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Abstract 

 

The back propagation (B.P) 

procedure is a useful partial application of 

weight change in artificial neural networks. 

Here we use two term algorithms for 

dynamic learning rate (LR) and the 

momentum factor (MF). Here 

disadvantages of these two term BP 

algorithms are the native minimum and 

reduce confluence speed and limited real 

time application. So, we add an additional 

term named proportional factor (PF) for 

two terms B.P algorithm. This PF improves 

the speed of the BP algorithm and 

decreases the confluence of the B.P 

algorithm. These criteria are evaluating 

convergence for required facilities and use 

of three term BP algorithm. In this paper 

we define transcendental convergence of 

three term back propagation algorithm with 

optimization derivative information. This 

paper satisfies some conditions for learning 

parameters of the B.P algorithm. We 

present learning rate, momentum factor and 

proportional factor derivative approach. 

These approaches presented derivative of 

weight space and using forward and 

backward procedures. 
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I. INTRODUCTION 

 

1. Neural Network: An elementary computing unit of the nervous system is neurons or 

nervous cells. Humans apparently have 10
10

 and 10
11 

neurons perhaps more. The human 

nervous system consumes close to 25% of the body’s energy and it makes up only 1% or 

2% of body weights. It requires far more energy than most tissue [5] this tells us how 

active this system. 

 

2. Historical Background of Neural Network: McCulloch and Pitts established a model 

for artificial neural network created on simple logic functions such as “X OR Y” and “X 

AND Y”. Rosenblatt [12] stirred substantial attention and action in this field when he 

invented and created the Perception with three layers, the middle layers and association 

layer. This structure could connect or associate a assigned input to a random output unit.  

 

In 1960 Windrow and Hoff develop a system called ADALINE (Adaptive Linear 

Element). Here technique applied for learning was distinct to that of the perception, it is 

working the Least Mean square (LMS) learning rule. Minsky (1969) wrote a paper and 

book [8] in which they simplified the limits of single layer Perceptions to multi layered 

system. 

 

3. Type of Neural Network 

 

 Artificial Neural Networks: information processing system uses technique of 

artificial neural network. Here some implementation properties mutual with biological 

neural networks [7] Artificial neural network has been established simplifications of 

mathematical models of human thought or neural biology, based on the statements 

that: 

  
 Information handling appears at various easy elements called neurons. Every 

neuron has an inner state, called its beginning or motion level. 

 Rays proceed between neurons over connection links. 

 Every correlation link has a correlated weight. Which in an average neural 

network multiplies the signal transferred. Weight represents knowledge being 

used by the network to explain a problem. 

 Every neuron applies an activation function to its net input to determine its output 

signal. 

 (v)The technique of neural network applied broad selection of problem, storage, 

remembering data, optimization, and pattern recognition. 

 

 Biological Neural Networks: There are three types of factors of biological neuron 

dendrites, soma and axon useful and understanding for artificial neurons. Here 

biological neurons properties propose artificial neural networks [7]. 

 

 There are many signals received by processing element 

 weight and receiving synapses could be useful for modified signal 

 Neural transmit a signal output only appropriate circumstance. 

 Sums weight input described by processing element 
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4. Uses of Neural Network  

 

 Investing analysis  

 Sign analysis 

 Procedure control  

 Monitoring   

 Advertising 

 

5. New Application Areas 

 

 Neural Networks are becoming progressively part of system that are created as a good 

white toy 

 Neural networks are a useful part of soft computing and neural computing. 

 

6. Optimization Techniques 

 

 Definition: Any problem that requires a positive decision to be made can be classified 

as operation research (Optimization Technique). The approach used in decision 

making has changed considerably over the years. The name (O.R) probably came 

from a program undertaking by Great Britain during World War II “Research in 

Military Operation.”  

 

 Definition: Optimization technique is useful for solving complex real word problems. 

All engineering and science branches. There are many algorithms designed for 

technological front by inspiration from different phenomena. Here some admired 

algorithms named as Genetic Algorithm (GA) based on Darwin’s principle of survival 

of the fittest, Ant Colony Optimization (ACO) based on the foraging behavior of ants, 

Particle Swarm Optimization (PSO) based on the behavior of birds flocking in 

swarms and many more. There are many algorithms proposed for technological front 

by motivation from different phenomena. 

