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FUTURE RECTENNA SYSTEMS FOR 5G ENERGY 
HARVESTING APPLICATIONS 

 
Abstract 

 
This chapter provides a summary 

of the 5G rectifying antenna and its key 
components for millimeter-wave (mm-
wave) energy harvesting (EH) and 
wireless power transfer (WPT) 
applications. The large spectrum 
accessible to 5G wireless communication 
bands has sparked substantial interest in a 
wide range of applications. The power 
absorbed by a harvesting antenna is 
proportional to its size. As a result, 
implementing efficient antenna and 
rectenna systems at 5G mm-wave is a 
difficulty. 

 
This chapter outlines current 

advancements in 5G rectenna systems for 
various applications at both component 
and structural levels. The key goals of this 
chapter are to 1) investigate the possible 
advancements of mm-wave rectenna 
structures and the viability of their layouts 
to achieve the intended features, and 2) 
give an unbiased examination of 
performance metrics prevailing rectenna 
systems. 
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I. INTRODUCTION  
 

As wireless technologies such as the Internet of Things (IoT), fifth-generation (5G) 
cellular systems, human-to-machine, machine-to-human, and machine-to-machine 
interactions have evolved, the demand for exceptionally great data rates, significant network 
capacity, and immaculate connectivity have spread universally. 5G communication has been 
promoted as a promising means of fulfilling energy needs. The main goal of 5G 
communication schemes is to provide mobile customers with consistency in service quality, 
reduced power consumption, and improved data rates. The frequency band for 5G has been 
separated into three bands: upper-band 5G (24.24-52.59 GHz) is a millimeter-wave band, 
mid-band 5G (3.3-5.0 GHz), and lower-band 5G (less than 1 GHz) [1-3]. 

 
The IoT-based smart cities are rapidly expanding, necessitating the utilization of 

several IoT devices with sensors. This may have an impact on several batteries that must be 
charged and replaced regularly. Consequently, the design and deployment of sovereign 
arrangements in the IoT are critical [4]. One method for reaching these objectives is through 
RFEH (radio frequency energy harvesting). Researchers are now involved in the RFEH 
methodology due to its distinct advantages over other energy harvesting methods, such as 
maximal rectification efficiency and environmental autonomy. The rectenna is an instrument 
made specifically for RFEH use. The critical components of the rectenna system are the 
rectifier and the antenna [5]. The rectenna was first studied for wireless power transmission 
(WPT) purposes and afterward for RFEH uses [6]. Due to growing energy demands, the 
5G/mmWave bands are actively investigated in the outer atmosphere. As a result, it is 
desirable to set up 5G mmWave rectennas for mmWave EH/WPT applications. This chapter 
focuses on the rectennas functioning at the frequency ranges of current interest such as 
5GmmWave operating ranges. 

 
II. EH/WPT FEATURES IN 5G MMWAVE COMMUNICATION 

 
Today, 5G is often concerned to as the facilitator of the Internet for everywhere, 

everyone, and everything. One of the fundamental objectives of 5G technology is to intensify 
mobile network bandwidth over 4G by a factor of 100, producing a maximum data transfer 
rate of more than 10 Gb/s [7]. The imperative need for higher information rates and more 
capacity has led to the investigation of new spectrum utilization strategies, including licensed, 
distributed, and unlicensed spectra. Sub-6 GHz (0.45–6 GHz) and mmWave (24.25–52.6 
GHz) bands are now operated for 5G transmission [8]. Broader coverage and appropriate 
transfer rates are achieved by using sub-6 GHz bands. At the same time, 4G connectivity will 
be preserved. The mmWave bands of the 5G technology are intended for extremely high-
speed transmission among devices that are close to one another. 

 
Over 35 billion connected devices are expected by 2025, among those more than 20 

billion are being machine-to-machine interactions. Consequently, the most important goal of 
5G is to empower IoT interactions while also allowing the network to drive autonomously so 
that services can be accessed without interruption. On this front, energy harvesting is 
becoming increasingly popular as a viable option. As a result, the perpetual Internet of Things 
with the layout and realization of autonomous, self-reliant technologies is enormously 
needed. One method for achieving these goals is the mmWave EH or WPT. Because the 
federal communications commission (FCC) proposals for admissible generated Effective 
Isotropic Radiated Power (EIRP) are extended beyond (reaches 75 dBm) those of their 
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relatively low counterparts, mmWave energy, available in the fifth-generation of wireless 
communication bands (above 24 GHz), found to be a prominent RF scavenging source. This 
demonstrates 5G's ability to create a functional power grid or wireless power network. 

 
In Sections IV, V, and VI, several design concepts of the sub-6 GHz and millimeter 

wave EH/WPT-based rectenna system for 5G communication will be explored. 
 

