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PERIODONTAL BIOENGINEERING 

 

Abstract 

 

Periodontal diseases, such as 

periodontitis and gingivitis, are prevalent 

oral health conditions affecting a significant 

portion of the global population. Traditional 

treatment approaches for periodontal 

diseases, such as scaling and root planning, 

have limitations in achieving complete 

regeneration of periodontal tissues. In recent 

years, bioengineering approaches have 

emerged as promising strategies to 

regenerate and restore periodontal tissues. 

This chapter provides an overview of the 

current state of periodontal bioengineering, 

focusing on tissue engineering, regenerative 

therapies, and the use of biomaterials. 

Furthermore, it discusses key advancements 

and potential future directions in this rapidly 

evolving field. 
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I. INTRODUCTION 

 

 Periodontal disease is a chronic inflammatory condition that affects the tissues 

surrounding and supporting the teeth. It is one of the most prevalent oral health issues 

worldwide and is a leading cause of tooth loss in adults. Periodontal disease is influenced by 

various risk factors, including: Poor oral hygiene, Smoking and tobacco use, Genetics, 

Diabetes, Immune system disorders, Hormonal changes, Medications. 

 

 Prevention and management of periodontal disease involve a combination of 

professional dental care and good oral hygiene practices at home. Regular dental check-ups 

and professional cleanings are essential to monitor the health of the gums and address any 

early signs of gum disease. Additionally, maintaining proper oral hygiene through regular 

brushing, flossing, and using mouthwash can help prevent plaque buildup and reduce the risk 

of gum disease. In severe cases of periodontitis, treatments may include scaling and root 

planing (deep cleaning), antibiotic therapy, and, in advanced cases, surgical procedures to 

repair and regenerate damaged tissues and bones around the teeth.  

 

 Traditional periodontal treatment methods, while effective in many cases, do have 

some limitations. Some of the key limitations include: Invasiveness, Pain and Discomfort, 

Limited Tissue Regeneration, Dependency on Patient Compliance, Time-Consuming, Risk of 

Infection, Potential for Recurrence, Cost. Rationale for periodontal bioengineering. 

 

II. PERIODONTAL BIOENGINEERING 

 

 Periodontal bioengineering is an emerging field that aims to apply principles of 

engineering and regenerative medicine to develop novel treatments for periodontal diseases. 

The goal is to promote the regeneration of damaged or lost periodontal tissues, including 

bone, ligaments, and cementum, to restore the health and function of the affected teeth and 

surrounding structures. This innovative approach holds great promise in overcoming some of 

the limitations of traditional periodontal treatment methods. Here are some key rationales for 

periodontal bioengineering: 

 

 Tissue Regeneration: Periodontal bioengineering focuses on stimulating the body's 

natural regenerative processes to rebuild damaged or lost periodontal tissues. By using 

biomaterials, growth factors, and tissue scaffolds, it aims to create an environment 

conducive to tissue repair and regeneration. 

 Minimally Invasive: Bioengineering techniques often aim to be minimally invasive 

compared to traditional surgical methods. This can lead to reduced patient discomfort, 

faster recovery times, and better acceptance by patients who may be anxious about 

invasive treatments. 

 Personalization: Bioengineering allows for personalized treatment approaches. By 

tailoring the biomaterials and growth factors to each patient's specific needs, the 

potential for successful tissue regeneration is increased. 

 Long-Term Results: The goal of periodontal bioengineering is to promote the long-

term stability and health of the regenerated tissues. This can lead to more sustainable 

outcomes and reduce the risk of disease recurrence. 

 Preservation of Tooth Structure: In some cases, traditional periodontal treatments 

may involve the removal of tooth structure or require the extraction of severely 
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affected teeth. Bioengineering techniques aim to preserve and restore natural teeth 

whenever possible. 

 Potential for Adjunctive Therapies: Periodontal bioengineering can complement 

and enhance traditional treatments. For example, bioengineered materials can be used 

in conjunction with surgical procedures to improve the outcomes of regenerative 

therapies. 

 

1. Growth factors for Periodontal Regeneration: To facilitate the sustained release of the 

factors for periods of time, the incorporation of bioactive molecules into scaffolding 

materials is obligatory. Incorporating bioactive compounds into the scaffolds can be done 

in one of two ways: during manufacturing [1] or after [2]. Directly inserted bioactive 

compounds in bioresorbable scaffolds often release through a diffusion-controlled manner 

that is determined by the scaffold's pore diameters. The tortuosity of the scaffold is 

influenced by the various pore sizes, which in turn regulates the release of proteins [3]. 

Growth factor release and diffusion through the pores of the scaffold are both influenced 

by the type and rate of delivery device degradation. Human parathyroid hormone (PTH) 

was incorporated into biodegradable PLGA microspheres, which showed a regulated 

release of PTH [4]. Polymer microspheres successfully preserved the bioactivity of PTH, 

as shown by the activation of cAMP release. These biomimetic scaffolds efficiently 

regulated the release of BMPs, promoting the healing of craniofacial defects through cell 

invasion into the scaffolds [8]. However, despite these promising advancements in 

controlled-release delivery systems, further development is needed to create suitable 

bioactive molecule devices or alternative delivery methods to optimize therapeutic 

outcomes in regenerative medicine. 