 

 Linear optimization 

 Meta-heuristics 

 Nature inspired Optimization.  

 

7. Application area of Optimization Techniques 

 

 In mathematical programming method used rigid body dynamics for solving 

constraint manifold by ordinary differential equation. There are many several 

nonlinear geometric restrictions i. e “two points must always coincide”, This surface 

must not infiltrate any other, or "this point must perpetually lie somewhere on this 

curve”. In this type of problem, linear complementarity problem solves computation 

contact forces.  

 

 Design problem solve by optimization designs this technique called design 

optimization. This is a single subset is the engineering optimization and alternative 

current subset of the field multidisciplinary design optimization. In aerospace 
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engineering several problems solve this technique and this method also applied in 

cosmology and astrophysics. 

 

 Economic is intently connected to optimization technique that is significant definition 

linked economics science as the "analysis of human behaviour as a connection 

between ends and unusual means" with unconventional uses. Recent optimization 

concept comprises established optimization concept, but they also intersect with game 

theory and the study of economic equilibria.  

 

 In electrical engineering several applications of optimization method i.e. active filter 

design, microwave structure, electromagnetics-based design. 

 

 Optimization technique generally use in civil engineering. Transportation engineering 

and construction management and are amid the major division of civil engineering 

that closely rely on optimization. Here optimization technique solves maximum usual 

civil engineering problem.  

 

 Operations technique applied stochastic modelling, simulation to assist   and 

expanded decision-making. Progressively, operations research applies programming 

of stochastic model, decision dynamic that fit to events. 

 

8. Stability: The solution of differential equations describes Stability. The trajectory of 

dynamical system defines initial condition for small perturbations. The heat equation is an 

example of unchanging partial differential calculation since minor agitation of early data 

lead to minor variation in temperature after some time results of supreme principle in 

partial differential equation useful to find distance among LP norm or sub norm while 

differential geometry portions the distance among space using the Gromov -Hausdroff 

distance. 

 

In the dynamical system, if the forward orbit is in a minor neighborhood or it 

remains in a minor neighborhood called Lyapunov stable. There are different conditions 

that have been generated to show stability or instability of an orbit. Below satisfactory 

situations eigenvalues of matrices might be changed to a well-studied difficulty. There are 

popular methods that include Lyapunov functions. Generally, we can apply any one 

method stability criteria. 

 

9. Studying Method in ANN 

 

 Studying method change on the quantity of layers in the network single layers or 

multi layers. 

 Learning process also depends on signal flow of direction i.e feedforward or recurrent 

neural network. 

 There are numeral of node in the input layer is equivalent to the numeral of structures 

of input data set. The numeral of output node will express in probable outcome i.e. the 

numeral of modules in the basis of supervised studying and the numeral of hidden 

layers chosen by the user. Here hidden layer nodes provide higher performance but 
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too many nodes in the hidden layers results in overlapping as well as increasing 

computation expanse. 

 Weight interrelated nodes process the rate of weights involved with every inter 

correlation among each neuron. So, we can solve many learning problems can be 

solve correctly, fully a difficult problem such as multi layered feed forward network. 

 Supervised learning process depends on input variable x and equivalent needed output 

variable y.  Neural networks produce an output created on the input. This output is 

equated to the needed output. Unsupervised learning process has input figures x and 

no equivalent output variable. The aim is to structure the primary diagram of the 

figures to recognize additional figures.  Classification and regression are called the 

keywords of supervised machine learning though are clustering and association.  

 

There are three foremost learning patterns for neural networks: supervised 

learning, unsupervised learning, and reinforcement learning. Here so many algorithms 

to train a neural network, including. 