III.  RECTENNA DESCRIPTION 
 
 

 
 

  
Figure 1: The First Experimental WPT Set-up with the Flying Drone Model [9] 

 

 
 

Figure 2: Fundamental Schematic View of A Rectenna System 
 

In the 1960s, W.C. Brown invented the rectenna to operate a model helicopter. A 
flying aircraft operated solely by a microwave beam has been successfully combined using 
wireless power transfer and helicopter technology [9-10]. The importance of microwave-
powered drone investigation extends far beyond its potential to provide novel and useful 
expertise in aerospace. It's the first-time microwave beam power transmission has been used, 
a new technology that's more fundamental and has a lot of potential applications, but it needs 
a first application to help it expand and get recognition. The microwave-powered helicopter is 
also an extraordinarily diverse breakthrough that replaces existing charters for a variety of 
professional, commercial, and government organizations. WPT over great detaches for 
distant rejuvenate of vehicles or objects without the usage of cables is now possible, thanks to 
enhanced microwave energy-generation mechanisms at superpower levels. Sensing, 
implanted devices, self-powered sensors, and other WPT applications are investigated. The 
rectenna is a device that aids in the performance of various WPT applications. 
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As shown in Figure 2, a rectenna comprises an antenna, a matching circuit, a rectifier, 
and a DC pass filter. The quantity of input power to the rectenna can affect on output of the 
overall rectenna system, which implies that the increase in power input to the rectenna 
increases the delivered power to a load with an appropriate conversion unit. An appropriate 
antenna can boost the power output by the antenna, which is feasible due to the antenna's 
high gain, multi-resonance, broadband resonance, or wide coverage properties. A wide 
angular coverage antenna may also aid in gathering more ambient radiation from nearby 
sources. 

 
A rectifier is an significant portion of a rectenna system. The execution of the rectifier 

is mostly influenced by the choice of a suitable diode and rectifier topology. Due to its low 
threshold voltage and quick switching speed, Schottky diodes are proven to be appropriate at 
RF levels. The diode is normally chosen based on the amount of RF power input to the 
rectifier and the received RF energy's operating frequency. A half-wave rectifier 
(Series/Shunt), a voltage doubler (VDR), a full-wave bridge (FWBR), and Greinacher 
rectifiers are all common rectifier topologies. 

 
Table 1: Performance Characteristics of Rectenna System 

 
Rectenna System for WPT Rectenna System for RFEH 

An established channel requires a 
specific source of energy. 

Both ambient and specialized energy 
sources are utilized. 

It is preferred to have a directed 
antenna. 

It is preferred to have an omnidirectional 
transmitter. 

Any operational frequency can be 
used to design the rectenna. 

The rectenna needs to be made for a set of 
frequencies that are most commonly present 
in the surrounding atmosphere.  

Energy density in the surrounding 
environment does not affect 
performance. 

The level of energy density in the 
surrounding area affects the performance. 

The amount of received RF energy can 
be determined. 

Incident RF energy availability is 
unpredictably variable. 

Highly susceptible to polarization 
mismatch. 

Highly susceptible to polarization 
mismatch. 

Suitable to work with single-band or 
dual-band applications well. 

Ambient RFEH is connected with 
multiband harvesting; as a result, it can be 
used in multiband applications. 

A high-gain antenna is preferred for 
the established transmission path. 

A large gain antenna is unfavorable since 
its propagation channel is unsure. 

CP rectennas have mostly been 
suggested for WPT because of their 
comparatively high susceptibility to 
being mispositioned. 

Due to multi-source harvesting, 
all polarization rectennas are strongly 
favored. Dual-polarized antennas help 
collect the majority of polarized waves 
from the environment. 

 
Since the Rectenna system's creation, several articles have reported on its use for 

RFEH/WPT applications. Table 1 summarises the rectenna's basic performance 
characteristics for RFEH and WPT applications. The next sections go through in depth the 
various design techniques for mmWave EH/WPT systems for 5G applications. 
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IV. RFEH/WPT SYSTEMS FOR SUB-6 GHz BANDS 
 

This section shows how RFEH/WPT systems can operate at 5G in the 0.5-6 GHz 
frequency range using several methodologies. The main objective of any rectenna system is 
to increase output while obtaining the greatest amount of power from the ambient or 
dedicated source. This section investigates various classification-based methodologies to fit 
the RFEH/WPT systems' criteria. 

 
1. Antenna Configurations 

 

 
 
 
     (11)                                  (12)                                            (13)                                                   

 
            (15) 

 
 

 
 
     (14)                                             

 
    (16) 
 

 
   (17 ) 
 

 
    (18)                                          

 
(19) 

                           
Figure 3: Various antenna geometries for Sub-6 GHz RF Energy Harvesting applications 

 
For multi-resonance features, including 5G, an asymmetrical diamond-shaped radiator 

was used [11]. The reconfigurability of a monopole antenna with a circular geometry and 
evenly spaced rectangular strips has been explored at the operating band [12]. For 5G RFEH 
applications, a microstrip antenna with a modified E-shape of structure [13], a CPW-fed fan-
shape of the antenna [14], and a Bow-tie antenna with loaded strips [15] were used. A slot-
loaded approach [16-17] and a slot-embedded circular monopolar antenna [18] were used to 
increase the operational range of a notch. The patch's back-to-back method aids in achieving 
broad-angle coverage [19], a tree-shape of printed microstrip patch antenna is implemented in 
[20].Some of the Sub-6 GHz 5G antenna configurations for RFEH applications are presented 
in Figure 3.  

 
2. Rectifier Configurations: For harvesting applications, a CMOS-based multistage 

rectifier has been created with two distinct routes for RF input power levels of low and 
high [21]. A Greinacher circuit was examined for creating dual-band characteristics in 
[22]. For separating low and high RF power levels, the rectenna system has two separate 
pathways. [23] designed a high-impedance microstrip line-based shunt diode rectifier. A 
DC feedback loop was designed to improve the rectifier's performance at low power 
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levels while allowing the rectifier to function efficiently over a broad range of designated 
RF levels. Figure 4 presents some of the 5G
RFEH applications. 
 

