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Abstract 

 

This article proposed using a deep 

learning neural network (DLNN) approach 

to forecast transient stability. Transient 

Stability Assessments (TSA) have long been 

acknowledged as being crucial for 

maintaining the reliable and protect 

operations of power systems. The 

complexity of power system dynamic 

features has increased because to the 

introduction of new components like power 

electronics, electric vehicles, and renewable 

energy sources, raising severe concerns 

among TSA.  The development of 

renewable energy sources is currently 

having an impact on the reliability and 

security of the electrical network. Wide area 

monitoring systems have been used in the 

electrical system, producing large amounts 

of data that have ushered in new approaches 

to resolving these problems. Transient 

stability issues are attracting the attention of 

a wide range of stakeholders due to the 

potential for catastrophic outages. The goal 

of this project is to use data collection and 

DLNN to look for TSA problems in the 

electrical system. Data from the National 

Control Center (NCC) Oshogbo was used to 

mimic the Nigerian 28 Bus system in the 

DIgSILENT environment. In a Python 

context, a feature selection pipeline is built 

using the Relief-F feature selection method. 

To forecast transient stability on Python, the 

chosen feature will be fed into a particular 

form of DLNN. The DLNN reduces the 

time complexity of TSA, increasing 

accuracy. The accuracy value produced for 

the Nigeria 28 bus system is 90.16 percent 

once the system converges after 31 epochs. 

The IEEE 9 bus test system is used to 

validate the DLNN approach, which is used 
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to evaluate transient stability. The outcome 

of this work is compared with similar work 

in the conclusion in terms of some 

evaluation performance.   

  

Keywords: Transient stability assessment, 

Deep Learning Neural Network, Long-short 

Term Memory, Transient stability, Power 

system stability, Artificial Intelligence, 

Neural Network, Relief F, Recurrent Neural 

Network.   
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I. INTRODUCTION   
 

Power system stability refers to a power system's capacity to return to an equilibrium 

state and perform as intended in the wake of a disturbance. Rotor angle instability caused by 

synchronism loss has long been linked to the instability issue [4]. Transient stability is the 

capacity of a power system to retain synchronism in the face of significant distractions [12]. 

It is crucial in this case that TSA is efficient and precise. Thanks to the quick development of 

artificial intelligence techniques, data-driven TSA procedures have gained a lot of attention in 

recent years, and numerous research findings have been made public. So that relevant 

academia can have a better awareness of the research state, key technologies, and current 

difficulties in the field [7], a thorough evaluation of the available data-driven TSA 

approaches is required. The three types of TSA methods offered are time domain or 

traditional simulation method, direct method, and data-driven artificial intelligence approach.   

A group of highly nonlinear Differential and Algebraic Equations (DAE) characterize the 

behavior of synchronous generators in relation to their associated control systems, loads, 

renewable energy output, flexible AC transmission devices (FACTs), and the transmission 

network. The DAE model must be numerically solved for each condition using time domain 

simulations since it cannot be linearized around an operating point when a power system 

encounters large changes. Transient instability, which primarily causes power outages and 

also reduces a power system's overall performance [15]. A type of TSA known as time 

domain simulations is expensive and computationally difficult, especially for large power 

systems with an almost unlimited number of operating points and contingencies [13], [14]. 

The prediction model is trained using a Deep Learning technique (LSTM) and a data set for a 

variety of operating circumstances in order to accomplish these goals. The TSA's time 

complexity is decreased by the LSTM, thus enhancing prediction accuracy. The proposed 

model's enhanced performance is demonstrated using the Nigeria 28 Bus System, and its 

support by the IEEE 9 Bus System is provided.  

   

II. TRANSIENT POWER SYSTEM STABILITY 
 

In this study, a deep learning neural network methodology is used to build a 

prediction model for the transient stability of Nigeria's 28 bus system. The mathematical 

process for transient stability is described in this section. 