 

 Gradient descent  

 Newton's method  

 Conjugate gradient  

 Quasi-Newton method  

 Levenberg-Marquardt algorithm  

 

II. DESCRIPTION OF PROBLEM 

 

The number of researchers investigates recovering the effectiveness and confluence 

rate of back propagation system. Though are not higher orders byproducts but determine 

independent studying rates for every element of weights vector clearly. The conventional B.P 

require three new parameters for slow convergence rate. In right parameter [1] describe large 

number of trial run require and proposed a different cost function [13],[14] explain dynamic 

learning rate momentum factor by derivative information [11] define previous step 

modification and learning rate though a genetic theorem for self-modification to increase for 

steepest descent rate. A modern method incremental education for pattern recognition 

structural adaptation weight adjustment learning systems and apply primary learning to limit 

the erudition method [6]. The behavior of B.P investigates constant learning rate with static 

arbitrary input circumstances [3].Two-layer SOM neural network explains theorical basis 

representing homotopological shape involving input vector and output solution. They 

independently studied topological organization for DDOA vector and calculated value of 

AOA in the problem of equivalent linear array [9]. 

 

Neural network learning method uses optimization three-term backpropagation 

system [15]. This method represents optimized Learning Rate, Momentum Factor and 

Proportional Factor terms and recursive formula evaluating for derivatives and optimization 

goal with manner Learning Rate, Momentum Factor and Proportional Factor. The behavior of 

B.P algorithm does not raise computational difficulty. The convergence performance for 

three backpropagation process [16] established and show the numbers of three term B.P 

process though verify some condition for stable system and convergence to local minima. 

Adaptive momentum [4] analyzed with convergence back-propagation algorithm when it uses 
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hidden layer for teaching feedforward neural networks. Convergence theorems describe 

sufficient conditions for ineffective and effective convergence result. The two objectives 

accuracy and complexity of the network [2] define hybrid non-subjugated sorting genetic 

algorithm-II for optimize three-term backpropagation. A multiclass classification problem is 

effective by experimental results. The stability of RNNs with several equilibria is calculated. 

There are many recurrent neural network model main factors pretending, many equilibria, 

activation functions, multi stability and whole stability procedure. The result of total stability 

and multi stability recurrent neural network [10]. 

 

Here we define transcendental function for three-term back propagation algorithm in 

convergence actions and they satisfy definite situation of coefficient for three-term back 

propagation algorithm. If the system is stable and covers local minima, then the cost function 

of local minima is asymptotically stable. cost function also analysis by proportional factor 

and back propagation algorithm. We also find optimum solution for the learning rate, 

momentum factor and proportional factor terms. Mentioned equation is modified version 

Yahya H Zweiri [16]. 

 

∆W (K) = tanhα (−∇E W K  ) + tanhβ ∆W(K-1)                                                                (1)                                                                                         

            

Let W be a vector established by the whole networks weight and ∇E(W(K))  be the gradient 

of E at W=W(K) with k=1,2, 3....N existence the iteration number of the weight vector. The 

momentum term algorithm for two-term back propagation [15] where tanhα learning rate and 

tanhβ momentum factor correspondingly. 

 

∆W (K) = - tanhα ∇E(W(K)) + tanhβ ∆W(K-1) +tanhγ e(W(K))                                         (2)                                                                          

                                              

We modified this equation for three terms of back propagation algorithm is analyzed. Here 

we show that the local minima for least square error function are the single nearby 

asymptotically stable point of algorithm. Then the equation (2) defines as 

 

 W (K+1) = W(K) -  tanhα ∇E(W(K)) + tanhβ ∆W(K-1) + tanhγ e(w(K))                           (3)   

                                                                            

                     

Ψ1 = W(K) and Ψ2 = W K − W(K − 1) then equation (3) represents state variable 

 

Ψ1 K + 1 = Ψ1 K − tanhα Ψ1 K  + tanhβ  Ψ2 K  + tanhγ e(Ψ1 K )                       (4)    

                                     

 

 Ψ2 K + 1 = −tanhα Ψ1 K  + tanhβ  Ψ2 K  + tanhγ e(Ψ1 K )                                  (5)                                                                       

 

Lemma 1. The system of equations (4) and (5) define a equilibrium point at c = (c1, c2 ). If c2 

= 0 and  tanhα ∇E  ψ
1
 K  = tanhγ e W K  . 