 
      (21)                                             (22)             
    

Figure 4: Various rectifier configurations 
 
3. Rectenna Configurations

                                          (a)           

Figure 5: Performance evaluation

 
Various rectifier array circuit combinations, such as 1, 2×2, 4×4, and 8×8, were 

used to investigate the rectenna performance
increase in the number of elements in the array does n
it does raise the output voltage. For IoT applications, a rectenna with a combination of a 
modified E-shape of a radiator and a voltage multiplier [
rectenna system with a solar cell ant
flexible keyhole antenna form with a VDR. The rectifier's PCE and output voltage were 
improved by using two tapered lines connected at the rectifier's core.

 
For effective rectenna system functioning, a CPW

printed on a transparent Poly
slotted ground with a series
(DR)-based dual-band rectenna [

 

Futuristic Trends in Artificial 
e-ISBN:

IIP Series, Volume 3, Book 
FUTURE RECTENNA SYSTEMS FOR 5G ENERGY HARVESTING APPLICATIONS

 

Copyright © 2023 Authors                                                                                                     

levels while allowing the rectifier to function efficiently over a broad range of designated 
RF levels. Figure 4 presents some of the 5G-operated rectifier circuits for sub

)                                             (22)                                                

 
configurations for Sub-6 GHz RF Energy Harvesting applications

Rectenna Configurations 
                                     

                                               

(a)                                                    
 

evaluation: (a) Power conversion efficiency and (b) 
output [24] 

Various rectifier array circuit combinations, such as 1, 2×2, 4×4, and 8×8, were 
used to investigate the rectenna performance [24]. As demonstrated in Figure 5, the 
increase in the number of elements in the array does not change the efficiency greatly, but 
it does raise the output voltage. For IoT applications, a rectenna with a combination of a 

shape of a radiator and a voltage multiplier [25] was built, as was an optical 
rectenna system with a solar cell antenna [26]. The rectenna design [
flexible keyhole antenna form with a VDR. The rectifier's PCE and output voltage were 
improved by using two tapered lines connected at the rectifier's core. 

For effective rectenna system functioning, a CPW-fed circularly shaped patch 
printed on a transparent Poly-Ethylene Terephthalate substrate was explored [
slotted ground with a series-connected rectifier was used to develop a dielectric resonator 

band rectenna [29]. 
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levels while allowing the rectifier to function efficiently over a broad range of designated 
operated rectifier circuits for sub-6 GHz 

 

    (23) 

RF Energy Harvesting applications 

 

                                        (b) 

fficiency and (b) Power 

Various rectifier array circuit combinations, such as 1, 2×2, 4×4, and 8×8, were 
. As demonstrated in Figure 5, the 

ot change the efficiency greatly, but 
it does raise the output voltage. For IoT applications, a rectenna with a combination of a 

] was built, as was an optical 
]. The rectenna design [27] featured a 

flexible keyhole antenna form with a VDR. The rectifier's PCE and output voltage were 

d circularly shaped patch 
Ethylene Terephthalate substrate was explored [28]. A 

connected rectifier was used to develop a dielectric resonator 
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A rectenna with a half-wavelength shunt rectifier and a stub-loaded planar antenna 
has been demonstrated [30]. The antenna circuit's working frequency is constrained by 
the length of the stubs. The rectenna in [31] was designed using a spiral-slot antenna that 
was integrated into transponder electronics and diplexer. 

 
The sub-6 GHz 5G grid allocates for widespread coverage, but it persists in 

spectrum scarcity, constituting it impossible to support a significant increase in several 
appliances in 5G and beyond. There is significant attention on deploying 5G mmWave 
cells under the current sub-6 GHz cells to boost coverage and channel capacity. mmWave 
has been extensively used for far distance transmission in satellite and terrestrial 
applications, resulting in extraordinarily high data rates, thanks to their huge resource 
spectrum at higher frequencies. Due to improved availability and the potential to 
construct a rectenna system with a tiny size, constructing an EH/WPT system in the 
mmWave 5G band is extremely attractive. 

 

 
                    

 [24]                                                    
 

[25]                                               
 

[26]                                              
 
[27] 

 
 

 
 

  [28]                                                              
 

[30]                                                       
 
[31] 

 
Figure 6: Vaious Rectenna configurations for Sub-6 GHz applications WPT/RFEH 

 
V. ENERGY HARVESTING SYSTEMS FOR MMWAVE 5G 

 
 This section examines alternative mmWaveEH system design techniques for 5G 
mmWave applications. 
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1. Antenna Configurations: For mmWaveEH applications, a dual-patch radiator [32], a 
two-leg Yagi radiator [33], and a pair of concentric ring slots [34] were examined, as 
shown in Figure 7. Printing a triangle shape of a patch on a flexible FET substrate is used 
to create a flexible mmWave antenna [35]. For acquiring multi-resonance characteristics, 
a defective ground structure (DGS) was used. For harvesting applications at mmWave, a 
reconfigurable Y-shaped patch antenna [36] and an asymmetric antipodal Vivaldi antenna 
[37] were developed. [36] achieves reconfigurability by combining two PIN diodes with a 
microstrip patch. For on-body applications, [38] created a flexible wearable antenna that 
was incorporated into an EBG structure. 

 

 
 

[32]                                                             
 

[33]                                          
                                                  

[35]                              
 
[37] 

 
 

 
 
                    [38] 
 

 
[34]                                                   

 
[36] 

 
Figure 7: Antenna geometries for mmWaveEH applications 

 
2. Rectifier Configurations: Because of its low series resistance (Rs) and low junction 

capacitance (Cj0), a W-band zero bias detector made using Virginia diodes was shown to 
be appropriate for operation up to 81 GHz [39]. [40] studied the design of a tri-band 
rectifier using a multi-impedance matching network that included a series-shunt stub and 
a T-section impedance transformer. 

