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l. INTRODUCTION

Bioremediation(Fig .1 is the process of disinfecting up and extractintjupants or
contaminants from the environment using living onigens such as bacteria, fungi,
plantgD. Mani & Kumar, 2014. It is an environmentally beneficial and Ic-term technique
to cleaning up polluted sites and restoring envirental qualit(Akcil et al., 2015. Organic
materials (e.g., hydrocarbons, pesticides, ents) and inorganic substances (e.g., hi
metals, nitrates) can both be treated using biodetier(Department of Chemistryl , Jiwi
University, Gwalior (M.P.) India et al., 201<-Water is one of the most important &
valuable assets on the planet, sustaining liferaaihtaining ecosystems. Its significance
be understood from numerous an(Galli et al., 2012).The evencreasing populatio
places enormous strain on natural resources ahdsitadvrse effects in water resourc
(Wassie, 2020)It is predicted that the world's population witlore than quadruple in ti
next 30 years, as will the demand for potable watetminating in global shortage
Furthermore, growing urbanisation and industridiora have led to improper wastewa
discharge and disposal from medical, municipal, adtiral, and industric
source§Yohannes & Elias, 201. The developing countries are Istihgered with moe
contaminated water in lakes, ponds and rivers. dlaee the major causes for human he
resulting in, choleragliarrhoe;, typhoid and other water borne diseadeisara et al., 201.
The industry’'s sch as textiles, leather and chemicals are contslyomixing their wastt
dyes, expired chemicals, and other waste produtisse results in the continuc
contamination of the water resources in their surding(Hynes et al., 202. Wastewater
management and treatmdrds been adopted throughout world to save the weseurce:
and givenawareness to people regarding the biodiversity mapoe of water, ill healt
problems cased by these contaminated w. Water treatment involves a combination
biological and pisicochemical processes, and the treatment approlcken is mostl
decided by operational costs, the source and gualiinfluent wastewater, and the planr
reuse of the efflue(Wisra & Pandey, 200. Reently, new machines have been develc
to improve the efficiency of target pollutant remabvfrom wastewater. In industri
wastewater treatment, for example, the new oxidapimcess provides a compelling opt
for reducing norbiodegradable contamints(Crini & Lichtfouse, 2019; Saeed et al., 2C.
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METHODS OF BIOREMEDIATION FOR WASTE WATER TREATMENT

1. Chemical Methods of Bioremediation in WWT: "Chembio" treatment refe to the

combination of chemical precipitation and wastewdi®remediation in a treatme
procedure (Fig .2) This combined strategy takes advantage of theeflienof both
approaches to successfully remove a broader vagktgontaminants from pollute
wastewatgf/Ahmad et al., 2015; Herrero & Stuckey, 2(. The first stage involves tt
addition of chemical agents to the wastewater, sischoagulants and floccula(Teh et
al., 2016) These compounds, as previously stated, aid inptbduction of insolubl
precipitates by neutralising charges on suspendadicies and forcing them -
agglomeratéKurniawan et al., 2022; Sahu & Chaudhari, 2(. Heawy metals and some
inorganic pollutants are very efficient at beingnoved by chemical precipitatioThe
effluent is allowed to settle in a sedimentatianktafter chemical precipitati(Gutierrez
et al., 2010) The produced flocs and precipitates, togethen witme organic debris a
other contaminants, sink to the bottom as sludgéngtthis proces(Rodriguez et al.,
2020).
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Figure 2: Chemical methods for waste water bioremedia

2. Coagulation and Hocculation: Coagulation and flocculation are important pretresit

stages in wastewater bioremediation that improeegss efficienc(Verma et al., 201..

These physicathemical methods attempt to remove suspended leartand colloida
chemicals from wastewater, allowing noorganisms to biodegrade orga
contaminants more eas(Saini, n.d.) Coagulation is the process of adding chen
coagulants to wastewater. Metal salts such as alumsulphate (alum) or ferric chloric
are commonly used as coagul{Bakar & Halim, 2013) Coagulants balance t
negative charges on suspended particles alloids in wastewater. As a result, t
particles begin to agglomerate and lose their mstdtic repulsion. The coagulant
added to the wastewater and interacts with thetivedya charged particles, resulting

the formation ofmicroscopiand destabilise@articles known as microflo(C. S. Lee et
al., 2014) In addition, the coagulaneutralises the charge on organic particles, ma
them more prone to aggregai(Ghernaout & Ghernaout, 201Following coagultion,

flocculation involves mild mixing of the water tdimulate microfloc collision an
adhesion, allowing them to expand in size and erdagger, visible flo((Mohd
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Asharuddin et al., 2021; Wu et al., 2009). Mechanigixing devices, such as paddles or
propellers, are used in flocculation tanks or k&g accomplish this process(lwuozor,
2019). A polymer flocculant may be applied at tetage in some circumstances to
improve floc formation and development. Slow andderate mixing of the coagulant-

added wastewater is used to assist the collisiath afherence of the destabilised
particles, resulting in the production of biggerck(Owodunni & Ismail, 2021). As flocs

develop in size, they entrap more suspended pestahd organic materials, making it
simpler to remove pollutants during following tre@nt procedures(Saravanan et al.,
2021). Following coagulation and flocculation, theastewater is subjected to

bioremediation, in which microorganisms degradeanig contaminants into simpler,

non-hazardous compounds(Singh et al., 2014). Tus ftreated during flocculation also
provide surfaces for microorganisms to adhere endigh, increasing the bioremediation
process's effectiveness(Jagaba et al., 2021).