 

Proof: - Let Ψ1 K = c1 and Ψ2 K = c2, If c =  c1, c2  define equilibrium points             (6) 

 

Ψ1 K + 1 − Ψ1 K = 0                                                                                                                                   
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and Ψ2 K + 1 − Ψ2 K = 0                                                                                                  (7)    

                                                                   

when we substitute equation (4) and (5) we find 

  1 − tanhβ  Ψ2 K  = −tanhα ∇E (Ψ1 K + tanhγ e(Ψ1 K )                                           (8)  

                                                             

 

−tanhβ  Ψ2 K  = −tanhα ∇E  Ψ1(K ) + tanhγ e(Ψ1 K )                                                (9)      

 

                                                                  

Subtracting eq.(8) from (9) yields Ψ2 K = 0 ⇒ c2 = 0 replacing Ψ2 K = 0 in eq.(8) and 

(9) gives 

 

tanhhα∇E (Ψ
1

(K)) = tanhhγ e(Ψ1(K))                                                                              (10) 

 

                                                                                                       

Remark: - If e(Ψ
1
 K ) = 0 is equilibrium place of equation (4) and (5) so ∇E(Ψ

1
(K))= 0 for 

c = (c1 ,c2) . 

 

The small signal analysis examined regional stability possessions about the equilibrium point 

(c1, c2). Let  λ1 = Ψ1 − c1 and λ2 = Ψ2 − c2 perturbed signal then we find state equation 

 

λ1(K + 1) = λ1(K) − tanhα∇E (c1 + λ
1

(K)) + tanhβ(λ2 K + tanhγ e(c1 + λ
1

(K))       (11) 

                                               

 

λ2(K + 1) = −tanhα∇E (c1 + λ
1

(K)) + tanhβ(λ2 K + tanhγ e(c1 + λ
1

(K))                  (12)  

 

                                     

When we can linearize about the equilibrium point c equation (11) and (12) suited 

λ1(K + 1) = λ1(K) − tanhα∇2E  c1  (λ
1

(K)) + tanhβ(λ2 K + tanhγ e c1 − λ
1

(K))    (13) 

                           

      

λ2(K + 1) = −tanhα∇2E  c1  (λ
1

(K)) + tanhβ(λ2 K + tanhγ e c1 − λ
1

(K))               (14) 

                                    

 

If Q is a size of weight vector, then Hessian matrix equivalent to A ∈  RQXQ  and ∇ e (c1) 

equivalent to D ∈ RQ X Q  

 
λ1(K + 1)
λ2(K + 1)

 =  
1 − tanhα A + tanhγ D tanhβ I
−tanhα A + tanhγ D tanhβ I

  
λ1(K)
λ2(K)

                                                 (15)  

                        

 

The more compact from of above matrix  

λ K + 1 = ξ λ(K)                                                                                                                 (16) 

 

                                                                                                                                   

we know that equation (16) is discrete time system and asymptotically stable if ξ has distinct 

eigen values values ∅i  of ξ satisfy by (Leigh, 1985) 
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  ∅1 < 1                                                                                                                                (17)                                   

 

Lemma 2: -  
𝐴

tanh γ
−

𝐷

tanh α
  the corresponding eigen value of  λi  of F, of pairs ξ are given by 

the solution of quadric equation 

∅i
2 −  1 + tanhβ − tanhαtanhγ ∅i + tanhβ = 0                                                                (18)  

                                     

 

Proof. Whichever A and D invertible by ξ as long as tanhβ ≠ 0. Let ξ eigenvalue is ∅𝑖  and 

nonsingular ξ is nonzero. Let z = (x,y) be non-zero eigen vector analogous to ∅i then  

 

ξ z =  ∅𝑖  𝑧                                                                                                                              (19)                          

 

which directs to      

x – tanhα Ax + tanhγ Dx +tanhβ y = ∅ix                                                                               (20) 

 

                                                                                              

and 

– tanhα Ax + tanhγ Dx +tanhβ y = ∅iy                                                                                  (21)                                  

 

By substituting equation (21) in equation (20) and resolving for y(∅𝑖  ≠ 0) given  

y = 
(∅i−1)

∅i
x                                                                                                                              (22)                                

 

by substituting equation (22) in equation (21) gives 

(– tanhα A + tanhγ D) x + ((∅i − 1) −
tanh β(∅𝑖−1)

∅𝑖
)x                                                            (23)                                       

 

 

Since   
A

tanh γ
 −  

D

tanh α
  = F substituting in equation (23) gives 

FX =  
(∅i−1)(

tanh β

∅i
 −1)

tanh αtanh γ 
  x                                                                                                       (24)                                          

 

Horn & Johnsm 1985 says if vector x fulfilled these equations, then x is called eigen vector of 

F.  