 

 
 

                               [39]                                                 [40] 
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Figure 8: Few examples of rectifier configurations for mmWave EH applications 
 
3. Rectenna Configurations 

 

 
 

 
                      [44]                                    

                                        
[45]                                                                 
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  [48]                                   
 

[49]                                      
                                              
[50] 

 
 

 
 

[51]                                                              
                                      

[52]                                       
 

[53]                                  
 
            [55] 

 
 

Figure 9: Various antenna/rectifier configurations for mmWave EH applications 
 

Several arrangements of antenna array cells, including quadrupoles, collinear 
wire, double dipoles, and mesh, were used to test the effectiveness of the receiving 
rectifying element (RRE) [41]. With double dipoles and quadrupoles, the RRE performed 
better in terms of rectification efficiency. [42] used CMOS technology to create a 
mmWave EH RFID tag. The antenna's gain was improved by using a reflector beneath it. 
Rectenna with a monopole antenna and a three-stage inductive-peak rectifier were 
implemented in [43]. With a dipole antenna and a CMOS-based single-stage Dickson 
rectifier, a rectenna was developed [44]. For designing the rectenna system, an antenna 
array was examined [45-47], to improve antenna gain, resulting in more power being 
gathered. Using a metal-insulator-metal (MIM) diode at V-band, improved rectifier PCE 
performance was reported in [48]. To enhance the rectifier IBW, a graphene FET 
(GFET)-based rectenna was used [49-50]. Also, when compared to other feasible rectifier 
topologies, GFET-based rectifiers show less parasitic effects at high frequencies. For 
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biomedical implants, a compact system that is invulnerable to wireless link characteristics 
and overloading fluctuations has been developed [51]. A 26 GHz packaged integrated 
harvester system [52] was developed to be incorporated into multilayer adaptable 
packaging structures made using 3D printing technology. For the first time, a graphene 
self-switching diode (GSSD) based rectenna was studied experimentally utilizing a patch 
antenna array [53]. The graphene diode is made to have as much non-linearity in the I-V 
curve as possible. An antipodal Vivaldi antenna (AVA) and a VDR were used to design a 
textile-based broadband rectenna for wearable applications at mmWave [54]. 

 
VI. WPT SYSTEMS FOR 5G MMWAVE APPLICATIONS 

 
 In recent decades, several mmWave rectenna layouts for WPT systems have been 
presented. In this, the evolution of rectenna design techniques over time is examined. These 
methods reduce transmission costs, increase power utility, and complexity, and allow for the 
establishment of a battery management capacity. 
 
1. Antenna Configurations: For mmWave applications, a coplanar stripline (CPS) driven 

folded dipole antenna was examined [55]. Low diffraction loss was achieved using a lens 
antenna [56]. The dipole antenna is made up of two folded arms that maximize gain, 
while the coplanar stripline feed extends the antenna's operational range. For WPT 
applications, a dual-port electromagnetically linked square patch array antenna was 
investigated [57]. To eliminate mutual coupling between the elements, the array elements 
are rotated by 450 degrees. Each feedline is connected to a pair of open stub resonators, 
which eliminates higher-order harmonic components. To produce a high gain, an antenna 
array approach is investigated in [58-59]. A metasurface superstrate improves the power 
gathered [60], whereas a metasurface array helps to cover a wide-angle coverage [61]. 
For mmWave WPT applications, [62] built a microstrip feed-based flexible textile 
antenna. The inset microstrip feed's broad inset slots ensure that the operating band is 
properly matched. For 5G applications, a slotted patch with a diamond shape of ground 
was used [63]. 

 

 
                      

[59]                                      
 

 [60]                              
 

[57]                                 
 

[61]                                          
 
[56] 

 
  

 
 

[55]                                                                        [62]                                                                                        [63]          
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Figure 10: Various antenna 

 
2. Rectifier Configurations 

Figure 11: Performance 

For WPT applications, a VDR circuit based on microstrip technology was 
developed [64]. The performance of the VDR with the MA4E1317 diode outperformed 
the other setups in terms of conversion efficiency. 
built by employing a λ/4 open
[65]. To match the antenna and rectifier impedances, transmission line (TL) coupled 
transformers are utilized [
(DCRMC) LPF and a CPW feedline using CMOS semiconductor technology was devised 
to build an extremely tiny rectenna [
28 GHz and 38 GHz frequencies [
CMOS-based rectifier [69
at two different mmWave frequencies. Improved diode performance is required to 
increase rectifier performance at sub
technique exhibits low loss in the W
[72], the tunnel diode-based rectifier outperforms the Schottky diode
terms of conversion efficiency (a). A double
GaAs technology was shown to be useful for performance improvement of the rectifier 
[73]. 