   

1. Transient Stability TS: Rotor angle stability is the capacity of a synchronous machine in 

a power system to retain synchronism following an interruption. Power system outages 

may not always have the same effects on generation, so certain generators may suffer 

additional load as a result of adaptive operation and may slow down, while the remaining 

generators may accelerate up to maintain grid frequency [6–9]. The tilt of the rotor with 

reference to the stator changes as the generator's speed rises. The rotor continuously 

alternates between accelerating and decelerating in order to maintain balance between the 

mechanical input torque and the electrical output torque [10], [11]. By engaging in this 

activity, the generator's ability to produce power is reduced, and the generator, prime 

mover, and transformers are all damaged. As a result, the synchronous machine needs to 

be safeguarded [2]. The dynamic reaction of a power system to disturbances is controlled 

by a collection of DAE, and their compact form is:  
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The state as well as the algebraic variables x and y are shown. In addition, h and g 

stand for the respective DAE's vectors [4], [5]. To obtain time-varying trajectories, the 

algebraic variables y, such as bus voltages and active power injections, and the state 

variables x, such as rotor angles and frequencies, are solved. This is done by employing 

numerical methods like the trapezoidal approach to discretize the set of differential 

equations (1). The generated algebraic equations and the remaining algebraic equations 

are solved by the Newton's technique at each time step (2). To evaluate transient stability, 

the dynamic trajectories over the simulation time window are monitored. This method 

provides an accurate assessment of temporary for a specific situation [16].   

   

2. Long Short Term Memory Network in TSA: Recalling information from the past in 

time series requires LSTM because, LSTMs are capable of remembering previous inputs, 

they are useful for time-series prediction and are used to follow data across time.  

LSTMs, which have a chain-like structure and four interacting layers, interact in various 

ways. In addition to time series predictions, LSTMs are commonly used in speech 

recognition, music production, and pharmaceutical research [17]. LSTM is used to 

address the long-term dependency problem's problems. LSTM networks are a subset of 

RNNs. At each stage, the LSTM’s has the choice to read, write, or reset the transaction 

[3]. Equation 3 displays the LSTM's mathematical formulas;   

    

           
 

The operator stands for the pointwise multiplication of two vectors where ct 

represents the state of the LSTM cell and Wi, Wc, and Wo represent the weights. The 

input gate chooses what new data can be entered while updating the cell state, and the 

output gate chooses what data can be output based on the cell state [1], [3]. Based on the 

connections, the LSTM cell indicated in equation 4 can be mathematically described as 

follows.   

   

 

(3)     
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The forget gate determines what notifications from the cell state will be deleted. 

This information is stored when the forget gate, ft, has a value of 1, and it is completely 

discarded when it has a value of 0.  The LSTM's structure is depicted in Figure 1.   

    

  

. 

 

                                              Figure 1:  LSTM Network Diagram [17] 

   

3. Network Structure of the Model: This study constructs a six-layer network model for a 

Deep learning NN for TSA, which is described below.   

  

 Data collection: The National Control Center (NCC), Oshogbo, is where appropriate 

data for modeling the 28-bus Nigeria network are acquired.   

  Using DIgSLIENT, the Nigeria 28 bus system was network modeled. iii. Collection 

of data for DLNN: The Relief-F technique is applied to remove irrelevant data from 

redundant ones.    

(4)    
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 DLNN (LSTM): To perform the necessary Transient stability evaluation, a DLNN 

based on LSTM is modelled based on the data that is currently available, trained, 

tested, and validated.    

 Performance evaluation: The Specificity, Accuracy, and Precision measures are then 

used to evaluate the performance of the LSTM model.   

 Evaluate outcomes in the context of related research.    

 The suggested model for evaluating transient stability is depicted in Figure 2. The 

TSA model has four inputs: voltage, rotor angle, reactive power, and active power.  

  

   

 
 

                                 Figure 2: Schematic design model of TSA   

  

III.   RESULT AND DISCUSSION  

 

The test is run using the LSTM and Relief-f algorithm. Python/DIgSLIENT is utilized 

in this study to carry out the study. The Nigerian 28-bus power system for TSA is depicted in 

Figure 3 below in DIgSILENT model form. For TS, information was acquired via 

DIgSILENT under various scenarios.   