Where  
(∅i−1)(

tanh β

∅i
 −1)

tanh αtanh γ 
    is scalar and nonzero. 

 Now λi  eigen value of F and Fx = λi  x then linear 

λi =  
(∅i−1)(

tanh β

∅i
 −1)

tanh αtanh γ 
                                                                                                             (25)        

                                

With corresponding eigen vector x. Rearranging equation (25) yields  

∅i
2 −  1 + tanhβ − tanhα λi  tanhγ ∅i + tanhβ = 0                                                            (26)                                
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Theorem 1: - If system describe stable condition of equation (13) and (14) and ∅i is roots of 

equation (26) and satisfy  ∅i < 1. If they satisfy following condition 

0 < 𝑡𝑎𝑛ℎ 𝛽 < 1       and                                                                                                                                  

(27) 

 0 <  𝑡𝑎𝑛ℎ 𝛼  𝑡𝑎𝑛ℎ 𝛾 λi < 4                                                                                                    
(28) 

                                                                

Proof: - The equation (26) represents the polynomial of second degree. Then equation shows 

as    f(z) = a2 + z
2
 + a1 z + a0 = 0 from the jury test the roots of f(z) describe a unit circle for 

the following condition  

 

  𝑎0 < 𝑎2                                                                                                                              (29)   

                                                                                                                                               

 

f(1) > 0                                                                                                                                   (30)   

                                                                                                                          

 

and (-1)
2
 f(-1) > 0                                                                                                                   (31)  

                                                                                                                           

 

applying the jury test to equation (26) yields roots within the unit circle if  

 tanhβ < 1                                                                                                                            (32)     

                                                  

 

 1 + tanhβ > ( 1 + tanhβ − tanhα tanhγ λi  )                                                                 (33)                                                                           

 

and 

 1 + tanhβ > (− 1 + tanhβ + tanhα tanhγ λi  )                                                              (34)                                                                   

 

Hence inequality (33) leads to  

  tanhα tanhγ λi > 0                                                                                                              (35)                                                              

 

and inequality (34) 

tanhβ >
tanh α tanh γ λi

2
−  1                                                                                                      (36)  

                                                                  

 

since the momentum factor tanhβ is positive 0 < 𝑡𝑎𝑛ℎ 𝛽 < 1                                             

(37) 

 

                                                       

using inequality (36) on equation (37) yields 

0 < 𝑡𝑎𝑛ℎ 𝛼 𝑡𝑎𝑛ℎ 𝛾 λi < 4                                                                                                       
(38)                                                                             

 

tanhα  and tanhγ values must be positive though accept the system and understand. 
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III.  INFERENCE OF OPTIMAL TERM LEARNING RATE, MOMENTUM FACTOR 

AND PROPORTIONAL FACTOR  

 

Suppose a group of teaching example pairs describe as (I1, T1) (I2, T2) ------------- (In, Tn) 

where Is, 1 ≤ s ≤ n indicate the s
th

  input and Ts , 1 ≤ s ≤ n is the corresponding desired 

output of back propagation system for multi-layer neural system for random hidden layers 

then least square error function  

 

E =
1

n ZM  
 [  TS − OS

M ]Tn
S = 1 [  TS − OS

M ]                                                                               (39) 

                                                                                

 

Where OS
M , IS and ZM is the output vector, input, and output neurons for M-layered network. 