 
3. Rectenna Configurations
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ntenna configurations for mmWave wireless power transmission 
applications 

 
 

  
 

(a) (b) 

Performance evaluation: (a) 35 GHz, (b) 94 GHz [
 

For WPT applications, a VDR circuit based on microstrip technology was 
]. The performance of the VDR with the MA4E1317 diode outperformed 

the other setups in terms of conversion efficiency. A harmonic harvesting rectifier was 
built by employing a λ/4 open-circuit (OC) stub resonator to improve the rectifier PCE 

]. To match the antenna and rectifier impedances, transmission line (TL) coupled 
transformers are utilized [66]. An integrative form of dual tiny microstrip resonant cell 
(DCRMC) LPF and a CPW feedline using CMOS semiconductor technology was devised 
to build an extremely tiny rectenna [67]. A TL-based VDR was developed to operate at 
28 GHz and 38 GHz frequencies [68]. For WPT applications in the W and Ka bands, a 

9] was implemented. Figure 11 shows the rectifier's performance 
at two different mmWave frequencies. Improved diode performance is required to 
increase rectifier performance at sub-THz frequencies, according to [70
technique exhibits low loss in the W-band [71]. For input power levels of less than 1 dBm 

based rectifier outperforms the Schottky diode
terms of conversion efficiency (a). A double-stage Dickson charge pump combined with 
GaAs technology was shown to be useful for performance improvement of the rectifier 

Rectenna Configurations 
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wireless power transmission 

 

: (a) 35 GHz, (b) 94 GHz [69] 

For WPT applications, a VDR circuit based on microstrip technology was 
]. The performance of the VDR with the MA4E1317 diode outperformed 

A harmonic harvesting rectifier was 
circuit (OC) stub resonator to improve the rectifier PCE 

]. To match the antenna and rectifier impedances, transmission line (TL) coupled 
rm of dual tiny microstrip resonant cell 

(DCRMC) LPF and a CPW feedline using CMOS semiconductor technology was devised 
based VDR was developed to operate at 

tions in the W and Ka bands, a 
] was implemented. Figure 11 shows the rectifier's performance 

at two different mmWave frequencies. Improved diode performance is required to 
70]. MN's TL-based 

]. For input power levels of less than 1 dBm 
based rectifier outperforms the Schottky diode-based rectifier in 

ge Dickson charge pump combined with 
GaAs technology was shown to be useful for performance improvement of the rectifier 

 

                               
                   [72] 
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                 [71] 

 
                                        

 
[66]                                                                           

 
Figure 12: Various rectifier topologies for mmWave WPT applications

                                             

             
(a)                                                  

Figure 13: Rectenna

[74] discusses the modelling and advancement of mmWave rectennas and power 
beaming systems. At 2.45 GHz and 35 GHz, the diode properties were studied [
performance of an array-based rectenna system is superior, and the increase in rectenna 
output voltage is observed with the increase in the number of antenna elements in the 
array [76]. In [77], CMOS technology was used to create an FWR
finite-width ground CPW (FGCPW) transmission lines and tapered slots. Harmonic 
components are reduced using the FGCPW transmission line. The RF
efficiency of a shunt topology with an adaptable stub and a resonator after the diode is 
improved [78]. As illustrated in Figure 13(b), Hatano et al. discovered that a rectenna 
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[69]                                                         
 
                  

Various rectifier topologies for mmWave WPT applications
 
   

                                             

       
              

(a)                                                                    (b) 
 

Rectenna system evaluation: (a) Vout [72] and (b) PCE [
 

] discusses the modelling and advancement of mmWave rectennas and power 
systems. At 2.45 GHz and 35 GHz, the diode properties were studied [

based rectenna system is superior, and the increase in rectenna 
output voltage is observed with the increase in the number of antenna elements in the 

], CMOS technology was used to create an FWR-based rectenna with 
width ground CPW (FGCPW) transmission lines and tapered slots. Harmonic 

components are reduced using the FGCPW transmission line. The RF
t topology with an adaptable stub and a resonator after the diode is 

]. As illustrated in Figure 13(b), Hatano et al. discovered that a rectenna 
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Various rectifier topologies for mmWave WPT applications 
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with a Class-F load outperforms a typical rectenna using a capacitive load and that its 
performance advances as the quantity of diode in the rectifier increases [

 

                            
                               (a)                                        

Figure 14:  Rectenna array performance variation: (a) 1×2 and (b) 2×2 [9
 

To lower the rectifier dimension and boost the rectifier conversion efficiency, a 
mmWave rectifier circuit was built as a monolithic microwave 
[80]. Rectenna design using substrate
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coupled oscillator-like rectifier to create a rectenna [
single diode HWR was used to create a basic rectenna. In [
used to create the rectenna design. To reduce
line transfer circuit. In [8
based shunt rectifier circuit was used to develop a 35 GHz rectenna.

 
A bow-tie shape of the antenna with a MIM diode was used a

cylindrical patch array was used to construct a flexible rectenna for a conformal plane 
[89]. For higher gain with adequate isolation between the elements, a slot
antenna array with SIW cavity
the performance of the rectenna array designs was also studied. Rectenna performance 
was investigated at 24 GHz for two rectifier topologies employing two distinct diodes 
[91]. The RF-to-DC conversion efficiency was improved wit
the MA4E2054A diode. To mitigate the losses associated with the microstrip patch, a 
metallic Fabry–Perot resonator antenna and cavity rectifier
resulting in enhanced antenna radiation efficiency
optical rectenna was studied for harvesting purposes [
and a CMOS switching rectifier, a rectenna was created [
radiation efficiency are improved by the tapered
by the CMOS switching rectifier. Figure 14 compares the performance of two rectenna 
arrays, revealing that the rectenna array with 2×2 antenna elements produces higher 
output voltage than the rectenna array with 1×2 ante
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F load outperforms a typical rectenna using a capacitive load and that its 
advances as the quantity of diode in the rectifier increases [