3. lon Exchange: lon exchange is another successful wastewater rbam&tion
technology, particularly for the removal of dissadvinorganic contaminants(Barakat,
2011). The exchange of ions between the solid pbaseparticularly formulated resin
and the liquid phase (wastewater) is a physicaivote process(Pyrzynska, 2008). This
exchange method aids in the selective removal hiceions or toxins from wastewater,
allowing it to be used in a variety of applicatioswech as industrial operations or release
into the environment(Katheresan et al., 2018).drchange is based on the use of a resin
material with certain functional groups capablatifacting and exchanging ions(Silva et
al., 2018). These resins are primarily construdtfesinthetic organic polymers and come
in a variety of shapes, including beads and granulée ion exchange resin used is
determined by the contaminants to be removed amahlkmistry of the water(Awual et
al., 2013; Zaggia et al., 2016). The functionalup® on the resin surface attract and bind
particular ions present in the wastewater as i$ thnough a column or vessel containing
the ion exchange resin(Kammerer et al., 2011; Refatl., 2010). Heavy metals (e.qg.,
lead, cadmium, mercury), radioactive elements (euganium, radium), and other
dangerous inorganic chemicals may be present setlms(Brusseau & Artiola, 2019).
To maintain charge balance, counter ions are reteago the water when pollutants are
adsorbed onto the ion exchange resin(Ochando-Patidd., 2018). In cation exchange,
for example, hydrogen (H+) or sodium (Na+) ions nbayreleased to replace adsorbed
metal ions(Nouar et al., 2009). To replace adsodadns, hydroxyl (OH-) or chloride
(Cl-) ions may be released during anion exchange.i®n exchange resin gets saturated
with absorbed pollutants over time, and its cajghibr ion exchange decreases(Ortega
et al., 2017; L. Zhu et al., 2017). The resin naestrenewed to regain its functionality.
Typically, this is accomplished by washing the mewiith a regenerant solution that
displaces the adsorbed ions, restoring the resamcity for future ion exchange.
Because the regenerant solution containing the vech@ontaminants might be highly
concentrated with pollutants, it must be properbated before disposal(Pérez-Gonzalez
et al., 2012). Depending on the kind and quantitgadlutants, this solution may need to
be treated further, such as by precipitation, riftg, or bioremediation, before it can be
properly discharged or disposed of(Vardhan eféll9).

4. Adsorption and Neutralization: Adsorption and neutralisation are two significant
processes in wastewater bioremediation that am toaseemove contaminants and modify
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the pH of the wastewater(Nharingo & Moyo, 2016).ttlBonethods are important in
preparing wastewater for efficient bioremediatigdsorption is a physical-chemical
process that includes pollutants adhering to thase of a solid substance known as an
adsorbent(Afroze & Sen, 2018). Adsorbents in waatemreatment are generally porous
materials with a wide surface area that attractteaqlcontaminants in the water(Yahya et
al., 2018). The specific contaminants containethemwastewater are used to choose an
appropriate adsorbent material. Adsorbents thabtiem used include activated carbon,
zeolites, and different clays(Rafatullah et al.1@0 The adsorbent is introduced into the
wastewater either by passing it through a packeddbedsorbent particles or by mixing
the adsorbent directly into the effluent(Mohammedlg 2016). Pollutants in wastewater,
such as organic molecules, heavy metals, or someyanic substances, bind to the
adsorbent's surface by physical forces such asdéanNaals interactions or chemical
bonds(Gusain et al., 2020). Following adsorptidme effluent is removed from the
adsorbent, which now retains the contaminants Weae absorbed. Neutralisation is a
chemical technique that is used to modify the pHvaktewater that is overly acidic or
alkaline(Raschitor et al., 2014). In many circums&s, microorganisms utilised in
bioremediation perform best within a narrow pH mands a result, neutralising the
wastewater to an optimum pH level is critical toe thbioremediation process's
effectiveness(Vitor et al., 2015). pHmetres or @adior sheets are used to determine the
pH of the effluent. An appropriate neutralising riges applied to the wastewater based
on the observed pH value to bring the pH within dlceeptable range(Suopajarvi et al.,
2013). An acidic wastewater, for example, may regthe addition of alkaline substances
such as lime (calcium hydroxide) or soda ash (soduarbonate), whereas an alkaline
wastewater may require the addition of an acidienaguch as sulfuric acid or carbon
dioxide(Q. Chen et al., 2018). To guarantee conpétadjustment, the neutralising agent
is fully combined with the effluent.

5. Biological Approaches of Waste Water Bioremediation Bacteria, algae, plants and
nanotecnology-mediated wastewater treatment, atsmwk as biological wastewater
treatment, is a popular and efficient form of wastter treatment (Fig. 3). It is dependent
on the action of microorganisms, specifically baateto break down and eliminate
organic and inorganic pollutants from wastewatefotee it is released back into the
environment or reused for other uses.