If feed forward calculation of system with IS   shows input layer  

 

OS,i
m = f  Wi

m K + 1  T  OS
m−1                                                                                              (40) 

                                                                                        

 

Where O S,i
 m  , 1 ≤ i ≤ Zm  describe the i

th
 output of layer m, 1 ≤ m ≤ M and f(.) is the 

activation function. If Wi
m (K + 1) is a sub vector of W (K+1) then it contains all weights of 

neurons of layer m-1 to O S,i
 m  and O S,i

 m−1 is a vector created by all the output of layer m-1and is 

given by  

 

OS,i
m =  

[ 1  OS,1
m−1 …… . OS,Zm  

m−1 ]T      for m > 1,

[ 1      IS
T    ]T                            for m = 1  

                                                                    (41)     

                                                                         

Here w(K+1) minimize E is needed for optimization tanhα, tanhβ, tanhγ.Here we use as a 

function of equation with a three independent variables E(tanhα, tanhβ, tanhγ) called 

objective function E. 

 

 W K + 1 = W K + tanhα P K +  tanhβ ∆w K − 1 +  tanhγ e (w(K))                       (42)  

                                 

 

where P K = −∇E W K  is descent directional vector exchanging eq. (42) into eq. (40) 

provides.  

 

O S,i
m = f([ Wi

m K + tanhαPi
m K + tanhβ ∆Wi

m K − 1 + tanhγ ei
m(K)]T OS

m−1)              (43) 

 

                           

By the calculation of first and second derivative of E with respect to tanhα, tanhβ, tanhγ yield  

 

g tanhα, tanhβ, tanhγ =

 
 
 
 
 
∂E(tanhα,tanhβ,tanhγ)

∂tanhα

∂E(tanhα,tanhβ,tanhγ)

∂tanhβ

∂E(tanhα,tanhβ,tanhγ)

∂tanhγ  
 
 
 
 

                                                                           (44)                                  
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∂E(tanhα,tanhβ,tanhγ)

∂tanhα
= −

2

nzm

  TS − OS
M 

∂OS
M

∂tanhα

n
s=1                                                                       (45)     

                                                                

 
∂E(tanhα,tanhβ,tanhγ)

∂tanhβ
= −

2

nzm

  TS − OS
M 

∂OS
M

∂tanhβ

n
s=1                                                                       (46)   

                        

 
∂E(tanhα,tanhβ,tanhγ)

∂tanhγ
= −

2

nzm

  TS − OS
M 

∂OS
M

∂tanhγ

n
s=1                                                                       (47)   

                                          

 

Hessian matrix of E is defined as 

 

H tanhα, tanhβ, tanhγ =

 
 
 
 
 
 
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhα 2
  
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhα ∂(tanhβ)
  
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhα ∂(tanhγ)

∂2E(tanhα,tanhβ,tanhγ)

∂ tanhβ ∂(tanhα)
  
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhβ 2
  
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhβ ∂(tanhγ)

∂E(tanhα,tanhβ,tanhγ)

∂ tanhγ ∂(tanhα)
  
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhγ ∂(tanhβ)
   
∂2E(tanhα,tanhβ,tanhγ)

∂ tanhγ 2  
 
 
 
 
 

             (48)   

            

 

When we compute equation (44) for gradient vector and derivatives of OS
M

 at  

(tanhα0, tanhβ
0
, tanhγ

0
) for Hessian matrix equation and computed equation (48) thus the 

derivative of objective function E(X) define as  

 

 X = [tanhα, tanhβ, tanhγ]𝑇                                                                                                    (49)   

                                   

 

We use second order and second-degree Taylor polynomial for estimated E(X) and X near 

(tanhα0, tanhβ
0
, tanhγ

0
). The condition of E(X) has continuous second order partial derivative 

though define as 

E X = E tanhα0, tanhβ
0
, tanhγ

0
 +  tanhα − tanhα0 

∂E

∂tanhα
+  tanhβ − tanhβ

0
 

∂E

∂tanhβ
  

            + tanhγ − tanhγ
0
 

∂E

∂tanhγ
+

1

2
 tanhα − tanhα0 

2 ∂2E

∂tanh
2
α

+
1

2
 tanhβ − tanhβ

0
 

2 ∂2E

∂tanh
2
β
 

             +
1

2
 tanhγ − tanhγ

0
 

2 ∂2E

∂tanh
2
γ
 +  tanhα − tanhα0  tanhβ − tanhβ

0
 

∂2E

∂tanhα ∂tanhβ
  

            + tanhβ − tanhβ
0
  tanhγ − tanhγ

0
 

∂2E

∂tanhβ ∂tanhγ
    + tanhγ − tanhγ

0
  tanhα −

                  tanhα0∂2E∂tanhγ∂tanhα 

             =
1

2
ΨT HeΨ + ΨTg

e
+ ae                                                                                          (50) 