 

(a)                                        
                       
                  (b) 

                                                
Rectenna array performance variation: (a) 1×2 and (b) 2×2 [9

To lower the rectifier dimension and boost the rectifier conversion efficiency, a 
mmWave rectifier circuit was built as a monolithic microwave integrated circuit (MMIC) 

]. Rectenna design using substrate-integrated waveguide (SIW) technology minimizes 
]. A rectenna was created by combining a SIW cavity-backed antenna with a 

]. To improve gain and achieve circular polarisation, an array of 
antennas with SIW cavity-backed antennas was investigated (CP). Two output Class
DC pass filters and a high-gain Fabry-Perot resonator antenna were used to create a high

]. A grid-type antenna was combined into a complimentary cross
like rectifier to create a rectenna [84]. In [85], a dipole antenna with a 

single diode HWR was used to create a basic rectenna. In [86], MEMS technology was 
used to create the rectenna design. To reduce losses, the design method employed a fin

87], a coupled slotted patch antenna with a MA4E1317 diode
based shunt rectifier circuit was used to develop a 35 GHz rectenna. 

tie shape of the antenna with a MIM diode was used as a rectenna [
cylindrical patch array was used to construct a flexible rectenna for a conformal plane 

]. For higher gain with adequate isolation between the elements, a slot
antenna array with SIW cavity-back feeding was adopted [90]. For increased DC output, 
the performance of the rectenna array designs was also studied. Rectenna performance 
was investigated at 24 GHz for two rectifier topologies employing two distinct diodes 

DC conversion efficiency was improved with a shunt diode setup using 
the MA4E2054A diode. To mitigate the losses associated with the microstrip patch, a 

Perot resonator antenna and cavity rectifier-based rectenna are used, 
resulting in enhanced antenna radiation efficiency [92]. For the first time, a transparent 
optical rectenna was studied for harvesting purposes [93]. Using a tapered slot antenna 
and a CMOS switching rectifier, a rectenna was created [94]. The antenna gain and 
radiation efficiency are improved by the tapered-slot antenna, while the PCE is increased 
by the CMOS switching rectifier. Figure 14 compares the performance of two rectenna 
arrays, revealing that the rectenna array with 2×2 antenna elements produces higher 
output voltage than the rectenna array with 1×2 antenna elements. With the increasing 
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F load outperforms a typical rectenna using a capacitive load and that its 
advances as the quantity of diode in the rectifier increases [79]. 

 

                                    
Rectenna array performance variation: (a) 1×2 and (b) 2×2 [92] 
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number of rectenna array elements, the same output performance was achieved [95]. The 
reception antenna was a barbell-type DGS-based four-element SIW patch array, while the 
rectifier circuit was a parallel-mounted Schottky diode. A free-flight AR-drone was used 
to test the rectenna system at a height of 800 mm [96]. 

 
VII. BEAM STEERING APPROACH FOR 5G MM-WAVE COMMUNICATION 

 
Beam-steering antennas will be required when 5G moves to greater frequency ranges to 

steer radiated energy from the base station antenna array to the end user while mitigating 
increased route losses. Beam-steering focuses an input in a specific direction instead of 
spreading it out across 120 degrees the way it would normally. ESAs govern the signal, 
allowing for more precise transmission in addition to faster, more secure connectivity than 
would not otherwise be possible. It reduces transmission loss and broadens the 5G frequency 
range in the mmWave spectrum. The Rotman lens is a one-of-a-kind and cost-effective 
solution to accomplish mmWave beam steering. 
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Figure 15: Some rectenna configurations for mmWave WPT applications 
 

The Rotman lens is made up of a lens geometry, multiple input (or beam) ports, 
and numerous output (or array) ports, all of which are coupled to a radiating component 
in an antenna array through 'phase correction' lines. When any of the beam ports are 
activated by the lens, the array generates a slanted beam. The resultant beam can be 
scanned through the lens's field of vision by switching between input ports. A significant 
number of beam ports are necessary to achieve a high angular resolution between beams. 

 
Traditional microwave networks may be able to afford equivalent attention and 

data rates with dense mmWave networks [97]. To create a big gain, advanced beam-
forming methods that permit multiuser communication can be applied. For obtaining both 
huge DC output and wide angular coverage, a hybrid power combining technique that 
adjusts a beam-forming matrix was developed [98]. For beam scanning and power 
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transmission applications, a 4×4 Butler matrix has been studied [99]. At mmWave 
frequencies, larger antenna arrays have been employed to achieve higher gain values 
[100]. To improve the output power of WPT applications, a beamforming network was 
investigated [101]. To provide concurrent multi-directional full-FoV power transfer, WPT 
with a scalable array-based passive beamforming technology was examined [102]. A 4×4 
Butler matrix and a 1×4 rectifier array were used to make the rectenna. [103] tested 
various combinations of RF and DC power-combining techniques. The results show that 
(i) in the four beamforming with DC and RF combining approaches, the output DC power 
rises substantially as the total number of the antennas within a transmitter/receiver 
increases, (ii) for DC combining, the optimized beam-forming accomplishes a greater 
amount of DC energy than the beam forming using the singular value decomposition 
(SVD), (iii) for RF combining, the SVD-based general receive beamforming outperforms 
the analogous to obtain beamforming, and (iv) the commonly utilized DC combining 
technique has no effect on the overall turn-on sensitivity of the rectenna system. A 
detailed analysis on 5G millimeter wave rectenna systems were presented in [104-107]. 

