase with rise in the value of ‘λ’. 

 

It should be noted that the traffic jam induced due to driver’s memory can be 

overcome by considering the effect of velocity difference. In other words, we can say that if 

driver senses the information of leading vehicles in term of acceleration, then upto some level 

this information will be helpful in reducing the time consumed in congestion as well as in 

smooth driving. Therefore, it is obvious that both these factors play a crucial role in traffic 

and these factors should be considered while modeling. 
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