                                                                                                      

Where Ψ = [tanhα − tanhα0 tanhβ − tanhβ
0  

tanhγ − tanhγ
0
 ]T, 

η
0

= E tanhα0, tanhβ
0
, tanhγ

0
 . 

 

Here equation (44) defines gradient vector g and equation (48) defines hessian matrix H. 
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Case I:  According to M.A. Wolfe [9] E(X) represents convex set C continuous second 

partial derivatives and we assume the Hessian matrix H(X) at x for all X in C be positive 

definite. Here crucial point y of E(X) in C. So, we can say if E(X) is closely convex in C then 

y is powerful global minimize of E(X) above C. We assume function E (0,0,0) = 0 and 

gradient E(0,0,0) = 0 for equation (50) and simplifies quadratic polynomial 

The discriminates are  

 

D1 = 4  
1

4
Etanhαtanhα  

1

4
Etanhβtanhβ −  Etanhαtanhβ 

2
 

D2 = 4  
1

4
Etanhαtanhα  

1

4
Etanhγtanhγ −  Etanhαtanhγ 

2
 

D3 = 4  
1

4
Etanhβtanhβ  

1

4
Etanhγtanhγ −  Etanhβtanhγ 

2
 

  𝐸 𝑋 =
1

2
(tanhα)2Etanh αtanh α +

1

2
(tanhβ)2Etanh βtanh β +

1

2
(tanhγ)2Etanh γtanh γ  

           + tanhαtanhαEtanhαtanhα + tanhβ tanhβ Etanhβtanhβ + tanhγtanhγEtanhγtanhγ                   (51) 

                   

 

If   Etanhαtanhα > 0, D1 > 0  is a positive definite for H then symmetric matrix and (D
2

>

0, D3 > 0) the optimal learning rate, momentum factor and proportional factor terms can be 

calculated as  

 
dE

dΨ
= HΨ + g = 0 ⇒ Ψ = −H−1g                                                                                        (52)   

                                       

 

It is noted that this process defines equation (50) is minimized.  

 

Case II: If one of D2 or D3 is negative and H is a positive definite matrix, then 

E(tanhα, tanhβ, tanhγ) can’t be categorized as convex. Though, E(tanhα, tanhβ, 0 ) is convex 

and optimal learning rate and momentum factor terms can be designed as in case first by 

location tanhγ = 0 

 

Case III: If Etanhαtanhα > 0 and H is a non-positive definite matrix then the expansion of 

second order E(tanhα,0,0) convex alongside the descent direction of P(K). We calculate the 

optimal learning rate in case first by location tanhβ = tanhγ = 0 

 

Case IV: Suppose H is non positive definite matrix and Etanhαtanhα < 0  the optimization aim 

comportment accelerated declined method along the descent direction P(k) because both 

Etanhα and Etanhαtanhα accept negative values. Yu and several authors [15] represent the optimal 

LR and estimated line search method and efficient of supplying an effective descent to the 

optimization aim. 