BIOLOGICAL METHODS FOR WASTE WATER
BIOREMEDIATION

Usage of aerobic
and anaerobic
microbes

Microbial method

Advances in — -
faster filration - . %)

and utilization of b
sensors in E &

bioremediation

Improves the
soil fertility and
reduces the
metal
contaminants

Figure 3: Different biological approaches of waste waterrdmoediation.
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6. Aerobic Wastewater Treatment: Bacteria consume organic matter and other
contaminants in the presence of oxygen in aerolaistewater treatment. This process
occurs in an aerated tank or pond, which provigegleal habitat for aerobic bacteria to
thrive(Stewart et al., 2008). These bacteria faedrganic molecules and transform them
into carbon dioxide, water, and biomass. As a tesufjanic contaminants are reduced,
and water quality generally improves(Xiao & He, 2D1Aerobic biodegradation of
organic substrates is autocatalytic and beneficil, bacteria act as biocatalysts in this
situation(Glueck et al., 2010). Depending on the t@rhperature, and biological process,
different concentrations of aerobes are used, thithactivated sludge process using the
most bacteria(Besha et al., 2017). The activatedgs! process is a simple and low-cost
method for converting a large volume of substrate aerobic wastewater
treatment(Champagne & Li, 2009).

7. Fixed bed reactors:Fixed bed reactors are a form of bioreactor thaixiensively used
in wastewater bioremediation operations to cleamtarninated water(Fernandez et al.,
2018). These reactors foster the growth of berafraicroorganisms such as bacteria and
fungi that can breakdown and eliminate contamindradm wastewater(Naghdi et al.,
2018). Fixed bed reactors are especially effedovereating wastewater with high levels
of organic toxins and pollutants.They are made atsagd of a container filled with
support media, which offers a surface area fomtierobial bio film to grow on(Harrison
et al.,, 2010). Common support media include peblgesvel, plastic pieces, and other
materials with a high surface area-to-volume rédffeen wastewater passes through the
reactor, microorganisms in the water begin to cliogthe top layer of the support
media(Aslam et al., 2017). Over time, these gereeldp a film known as biofilm,
which is a gooey layer of microbial populations(Matmadi et al.,, 2013).As the
wastewater flows through the fixed bed reactor emahes into touch with the bio film,
the microorganisms in the bio film start metabolgsiand breaking down the organic
pollutants in the water(Joshiba et al., 2019). Thaogical degradation process breaks
down complex organic chemicals into simpler, l@ssctcomponents like carbon dioxide,
water, and biomass(Gumisiriza et al., 2017).Thediked reactor is meant to provide a
continuous supply of oxygen to the biofilm duringr@bic bioremediation, which uses
oxygen-dependent microorganisms to breakdown cangants(Khalil & Liu, 2021). This
can be accomplished through aeration or by degjgairflow pattern that encourages
oxygen transport to the biofilm(Dias et al., 20P&yiodic backwashing or intermittent
aeration is used to prevent blockage and maintaiximmum reactor performance(Zhou et
al., 2014). This aids in the removal of surplusniegs and the distribution of oxygen
throughout the biofilm(Bassin et al., 2016).

* Reaction Rate Kinetics:For bioremediation processes, the reaction ratetiks of
the microorganismspj plays a crucial role in determining the biodegtaxh
efficiency. The Monod equation is commonly useddé&scribe the specific growth
rate of microorganisms in response to the concemtraf a limiting substrate(Ahmad
et al., 2021; Kargi, 2009):
p=p maxx (S/(K_s+59))

Where:p = Specific growth rate of microorganisms (per tiag., per hour)
w_max = Maximum specific growth rate (per time)
S = Substrate concentration (e.g., organic poltgjagin mass per volume, e.g., mg/L)
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K_s = Substrate half-saturation constant (in masvplume, e.g., mg/L)

8. Moving Membrane Reactors: Moving membrane reactors (MMRs) are a form of
sophisticated wastewater treatment technology t@nbines bioremediation and
membrane filtration principles(Azubuike et al., B)IMMRs are intended to improve
biodegradation efficiency while also providing siliquid separation using submerged or
connected membranes(Friha et al., 2014). This ndsehnique has a number of
advantages in wastewater bioremediation applicatibike other biological wastewater
treatment processes, MMRs rely on the activity afraorganisms, primarily bacteria, to
degrade organic pollutants present in the waste@déeimuthu et al., 2020). These
microorganisms form a bio film on the surface & thembranes or on carriers within the
reactor, creating a favourable environment forceght pollutant removal(Zhong et al.,
2019). When compared to standard biological treatrpeocedures, the combination of
bioremediation with membrane filtration in MMRs inopes process efficiency and
dependability(Oller et al., 2011). MMRs transcehd limits of conventional clarifiers by
integrating membrane filtration, resulting in impea solids-liquid separation and higher-
quality effluent(Wang et al., 2021). MMRs are digtiished by their compact design,
which requires less room than separate bioreacnds sedimentation tanks used in
conventional treatment methods(Qyyum et al., 20BHcause of this space-saving
characteristic, MMRs are appropriate for appligagio with restricted land
availability(Visvanathan et al., 2000). MMRs freqtlg create less surplus sludge than
conventional activated sludge systems due to ti@ezft solid-liquid separation achieved
by the membranes(Bernardo et al., 2021). This reaylt in lower sludge treatment and
disposal expenses. MMRs can be used with other nadda treatment techniques
including as anaerobic treatment, denitrificatiamd phosphorus removal to remove
additional pollutants and meet stringent efflueegulations(Bashar et al., 2018;
Fulazzaky et al., 2015).