 
VIII.  SUMMARY 

 
1. RFEH/WPT Systems for Sub-6 GHz Bands Applications: The performance 

comparison of different antenna configurations for the sub-6 GHz applications has been 
presented in tabular form in Table 2. It is understood that a bow-tie shape offers better 
gain, while the bandwidth is narrow. Slotted or partial ground-based structures help in 
achieving multi-resonance or broadband characteristics with a reason-given value. 
 

Table 2: Performance analysis of 5G Sub-6 GHz antennas for RFEH systems 
 

Ref. Freq. (GHz) Bandwidth (GHz) Gain (dBi) 
[11] 1.8/1.9/2.1/2.4/4.9/5.5 (1.53-2.47)/(4.90-5.63) - 
[12] 3.0-7.8 (3.0-7.8) 1.8 
[13] 2.6/3.5 (2.62-2.69)/(3.3-3.8) 4.26/2.58 
[14] 2.4/5.8 (1.9-2.8)/(3.9-6) 2.05/2.7 
[15] 3.5 (3.17- 3.86) 8.6 

[16] 1.8/2.6/3.5 
(1.70-1.84)/(2.54-2.68)/(2.96-
4.64) 

6.41 

[18] - (2.36-2.69) 3.0 
[19] 2.1/2.4/3.5/5.8 (2.03-4.08)/(5.73-6.08) -0.42/0.19/0.91/2.4 

 
Table 3: Performance comparison of different rectifiers for sub-6 GHz 5G RFEH 

applications 
 

Ref. Freq. (GHz) Diode/Transistor Rectifier Type 
Input Power 

(dBm) 
PCE (%) Vout (V) 

[21] 0.86-1.96 CMOS - -14 10.0 1.0 
[22] 2.6/3.5 HSMS285x Greinacher 6.0 56.1/7.9 - 
[23] - HMPS282X Half Wave 27.8 59.0 - 

 
Table 3 compares a few rectifier designs for the sub-6 GHz range that have been 

published in the available literature. The HSMS-285x family diodes have been proven to 
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be appropriate for sub-6 GHz applications running at medium to high RF input levels. 
The effectiveness of various sub-6 GHz rectennas is compared in Table 4. According to 
[26-28], the overall size of the rectenna affects their gain values as well. At 3.5 GHz, 
higher antenna dimensions increase in gain value. We also see that the HWR has better 
PCE at low power supply levels. 

 
Table 4: Performance comparison of different 5G rectenna systems for RFEH 

applications 
 

Ref. 
Freq. 
(GHz) 

Volume 
(mm3) 

Gain 
(dB) 

Type of 
Rectifier 

Input Power 
(dBm) 

PCE (%) 
Output  

Voltage (V) 
[24] 0.85 - - Half Wave -17.6 57.4 - 
[25] 0.85 295×295×1.6 4.96 Greinacher  −10 - 1.26 
[26] 3.5 35×30×0.77 3.5 Half Wave 0 54.9 - 

[27] 3.5 
27.4×15.6× 
0.125 

2.07 
Voltage 
Doubler 

0 43.5 0.93 

[28] 3.5 24×24×0.1 1.51 
Voltage 
Doubler 

0 42.0 0.9 

[29] 3.5/5.8 60×50×1.6 
6.41/5.0
1 

Half Wave 5 54.5/ 41.2 1.31/1.16 

[30] 
2.45/3.8 
/5.8 

56×43×1.6 
1.26/0.3
7 
/3.32 

Half Wave 0 
26.8/29.1 
/43.3 

- 

[31] 3.5/7.0 35×35×0.6 4.0/3.8 Half Wave - - - 
 
Table 5 compares the effectiveness of various rectenna systems at mmWave frequency. 

Hybrid and antipodal antenna configurations are constructed to have a wide impedance 
bandwidth. However, a hybrid system has a lower gain than an antipodal-based system. Table 
6 lists a few papers on rectifier circuits for 5G mmWave. MA4E series diodes have been 
discovered to be suitable for mmWave frequencies. The effectiveness of several rectenna 
systems built for RFEH 5G mmWave applications is compared in Table 7. It should be 
mentioned that the HWR circuit is a highly recommended approach at high frequencies. 
Furthermore, a GFET-based rectenna improves PCE performance and output voltage. 
 

2. RFEH Systems for mmWave Applications 

Table 5: Performance investigation of 5G mmWave antennas for EH systems 
 

Ref. Freq. (GHz) Bandwidth (GHz) Gain (dBi) 
[33] 60 (56-61) 10.8 
[34] 24/40 (20.5–25.5)/(38-45) -1.0/0 
[35] - (15.9-19.7)/(22.5-34) 4.8/8.8 
[36] 49.8/31.6/31.4/45.45 - 7.8/6.14/ 4.97/6.73 
[37] 26/28 (20-30) 6.2/7.0 
[38] 26 (25.5-28.1) 6.13 
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Table 6: Performance investigation of 5G mmWave rectifiers for EH systems 
 

Ref. 
Freq. 
(GHz) 

Diode/Transist
or 

Rectifier 
Topology 

Pin 
(dBm) 

PCE (%) Vout (V) 

[39] 24/81 
MA4E2038 
MA4E1317 

HWR 5.0 45.0 0.53 

[40] 24/28/38 - VDR 15.6 44.3/42.7/40.6 - 
 

Table 7: Performance investigation of 5G mmWave rectenna for EH systems 
 

Ref. Freq. 
(GHz) 