 

IV. ESTIMATE OF SIGMOID NONLINEAR TRANSCENDENTAL FUNCTION 

 

Suppose the equation  

 

              y = f([ Wi
M k + tanhαPi

M k + tanhβ ∆Wi
M k− 1 + tanhγ ei

M(k)]T OS
M−1) 
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Here we describe sigmoidal nonlinear function, for output layer and approximated. Set of 

liner function  

 

f y =  

m1y + b1                                                                         for  y
1
≤ y ≤ y

2
      

m2y + b2                                                                                    for  y
1
≥ y  

m2y +  2b1 − b2                                                                        for y
1
≤ y

          (53)   

                        

 

 

        OS
M = f([ Wi

k k + tanhαPi
M k + tanhβ ∆Wi

m k − 1 + tanhγ ei
m(k)]T OS

M−1)           (54)    

                       

 

 On substituting eq. (54) into equation (45)-(47) and equating etanhα , etanhβ , etanhγ to zero 

yield  

  tanhα mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1 + tanhβ mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1  

 

  + tanhγ mj  ei
M    

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1 =   
∂𝑂𝑠

𝑀

∂tanh α
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj
n
s=1  )   (55) 

 
                         

 tanhα mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanh β
 

T

   Os
M−1n

s=1 + tanhβ mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tanh β
 

T

   Os
M−1n

s=1  

 
 

+ tanhγ mj  ei
M    

∂𝑂𝑠
𝑀

∂tanhβ
 

T

   Os
M−1

n

s=1

=   
∂𝑂𝑠

𝑀

∂tanhβ
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj

n

s=1

 )     (56) 

 
 

tanhα mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanhγ
 

T

   Os
M−1

n

s=1

+ tanhβ mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tanhγ
 

T

   Os
M−1

n

s=1

 

 

+ tanhγ mj  ei
M    

∂𝑂𝑠
𝑀

∂tanh γ
 

T

   Os
M−1n

s=1 =   
∂𝑂𝑠

𝑀

∂tanh γ
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj
n
s=1  )     (57)                            

                         
 
From equation (59) define a non-singular matrix A2 then the optimal tanhα, tanhβ and 

tanhγ can be calculated by solving equation (55)-(57) simultaneously  

 

                                                                      τ = A2
−1

R2                                                  (58)  

                                                       

A2 =  

A11 A12 A13

A21 A22 A23

A31 A32 A33

                                                                                                     (59) 
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                                                   Where  

𝐴11 = mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1  ,                         

𝐴12 = mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1  

𝐴13 = mj  ei
M    

∂𝑂𝑠
𝑀

∂tanh α
 

T

   Os
M−1n

s=1  ,                          𝐴21 = mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanh β
 

T

   Os
M−1n

s=1   

𝐴22 = mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tanh β
 

T

   Os
M−1n

s=1   ,        𝐴23 = mj  ei
M    

∂𝑂𝑠
𝑀

∂tanh β
 

T

   Os
M−1n

s=1  

𝐴31 = mj  Pi
M    

∂𝑂𝑠
𝑀

∂tanh γ
 

T

   Os
M−1n

s=1  ,                          

𝐴32 = mj  ∆Wi
M (K − 1)   

∂𝑂𝑠
𝑀

∂tan hγ
 

T

   Os
M−1n

s=1  

𝐴33 = mj  ei
M    

∂𝑂𝑠
𝑀

∂tanh γ
 

T

   Os
M−1n

s=1         

 

and 

𝑅2 =

 
 
 
 
 
   

∂𝑂𝑠
𝑀

∂tanh α
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj
n
s=1  )

  
∂𝑂𝑠

𝑀

∂tanh β
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj
n
s=1  )

  
∂𝑂𝑠

𝑀

∂tanh γ
 

T

 (Ts − mjWi
M (k)Os

M−1 − bj
n
s=1  ) 

 
 
 
 
 

                                                       (60)                                   

   

V. CONCLUSIONS 

 

Here we describe ascertains necessary and sufficient condition for confluence and 

stability actions of three-term back propagation transcendental function equation (35) and 

(36) satisfy the concurrent of three-term back propagation system. This equation also shows a 

stable system and will cover local minima. Constraint (36) also defined the large eigen value 

of matrix F. The most of all cases minima though are sit inside a bounded set because F is 

bounded and hence if tanhα , tanhγ are adequately small, all the neighboring minima stable. If 

the system is unstable, it means one eigen value of matrix F is minus. It is also describing 

cost function of all minima are single locally asymptotically point for the system. This paper 

shows an optimization approach for development, finds optimal training limits, improving 

learning rate for three term of back propagation algorithm. We use an optimization approach 

for transcendental function and generate sigmoidal nonlinearity function. 
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