* Reactor Volume Calculation: The volume of the MMR can be calculated based on
the influent flow rate and the desired hydraulitendion time (HRT) for effective
bioremediation. The HRT is the average time a weetier particle spends inside the
reactor(Chakraborty & Veeramani, 2006; Healy et2012). The formula for reactor
volume (V) is:

V=QxHRT

Where: V = Volume of the reactor (in cubic metens)
Q = Influent flow rate (in cubic meters per hou#/imn)
HRT = Hydraulic retention time (in hours, hr)

9. Anaerobic Waste Water Treatment: In the absence of oxygen, bacteria break down
organic matter in anaerobic wastewater treatmehis Tethod is very beneficial for
high-strength industrial effluent containing comgplerganic components. As a by-
product of anaerobic treatment, biogas, primarilgtimane, is produced, which can be
used to generate electricity. However, anaerobéattnent is slower than aerobic
treatment and may require additional polishing pdages for further purification.
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* Hydrolysis: Hydrolysis plays a significant role in wastewateiorbmediation,
especially in the initial stages of organic mattegradation(X. Li et al., 2018). It is a
biological process where complex organic compoundsich as proteins,
carbohydrates, and lipids, are broken down intgotem soluble compounds through
the action of hydrolytic enzymes produced by micgamisms(Cammarota & Freire,
2006). Hydrolysis is a crucial step in the ovebitidegradation process, as it converts
large, difficult-to-degrade molecules into smallemre accessible substrates that can
be further metabolized by other microorganisms(Niéteal., 2014). In wastewater
treatment systems, a diverse group of microorgasyismeluding bacteria, fungi, and
protozoa, play a crucial role in hydrolysis(Songakt 2021). These microorganisms
can be present naturally in the incoming wastewatean be introduced deliberately
in bioremediation processes(Wang & Yang, 2014). rbticganisms attach to
surfaces, such as suspended particles or suppditnmebioreactors, and form bio
films. Within the bio film, certain microorganisnsgcrete hydrolytic enzymes, which
are specific enzymes that catalyze the breakdowmliféérent types of complex
organic compounds(Gaur et al., 2018). For exanmplateases break down proteins,
lipases break down |lipids, and amylases break dostarches and
carbohydrates(Goodman, 2010). The hydrolytic enzyawt on the complex organic
compounds present in the wastewater, breaking th#dmwn into simpler
forms(Parawira, 2012). For instance, proteins aydrdlyzed into amino acids,
carbohydrates into simple sugars, and lipids iattyfacids and glycerol(“Lipid and
Carbohydrate Metabolism in Caenorhabditis Elega2@17).

* Acidogenesis: Acidogenesis is an important stage in wastewaterehiediation,
especially in anaerobic treatment systems. Itessétrcond step of anaerobic digestion
after hydrolysis and is critical in converting thienpler organic molecules generated
during hydrolysis into volatile fatty acids (VFAsand other intermediate
products(Singhania et al., 2013). Acidogenesis gnepthe way for the ultimate step
of anaerobic biodegradation, methanogenesis, iclwimethane (biogas) is produced.
The first phase in anaerobic bioremediation is alais, which happens before
acidogenesis. The activity of hydrolytic enzymereagated by microorganisms breaks
down complex chemical substances into simpler fosnsh as amino acids,
carbohydrates, and fatty acids during hydrolysistls al., 2004; Liang et al., 2021).
The acid-forming bacteria ferment the soluble saibss, turning them into VFAs and
other intermediate products(W. S. Lee et al., 20¥4#As are required for the next
stage of anaerobic biodegradation, methanogen@sidogenesis produces VFAS,
which serve as precursors for the last stage oferab& biodegradation,
methanogenesis(Sekoai et al., 2021). Methanogembes use VFAsS to create
methane (CH4) and carbon dioxide (CO2) throughreesef metabolic processes
during the methanogenesis stage(D’ Silva et aR120

* Acetogenesis: Acetogenesis, which occurs after acidogenesis before
methanogenesis, is an important intermediate st#geanaerobic wastewater
bioremediation. Certain bacteria transform the tieldatty acids (VFAS) generated
during the acidogenesis stage into acetic acid geonty known as vinegar) and other
simple organic compounds during acetogenesis(YetLal., 2015). This process
prepares the way for the ultimate phase of anaetubdegradation, methanogenesis,
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in which methane (biogas) is produced(Krzysztohaieski, 2012). Acidogenesis and
Hydrolysis the first phases in anaerobic bioremesha are hydrolysis and
acidogenesis, which occur before acetogenesis. @sngpganic substances, such as
amino acids, carbohydrates, and fatty acids, aokeor down into simpler forms
during hydrolysis(Dignac et al., 2000). In the agdnesis stage, acid-forming
bacteria ferment these simpler molecules, produdRés as a result. During the
acetogenesis stage, the VFAs serve as substratasdtmgenic bacteria. Acetogenic
bacteria are microorganisms that convert VFASs, ifipally acetic acid precursors,
into acetic acid and other simple organic compo(Mddin Christy et al.,
2014).Acetogenic bacteria use the Wood-Ljungdahliteoto convert VFAs,
particularly longer-chain VFAs such as propioniédaand butyric acid, into acetic
acid (CH3COOH)(Im et al., 2018). The reduction aeflmon dioxide (CO2) using
hydrogen (H2) or other electron donors resultshim production of acetic acid as a
metabolic byproduct(Parshina et al., 2010). As arermediate product of
acetogenesis, hydrogen (H2) and carbon dioxide j@@2produced. These gases are
important in the later methanogenesis stage, wineeghanogenic microbes use
them(Bassani et al., 2015).