Dimension 
 (mm3) 

Gain (dB) Rectifier 
Topology 

Pin 

(dBm) 
PCE 
(%) 

Vout (V) 

[43] 71 - - 
Three-stage 
Inductor-peaked 

5 8.0 - 

[45] 
 

35 21.7×22.6× 1.6 19 Half Wave 8.45 67.0 2.18 

[46] 
 

24 13×20×0.18 5.0 Half Wave 18 - 2.5 

[47] 
 

61 18.3×7.8× 0.12 13.3 Half Wave 0 49.3 0.05 

[48] 
 

36 4.5×4.5× 0.52 4.0 - - - - 

[49] 
 

36 3.2×3.2×1.6 8.12 GFET 2.0 80.3 6.38 

[50] 
 

24.25 40×40×1.6 7.8 GFET 5.0 83.0 6.8 

[54] 24 33×16×0.5 7.41 Voltage Doubler 10 12 1.7 
 

3. WPT Systems for mmWave Applications 

Table 8: Performance investigation of various 5G/mmWave antenna configurations for 
WPT applications 

 

Ref. 
Frequency 

(GHz) 
Dimension (mm3) εr 

Bandwidth 
(GHz) 

Gain (dBi) 

[55] 35 - 2.33 (33-41) 5.0 
[56] 35 100.8×100.8×NS 2.87 - 0.65 
[57] 35 20×20×0.63 2.2 (33.9-36.13) 2.4 
[58] 60 9×6×0.504 3.2 (57.0-61.5) 2.6 
[60] 30 60×60×1.5 2.33 (28-32) - 
[61] 24 20×33.6×1.143 2.2 (23.5-24.5) 16.8 
[62] 26 0.59×0.75×0.034 1.95 (24.9-31.1) 8.2 
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Table 9: Performance assessment of 5G/mmWave rectifier configurations for WPT 
systems 

 

Ref. 
Frequency 

(GHz) 
Diode/Transi

stor 
Topology Pin (dBm) PCE (%) Vout (V) 

[64] 24 
HSMS 2862 

 
VDR 

40 45 
 
- 

DMK 2790 9 42 
MA4E1317 20 68 

[66] 35 MA4E1317 HWR 2.5 50 2.92 
[68] 28/38 MA4E1317 VDR 15 46/42 - 
[69] 35/94 CMOS - 15 36.5/21 0.7/0.5 

[72] 28 
MBD2057-
E28X 

HWR 0 0.23 0.22 

[73] 24 - Dickson Charge Pump 15 51 8.0 
 

The performance of various antenna configurations designed for 5G mmWave 
WPT applications is illustrated in Table 8. The antennas offer better gain values with 
compact antenna dimensions. Because of their small size, the rectennas are suitable for 
integration with implantable devices. 

 
Table 9 discusses the performance of various 5G mmWave rectifier circuits for 

WPT applications. A voltage-doubler rectifier using a DMK2790 diode exhibits better 
conversion efficiency over the VDR with other possible combinations of the rectifier 
circuit. 

 
Table 10: Performance assessment of 5G/mmWave rectennas for WPT systems 

 

Ref. 
Freq. 
(GHz) 

Gain 
(dB) 

Diode 
Rectifier 
Topology 

Pin 
(dBm) 

PCE 
(%) 

Vout 

(V) 
[76] 35 4.54 MA4E-1317 Half Wave 10 36 1.73 

[77] 35/94 7.4/6.5 CMOS  FWR 29.3 53/37 
0.38/0.
29 

[78] 24 6.8 MADS-001317 Half Wave 16 41 2.0 
[79] 24/60 - MA4E-1317 Half Wave - 65.6 - 
[80] 24 - - Voltage Doubler 23.2 47.9 - 
[81] 25 - MA4E2502L Half Wave 8 17 - 
[82] 24 2.6 MA4E-1317 Half Wave 19.5 24 0.6 
[83] 35 17 MA4E-1317 Half Wave 18.8 63.8 4.61 
[85] 24 - MA4E-1317 Half Wave 15 35.2 - 
[86] 94 1.85 MA4E-1310 Half Wave 20.2 38 - 
[87] 35 7.74 MA4W1310 Half Wave 16 61.5 1.83 

[89] 24 4.8 MA4E2054A 
Half Wave 14 35 - 
Voltage Doubler 14 20 2.4 

[90] 35 15 SMA1317 Half Wave 13 21 - 

[91] 24 13 
MA4E2054A 

Half Wave 
2.5 

46 1.5 
Voltage Doubler 36 1.9 

SMS7621 Half Wave 25 1.1 
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Voltage Doubler 20 1.4 
[92] 35 15.2 - Half Wave 19 67.0 4.0 
[93] 60 2.6 HSMS 2850 2-stage VDR 30 - 1.447 
[95] 35 14.7 MA4E1317 Half Wave 32 49.2 - 
[96] 28 4.0 MA4E1317 Half Wave 23.89 55.5 - 

 
The performance parameters of 5G mmWave rectenna systems for WPT 

applications are shown in Table 10. Because of their low junction capacitance value, 
MA4E-series diodes are found to be excellent for conversion operations at high working 
frequencies. At the identical input power level, an HWR design achieves the greatest 
achievable efficiency of conversion, while a voltage doubler topology achieves the 
highest output voltage [94, 96]. High input power levels are shown to be more efficient 
for mmWave rectenna systems than low input power levels. The analytical findings show 
that substantial gain values are attainable using mmWave communication frequencies. 
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