   



Futuristic Trends in Artificial Intelligence 

e-ISBN: 978-93-6252-830-8 

IIP Series, Volume 3, Book 2 , Part 1 , Chapter 1 

DEVELOPMENT OF A DLNN MODEL FOR  

TRANSIENT STABILITY ASSESSMENT OF NIGERIA 28 BUS SYSTEM 

 

Copyright © 2024 Authors                                                                                                                       Page | 7  

 

 
   

   

                                                Figure 3: Modelling of Nigerian 28-Bus System   

   

The user interface in this study allows users to import datasets, choose pertinent 

information from the enormous amount of data, and preprocess and choose pertinent 

subsets of the data using the Relief-F feature selection method. Table 1 displays loaded 

data for the 28 bus system in Nigeria.   
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Table 1: Loaded Data Nigerian 28-Bus System 

 

V(p.u) P(KW) 
Q 

(KVAr) 
(ϴ) 

TSA  

Targ 

0.388583 -271.618 0.454232 -63.3957 0 

0.469965 563.2468 -306.641 97.48929 0 

0.255932 -209.335 151.7141 -102.012 0 

0.533196 409.5992 -385.232 58.1159 0 

0.147646 19.65125 190.0627 -142.138 0 

0.540542 127.6128 -338.973 17.22918 0 

0.220532 318.4933 72.08323 176.2186 0 

0.484492 -151.327 -180.955 -25.1795 0 

0.370508 535.4349 -148.529 133.0507 0 

0.366197 -274.478 26.74668 -69.1091 0 

0.489727 539.7334 -341.938 88.36538 0 

0.209501 -156.153 174.4907 -114.545 0 

0.543035 309.6819 -389.185 42.17829 0 

0.154649 150.4527 153.4337 -161.475 0 

0.514599 -27.5849 -260.075 -5.50633 0 

0.310105 458.6298 -49.8561 150.0938 0 

0.403731 -252.811 -30.6135 -54.6958 0 

0.465345 553.8266 -304.05 100.1514 0 

0.233219 -197.255 154.0606 -105.39 0 

0.54455 350.7548 -412.666 48.70475 0 

0.261644 -207.228 163.5346 -100.006 1 

0.533944 476.4872 -393.262 69.36015 1 

0.18805 -114.21 196.6741 -121.668 1 

0.558244 357.5287 -423.106 46.91436 1 

0.143834 28.34095 192.7953 -144.893 1 

0.557052 193.1078 -381.217 22.91489 1 

   

In this study, the preprocessed, Relief-f with DLNN-analyzed loaded data contains 

81,802 instances classified as stable or unstable. Relief-F is used to preprocess the loaded 

data, and the Python LSTM is then given the specified feature. The DLNN is made up of 

input layers, hidden layers, and LSTM-based output layers. The model confusion matrix 

utilized to determine the evaluation performance of the developed model, including accuracy, 

sensitivity, and precision using the LSTM, is shown in Figure 5. After 31 epochs, the system 

converges, and the model accuracy for TSA hits 90.16 percent. Table 2 displays the model 

evaluation performance of the method.   
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Figure 5:  Confusion Matrix for the TSA Developed Model. TP=14335; TN=275; 

FP=225; FN=1526 
 

Table 2: Evaluation Performance for TSA 
 

Measure   Evaluation (%)   Derivations   

Sensitivity   90.38   TRP=TP/(TP+FN)   

Precision   98.45   PPV=TP/(TP+FP)   

Accuracy   90.16   AC=(TP+TN)/(P+N)   

   

The Target value of TSA acquired on DIgSILENT is displayed in Table 3 and is 

subsequently placed into a Long Short Term Memory (LSTM). To obtain a projected value 

for TSA, the LSTM is trained. Whether TSA is stable or 
 
unstable can be determined by the 

projected value that was attained. When the rotor angle is between 0 and 120 degrees, as 

predicted, the system is stable; however, when the rotor angle exceeds 120 degrees, the 

system is unstable.  

.    
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IV.  RESULTS COMPARED ON IEEE 9-BUS TEST SYSTEM   
 

The modeling of the IEEE 9 bus system in the DIgSILENT power factory is shown in 

this section, as indicated in Figure 5, and it is used to verify the accuracy of the TSA 

evaluation results. According to where the load and generator were located, the bus bars were 

either modelled as PV or PQ when it came to the transmission lines. The loads were PQ data-

based lumped loads. The generators were accurately modeled using the appropriate data and 

synchronous generator characteristics. For these systems, time-domain simulations are 

performed using DIgSILENT. The input consists of the angle of the generator's rotor, the 

voltage's magnitude, as well as the amount of active and reactive power at each bus. 

Additionally, 10 seconds of these simulations are run with a 0.3 second temporal offset.  