* Methanogenesigviethanogenesis is the final and most importantestaganaerobic
wastewater bioremediation. During methanogenesethamogens use intermediate
products created in earlier stages, such as aaeiic (from acetogenesis), to make
methane (CH4) and carbon dioxide (CO2)(G.-F. Zhalgt2008). This technique is
critical in the production of biogas, a sustainaéergy source, while also lowering
the organic pollution load in wastewater(Shen et2015). Prior to methanogenesis,
the primary phases in anaerobic wastewater biorati@d include hydrolysis,
acidogenesis, and acetogenesis. Complex organstasudes, such as amino acids,
carbohydrates, and fatty acids, are broken dowm isimpler forms during
hydrolysis(S. Mani et al., 2016). Acid-forming aadetogenic bacteria ferment VFAs
and create acetic acid in the ensuing acidogenass acetogenesis phases,
respectively. Acetic acid (CH3COOH) and other imtediate metabolites from
acetogenesis serve as substrates for methanogdraearduring the methanogenesis
stage(“Retracted,” 2017). Methanogens are a kincraerobic bacteria that may
produce methane (CH4) as a metabolic byproduct. Fethane generation,
methanogenicarchaea use two basic pathways: theckstic pathway and the
hydrogenotrophic pathway(Guo et al., 2015). Acetsiit Route: Acetoclastic
methanogens employ acetic acid (CH3COOH) as atdsdustrate and convert it to
methane (CH4) and carbon dioxide (CO2)(Laloui-Catige et al., 2006).
Hydrogenotrophic methanogens use hydrogen (H2) aardon dioxide (CO2) to
create methane (CH4) in this process(Dong et &192 Hydrogen is produced
throughout the acetogenesis and acidogenesis phades a required substrate for
this process. Biogas is created by collecting tlethame (CH4) and carbon dioxide
(CO2) generated during methanogenesis. This bigasuseful renewable energy
source that may be harvested and used to geneoater,pheat, or for other
purposes(Atelge et al., 2020).

10. Phytoremediation: Phytoremediation is a subset of wastewater biedkation in which
plants and related microbes are used to extragtade, or immobilise contaminants from
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polluted water. Specific plant species are chosertHeir ability to absorb, translocate,
and metabolise toxins in wastewater, thus loweritige concentration of
contaminants(Susarla et al., 2002). This environialgnsafe and sustainable approach
may be used to treat a wide range of contaminamttiding heavy metals, organic
compounds, minerals, and even certain viruses(EBmugnRechberger, 2015). The first
stage in phytoremediation is to choose plant spettiat have a high affinity for the
particular contaminants present in the wastew&ecause various plants have differing
capacity to absorb and tolerate different toxihg, $election procedure is critical to the
project's success(Seth, 2012). The chosen pléastrta toxins from the water through
their roots after being planted in wastewater. @ommhants in water can be soluble or
particulate, and plants can absorb both types dipgron their qualities(Abdel-Shafy &
Mansour, 2016). Following absorption, pollutants/él via the plant's circulatory system
(xylem) and are distributed to various plant comgrie such as leaves, stems, and
roots(Wild et al., 2006). Plants may collect pahis in their above-ground tissues in
some situations, allowing for simple removal frdme system by harvesting the plants. In
addition to direct absorption and accumulationtaierplants may metabolise and destroy
contaminants via phytodegradation. Pollutant breakdand transformation can also be
aided by microorganisms found in the rhizosphewot(izone) of plants. Through a
process known as phytovolatilization, some plam@s telease pollutants in a volatile
form(Limmer & Burken, 2016). This is especially fidefor volatile organic compounds
(VOCs). Pollutants are held and filtered by thenpl@ots during rhizofiltration, thereby
lowering their concentration in the water(Dushenlked\al., 1995). Once the plants have
fulfilled their function in some phytoremediatiompmications, they are collected and
removed from the wastewater. Depending on the lefelontamination in the plants,
they may need to be appropriately disposed of amrbaus waste or utilised for
phytomining, which extracts precious metals fromnplbiomass(Rascio&Navari-1zzo,
2011).

11.Microbial enzymes bioremediation: Enzymes may also be superior to both microbial
remediation and conventional treatments. Indeeryreas act against a specific substrate
(microorganisms may prefer more easily degradablepounds than the pollutant), are
not inhibited by inhibitors of microbial metabolisean be used under extreme conditions
limiting microbial activity, are highly effectivetdow pollutant concentrations, and are
active in the presence of microbial predators dagonists. They are also more mobile
than microorganisms due to their smaller size.Bgead all these qualities, enzymes are
helpful in environmental bioremediation (Saxanalet2020).

According to reports, microbial enzymes have aetgrof functions in different
industrial applications. Due to their high spedificto a wide range of substrates
(pollutants), use under conditions so harsh thatrobes cannot survive, high
effectiveness at low pollutant concentration, hegtivity in the presence of inhibitors of
microbial metabolism, and high mobility (small gizéan microorganisms, microbial
enzymes are also helpful in bioremediation of emvinental pollutants from industrial
wastes. Microorganisms produce a wide range of reegythat can be employed in the
detoxification and breakdown of a variety of orgaand inorganic contaminants (Saxana
et al., 2020).
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12.Algal Bioremediation: Algal bioremediation is a potential strategy in @ialgae or

microalgae are used to extract, degrade, or sezgueshtaminants from wastewater.
Algae are photosynthetic microorganisms with a dagiowth rate and the ability to
efficiently absorb and digest nutrients such asogén and phosphorus, as well as heavy
metals and organic contaminants(Abdel-Raouf et24112). Algal bioremediation has
various advantages, including the capacity to reareowide range of toxins, the ability to
produce biomass, and its involvement in decreagregnhouse gas emissions via
photosynthesis(Maity et al., 2014). The initialggan algal bioremediation is to identify
suitable algae species depending on the propertibe wastewater and the impurities to
be remedied(Fazal et al., 2018). Because diffeadgdie have different affinities for
different contaminants, the selection procedureriigcal to attaining efficient cleanup.
Algae are extremely efficient in absorbing nutrgmotably nitrogen and phosphorus,
which are major pollutants in wastewater due tarth@e in eutrophication(Lin et al.,
2021). As algae develop, they absorb these nustiéowering their amounts in the water.
Certain organic contaminants can be transformednagtdbolised by algae via processes
such as biodegradation and bioaccumulation. Thew liee ability to degrade complex
chemical molecules into simpler, less hazardousigorSome algae have metal-binding
properties that allow them to absorb and sequéstavy metals from water(Priya et al.,
2014). Biosorption is a method that can lower tbhecentration of hazardous metals in
wastewater. Photosynthesis occurs in algae, whiedtes oxygen as a byproduct. This is
very useful for aerating wastewater, promoting berdiodegradation, and improving
water quality. Once enough contaminants have aclaietuin the algal biomass, it may
be collected from the wastewater. Depending orlethel of contamination and the algae
species utilised, the collected biomass can be e variety of applications, including
bioenergy generation, biofertilizers, and feed lfeestock or aquaculture(Siddiki et al.,
2022). To produce algae in a controlled environmalgfal bioreactors can be configured
as open ponds or closed systems. Light intengitgperature, and nutrient supply may all
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be optimised in closed systems to boost algal dramid pollutant absorption(Mufioz &
Guieysse, 2006).

13.Biofillers: Biofillers are biologically generated natural méiky that may be utilised as
fillers or additives in wastewater treatment preess Examples include agricultural
leftovers, plant fibres, and microbial biomass. &8ee of their large surface area,
porosity, and capacity to absorb contaminants ethésfillers provide several advantages
in wastewater bioremediation(Razzak et al., 2022hen biofillers are used in
wastewater treatment systems, they can improveitgoll removal, increase treatment
efficiency, and provide a more sustainable and renmentally friendly approach to
wastewater treatment. Because biofillers have aysostructure with a wide surface area,
they can absorb and exchange ions with contaminamsstewater(Xiang et al., 2020).
They have the ability to collect and hold impustiencluding heavy metals, organic
molecules, and nutrients, thereby eliminating tifesm the water. The contact duration
between the water and the adsorbent material ieeased by adding biofillers to
wastewater treatment units(Paredes et al., 2016 ihcreased contact time enables
more effective pollutant adsorption and higher reahoates. Some biofillers, particularly
those formed from microbial biomass or activatadige; contain microorganisms that
can help with nutrient removal via processes suchitification, denitrification, and
phosphorus absorption(Cohen, 2001). Through physagcsorption and microbial
decomposition, biofillers can help reduce organiatter, BOD (biochemical oxygen
demand), and COD (chemical oxygen demand) in wagte{Einha et al., 2008).
Biofillers are more ecologically friendly than sketic fillers since they are sourced from
natural and renewable sources(Fombuena et al.))2Bathermore, certain biofillers are
biodegradable, which contributes to the treatmerdcgss's overall sustainability.
Biofillers can be employed in a variety of treatheystems, including as activated
sludge, biofilters, built wetlands, and bioreactdtd Anawar & Chowdhury, 2020).
Depending on the application, they can be combimigd other filter media or used as
standalone fillers. Biofillers are cost-effectivikeanatives to standard synthetic fillers
because they may be supplied locally from agricaltuwastes or other
biomass(Budzianowski, 2017; Echeverria et al., 2017