   

  
   

Figure 5: Modelling of IEEE 9 Bus System in DIgSILENT 

  

The loaded data for the IEEE 9 bus system, which was created and used for training 

and testing, is shown in Table 4 and consists of 62,500 target values. This is because large 

amounts of data are required to train neural networks. The IEEE 9-Bus system recovered 

18,750 testing samples and 43,750 training samples with the right goal values.    
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Table 4: Loaded data for IEEE 9 bus system 

 

V(p.u) P(KW) 
Q 

(KVAr) 
(ϴ) 

TSA  

Target 

0.17958 -123.513 171.9536 -121.034 0 

0.541271 191.1149 -377.243 26.03689 0 

0.21862 312.9513 61.45572 172.7484 0 

0.437684 -202.49 -101.296 -40.9198 0 

0.441616 528.1544 -257.218 105.0707 0 

0.210953 -162.216 160.9706 -109.329 0 

0.542129 238.5471 -392.568 35.91947 0 

0.194307 277.8757 75.5049 -179.199 0 

0.459572 -195.994 -154.359 -34.6968 0 

0.428978 542.6657 -250.911 109.4685 0 

0.228289 -186.864 148.0511 -106.753 0 

0.534469 254.3771 -375.392 36.6825 0 

0.198982 272.5964 83.33363 179.7563 0 

0.441242 -197.513 -114.59 -37.5489 0 

0.445292 530.6067 -272.797 104.8101 0 

0.194562 -150.778 160.4638 -113.223 0 

0.542532 191.7196 -392.29 28.39765 0 

0.227462 338.5404 33.06602 169.661 1 

0.418274 -235.976 -78.9364 -49.4565 1 

0.468614 509.4048 -308.579 91.10054 1 

   

Figure 6 displays the TSA model confusion matrix that was utilized to compute the 

evaluation performance of the developed model, such as accuracy, sensitivity, and precision, 

using the DLNN technique. TP=2300, TN=5900, FP=4000, and FN=370 are the outcomes of 

the confusion matrix TSA created model. After 82 epochs, the system converges, and for 

TSA, the model accuracy is 65%.   
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                         Figure 6: Confusion matrix for the TSA IEEE 9 bus system   

 

Measure Evaluation (%) Derivations 

Sensitivity 94 TPR=TP/(TP+FN) 

Precious 86 PPV=TP/(TP+FP) 

Accuracy 65 ACC=(TP+TN)/(P+N) 

   

The results were compared with other works on TSA using various machine learning 

techniques. Table 6 compares the effectiveness of several techniques for predicting TSA. 

Accuracy, sensitivity, and precision are the main comparison criteria. The TSA's accuracy, 

sensitivity, and precision in the created LSTM for the 28 bus system in Nigeria have 

excellent evaluation performance. The low accuracy in TSA is due to the input data acquired, 

which included so many floats. Meanwhile, utilizing the IEEE 9 bus system, the evaluation 

performance for accuracy was 65%. In this scenario, random hyperparameter adjustment can 

be used to increase TSA accuracy, but a longer training period is necessary.   

 

 

  



Futuristic Trends in Artificial Intelligence 

e-ISBN: 978-93-6252-830-8 

IIP Series, Volume 3, Book 2 , Part 1 , Chapter 1 

DEVELOPMENT OF A DLNN MODEL FOR  

TRANSIENT STABILITY ASSESSMENT OF NIGERIA 28 BUS SYSTEM 

 

Copyright © 2024 Authors                                                                                                                       Page | 13  

 

Table 6: Comparison of the performance with TSA methods 

  

 

 
 

V.   CONCLUSION   
 

It is now simpler to convert the current power systems into a new generation of power 

systems with a high penetration of renewable energy and power electronics thanks to the 

integration of power electronics technology and renewable energy sources. Because of this 

change, assessing the transient stability of power networks is rather difficult. Data driven 

TSA methods establish a relationship between system operational parameters and stability 

status before determining stability results without requiring a power system's physical model 

or parameter information, in contrast to conventional time domain simulation and energy 

function methods. The dependable and secure operation of electricity networks depends on an 

understanding of transient stability. For the purpose of assessing transient stability, feature-

based deep learning algorithms (LSTM) are provided in this study. The study's findings will 

be beneficial to academics interested in the subject by providing them with a better 

understanding of the state of research in the fields of power system transient stability 

evaluation.   
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