14.Bioaugmentation: Bioaugmentation is a type of bioremediation appinodmat includes
introducing particular microorganisms or microbcainsortia into wastewater treatment
systems to improve pollutant breakdown(OmokhagbdarAs et al., 2020). The purpose
of bioaugmentation is to increase the overall perémce and efficiency of biological
treatment procedures by adding microorganisms spicialised metabolic capabilities,
such as those for digesting certain pollutants(dkavaet al., 2010). This method is
especially beneficial when the natural microbialpplation in the wastewater is
inefficient in removing specific pollutants(Ahmed al., 2022). The initial step in
bioaugmentation is to identify the best microorgams or microbial consortiums for the
specific contaminants in the wastewater. Theseebacare often chosen based on their
demonstrated capacity to breakdown or metaboligainepollutants(Myers et al., 2018).
To verify viability and activity, the chosen micmrganisms are cultured in the laboratory
under controlled circumstances(X. Li et al., 20Ie microorganisms are acclimated
and adapted to the specific wastewater conditibey will encounter in the treatment
system throughout this phase. Once suitably deedlothe microbes are inserted or
inoculated into the wastewater treatment systemM@z-Padin et al., 2009). This can be
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accomplished by directly adding microorganismshi® wastewater, including them into
the activated sludge process, or employing spseidlbioreactors. The injected microbes
begin interacting with the wastewater's existingnuidial population(Kan et al., 2011).
They add additional metabolic capacities to thetesys allowing for more efficient
breakdown of certain contaminants. Because for@mgroorganisms can outcompete
native microbes for accessible contaminants, paiiutlearance rates rise(Hamme et al.,
2003). The effectiveness of bioaugmentation is ddpet on adequate treatment
monitoring and optimisation. Monitoring microbialogulation dynamics, pollutant
removal effectiveness, and other pertinent metrieslps guarantee that the
bioaugmentation process is successful and longug§tecconet et al., 2020). In certain
situations, the imported microorganisms may becestablished and incorporated into
the native microbial population, resulting in lotggm gains in pollutant degradation even
after the initial bioaugmentation process has cetepl(El Fantroussi & Agathos, 2005).

15.Nanomaterials for Adsorption and Catalysis: In the realm of wastewater
bioremediation, nanomaterials have showed condileotential, notably in adsorption
and catalytic processes. Their distinct featurashsas large surface area, customizable
surface chemistry, and increased reactivity, makentextremely effective in removing
pollutants from polluted water and catalysing matr processes to breakdown or
change pollutants(Tijani et al.,, 2014). Nanomatenaith a high surface area per unit
mass, such as nanoparticles and nanotubes, prowate active sites for pollutant
adsorption. Nanomaterials' surface chemistry maynbéified by functionalizing them
with different chemical groups, making them extrgmeselective for certain
contaminants(Y. Chen et al., 2017). The uniqueufeat of nanomaterials allow them to
adsorb a diverse spectrum of pollutants, includmegvy metals, organic chemicals,
colours, and new toxins(Naseem & Durrani, 2021 xdese of their tiny size and wide
surface area, nanocatalysts are more reactive,liegafuicker and more efficient
catalytic reactions(Suitli et al., 2021). Nanomaterials' surface charmties may be
tailored to have particular catalytic activity,@dling them to selectively breakdown some
contaminants while sparing others(Rasmussen eR@L0). To create highly reactive
species those breakdown pollutants, nanocatalyats be utilised in AOPs such as
photocatalysis (using light) or heterogeneous gsisusing multiple phases)(Q. Chen et
al., 2014).

16.Physical Methods of Bioremediation: Utilizing biological agents (like microbes) to
degrade or change contaminants in polluted enviemsn is the main goal of
bioremediation. However, physical techniques cao alontribute to the support and
improvement of bioremediation procedures Fig. 4.esEh physical bioremediation
techniques are frequently utilized to improve ti@dgical agents' ability to function.
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Figure 5: Different methods involved in bioremediation uspigsical approach

17.Sedimentation: Sedimentation is a physical water treatment proeedhat include:
letting suspended particles to settle in water uride action of gravil(Goula et al.,
2008) Sedimentation tanks, also known as clarifier settlers, are used to aid
wastewater treatment. The sedimentation tank resemastewater, and the flow veloc
is slowed to allow the particles to se(Burger et al., 2011)Sludge is formed whe
heavier particles, such as sand, grit, and orgaelcis, sink to the tank's bottom. Light
particles, such as grease and oll, float to thewdere they create a scum le(Samal et
al., 2022) The cleared water, which is substantially freesabpended materials,
collected and treated further ug techniques such as biological treatment, distidec
and so ofZ. Li et al., 201C. Following sedimentation, the partially treatedsteavater is
sent to a bioreactor, which can be an activatedgglisystem, a sequencing batch ree
(SBR), oranother sort of biological treatment (Ni et al., 2009) Microorganisms suc
as bacteria and protozoa eat organic materials asod ®&upply in the bioreactc
transforming it into biomass and ene(Udayan et al., 2022Y.his biological breakdow
of organic contaminants greatly decreases the obnté organic components
wastewater. Before release, the treated waterbgesied to further treatment, such
sedimentation, filtration, and disinfection, to fiul the needed effluent
requirement@®Naidoo & Olaniran, 201:.. DAF is a water treatment technique that
small air bubbles to remove suspended particlés, and greases from wastew(Rubio
et al., 2002) It is particularly useful inreating wastewater with a high concentratiot
small particles or compounds that are difficult teettle wusing ordinar
sedimentatiofKhoufi et al., 2007. Air is dissolved under pressure into the wastewit
a DAF system, forming small bubbles. The wastewiaténen discharged ir a flotation
tank or basin, where the lower pressure allowsdissolved air to escape, general
micro bubblegNiaghi et al., 201%. These micro bubbles clirtig the suspended particl
and float them to the surface, where they credteth layer (the floa (Landels et al.,
2019) The float is skimmed off the surface, eliminatitige wastewat's suspended
particles, oils, and greaseDAF improves the effectiveness of downstream prees
such as bioremediation by removing suspended f[esticoils, and greases frc
wastewatgdafarinejad & Jiang, 201. DAF proects the bioreactor from clogging a
inhibitory compounds by lowering organic load amdics particles, enabling steady a
optimal biological treatment performai(di Biase et al., 201%ollowing DAF, the
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wastewater enters the bioreactor for additionadttnent, where microorganisms break
down the residual organic contaminants biologicalllje combined procedures produce
high-quality effluent that fulfils environmentalgelations or may be utilised for a variety
of uses(Luque et al., 2008).

18.Electro coagulation: Electro coagulation (EC) is a useful and succegsfeittreatment
technology for wastewater bioremediation. Electamagulation improves the overall
effectiveness of the treatment system by elimigasipecific impurities and preparing the
wastewater for greater biodegradation by microasgas when paired with
bioremediation techniques(Othmani et al., 2022). édactrochemical water treatment
technique that employs an electric current to dés&ta and agglomerate suspended
solids, colloidal particles, and certain dissoldtemicals in wastewater is known as
electro coagulation(Mollah et al., 2001). The prhoe is carried out in an electro
coagulation cell with metal electrodes (often aluionin or iron). When an electric current
is given to the anode, metal cations are produedtch then neutralise the charged
particles in the wastewater, resulting in the c¢ozabf coagulated flocs(Harif & Adin,
2007). Electro coagulation (EC) can be used as fAcieat and helpful procedure.
Electro coagulation efficiently eliminates colloidand suspended particles that might
otherwise obstruct or impede microorganisms' acttessganic contaminants during the
biological treatment process(Ammar et al., 2023a¥y metals may be precipitated and
removed from wastewater via electro coagulationcaBee heavy metals can be
hazardous to microorganisms during the bioremexhatprocess, removing them
beforehand enhances biodegradation effectiveness(®ta al., 2015). The pH of
wastewater may be adjusted via electro coagulat®ome bioremediation processes
perform best in specific pH ranges, and EC carstssbringing the pH to an acceptable
level(Savage & Tyrrel, 2005). Organic moleculesmastewater can be partially broken
down by electro coagulation, lowering the orgarmwed that must be handled by the
bioremediation process. This makes the bioremediaprocess more efficient(Valli
Nachiyar et al., 2023).

lll. EMERGING BIOREMEDIATION TECHNIQUES

*It is a hybrid technique that freats environmental
contaminants by combining  electrokinetics = with
bioremediation, and it is growing in popularity. Weak
electric currents are used in electrokinetics along with a
number of processes, including electrolysis. electroosmosis,
diffusion, and electromigration (Maszenan et al 2011.

Electro-Bioremediation

*In order to increase metal mobility in polluted soil and

—— promote  their plant uptake and  subsequent
ElectrokmFl.lf: phytoremediation, combining phytoremediation with
Phytoremediation electrokinetic remediation may be an ideal method (Mao et
al 2016).

=The novel idea of "nano-bioremediation" combines the use

of nanoparticles with bioremediation to remediate
environmental contaminants in polluted matrices. (Cecchin
et al 2017)

Nano-bioremediation

Figure 6: Emerging Bioremediation Techniques
Bhargava et al., 2020, Saxena and Bharagava (2017)
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IV. CHALLENGES

Compared to traditional remediation methods, which expensive, ecologically
harmful, and produce secondary pollution that hathes ecosystem, bioremediation has
arisen as a low-cost substitute. The main diffiegltwith enzymatic bioremediation
technology are the toxicity of the result of theymne-mediated reaction, which should be
less toxic than the substrate, which are problesfetad to the employment of enzymes in
bioremediation. If an enzyme needs a cofactor,qugimay be difficult unless a preparation
that includes the cofactor and the enzyme is atliSheir practical implementation is
severely hampered by the high expense of enzymaatixin and purification, particularly
when their continuous feeding is required (Roale20d0, Saxana et al., 2020).Enzymatic
remediation technology can offer the greatest clpanption for polluted settings by
overcoming the restrictions mentioned above.

V. CONCLUSION

Wastewater is a significant contributor to envir@mntal pollution and toxicity, and
bioremediation is an environmentally beneficial lhoet for managing such hazardous waste.
Finding an environmentally acceptable waste managéemystem is constantly a crucial
component of sustainable growth. Globally, sciestiare putting a lot of effort into
developing environmentally safe remediation tecbgi@s. In order to counteract the risks to
the environment, microbes are frequently seen aetlvironmentally benign instruments for
the treatment and management of industrial wastespasing extremely harmful organic
and inorganic contaminants. Using genetic engingemethods, we may design organisms
particularly for the bioremediation procedure. Bsing this technology, we may introduce
two different types of genes into the organisnstfiderivative genes, which may encode the
protein necessary for the decomposition of contation, and second, reporter genes, which
may assist in detecting the degree of pollutiorer€&fore, site characterization is essential for
the bioremediation approach to succeed as it aidse development of a more appropriate
and workable technology. To make bioremediationho@s$, such as phytoremediation,
economically viable in the field, however, ongogftprts are needed.
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