 

2. Scaffold and Extracellular Matrix: The extracellular matrix (ECM), a dynamic tissue 

made up of a complex mixture of macromolecules, not only supports the structure of an 

organism but also has a significant impact on its many cellular functions [9]. Cell 

adhesion, migration, proliferation, and differentiation are some of these processes that are 

impacted by the nature and structural layout of the ECM around them [10]. Especially in 

craniofacial morphogenesis and regeneration, where interactions with the ECM are 

contact-mediated, BMPs (bone morphogenetic proteins) play a crucial role in bone 

induction [11]. The ECM includes substances such heparan sulfate, heparin, type II 

procollagen, fibrillins, proteoglycans, noggin, chordin, DAN, and types I and IV collagen. 

When rhBMPs are administered to wounds, they bind to these substances. For active 

morphogens, these contacts result in the best conformation possible, facilitating contact-

mediated reactions. The rate of material deterioration must be carefully taken into account 

when designing scaffolds that resemble the ECM since it has a substantial impact on 

tissue replacement for manufactured structures. The scaffold's growth factor release rate 

has a significant impact on the outcomes [13]. 

 

Furthermore, the behavior of BMPs in bones, periodontium, and teeth may be 

different from how they behave when incorporated into biomaterials like collagen and 

hydroxyapatite [14]. This variation is attributable to BMP retention at the implantation 

site, which is influenced by the morphogens' isoelectric point and charge properties [15]. 

For specific applications, improving the efficiency of BMPs in stimulating tissue 

regeneration and bone formation requires an understanding of these parameters. 
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3. Angiogenic Factors for Periodontal Repair: The periodontium, a highly vascularized 

tissue that surrounds and supports teeth, receives its essential blood supply from three 

primary sources: supraperiosteal arterioles running along the surface of the alveolar bone, 

vessels within the periodontal ligament (PDL) region that connects teeth to the bone, and 

arterioles stemming from the interdental septum that extend into the gum and sulcus 

regions [16]. This network of blood vessels is crucial as it provides nourishment to newly 

formed tissues, maintains local stability, and contributes to the body's defense by 

transporting immune cells and defensins to the gingival crevice [17]. However, a 

significant challenge in periodontal regeneration lies in stimulating the growth of new 

blood vessels in areas of the tooth root that lack them. 

 

Following an injury, capillaries infiltrate a fibrin clot, delivering vital nutrients, 

oxygen, and inflammatory cells to the wound site, thus facilitating the early formation of 

granulation tissue [18]. Furthermore, newly developed blood vessels play a pivotal role in 

fostering processes such as cell migration, proliferation, differentiation, and the 

production of extracellular matrix—essential elements of the initial stages of periodontal 

healing [19]. 

 

FGF-2, also known as basic fibroblast growth factor (bFGF), was shown to have 

strong angiogenic properties [20] and the ability to stimulate the development of 

immature PDL cells [21]. Additionally, it has been discovered that FGF-2 stimulation 

increases the mRNA expression of laminin, a protein crucial for angiogenesis, in PDL 

cells [22]. Additionally, recent studies have looked at how enamel matrix derivative 

(EMD) affects the angiogenesis of periodontal wounds, indicating that it may has the 

ability to speed up the regeneration of periodontal tissues [23]. 

 

    However, the rapid initial healing that EMD generated might not have been the 

only factor in it. Additional mechanisms are most likely to blame for this acceleration. It 

has been demonstrated that growth factors like as TGF-b1, IL-6, and PDGF-AB that PDL 

cells exposed to EMD may release expedite periodontal wound repair by promoting PDL 

cell proliferation in particular [24]. Additionally, studies have shown that EMD has no 

detrimental effects on the normal flora and can inhibit the bacterial expansion of 

periodontal pathogens during the healing of periodontal wounds [25]. 

 

  Vasculature tissue engineering poses a number of technological difficulties [26]. 

It is essential to choose the right vascular cells and scaffold materials. This frequently 

entails in vitro growing bone marrow or smooth muscle cells with a collagen-based 

matrix to create tubular structures, which then permit endothelial cells to adhere to the 

arterial wall. The mechanical qualities of scaffolds must be similar to those of native 

arteries in order for them to sustain fluid shear stress, strain, and physiological blood 

pressures and promote the appropriate development of vascular tissue. Further 

consideration must be given to potential conflicts between native blood vessels and 

synthetic manufactured grafts. 

  

  Growth factors are essential for facilitating tissue regeneration because they 

stimulate angiogenesis and give cells oxygen and nutrients. However, because of their 

variable in vivo stability, drug delivery mechanisms must be used. To encourage the 

creation of new vessels, it may be necessary to include angiogenic growth factors directly 

into scaffolds or use gene therapy for targeted delivery [27]. Angiogenesis is enhanced, 
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blood vessel maturation is induced, and mature vascular networks can be formed quickly 

using a dual growth factor delivery method using PDGF + VEGF [28]. 

 

4. Gene Therapy for Periodontal Engineering: Challenges and future directions: 

Conventional surgical techniques for regenerating periodontal tissues face limitations due 

to the short lifespan of growth factors in the body, requiring high concentrations of these 

factors [29]. Gene therapy emerges as a promising solution to this challenge by 

introducing specific genes into cells, either directly or indirectly through a matrix, to 

achieve the desired biological effects. This approach can be employed to replace 

dysfunctional mutant genes with functional ones or enhance the body's response to 

mutations. Gene therapy leverages vectors or direct delivery methods for targeted gene 

modification. 

 

To facilitate the regeneration of alveolar bone, tooth root cementum, and the 

periodontal ligament (PDL), Jin et al. employed an ex vivo approach to periodontal 

repair. They transplanted syngeneic dermal fibroblasts into substantial alveolar bone 

defects, which were previously transduced with Ad-BMP-7 or its antagonist, Ad-noggin. 

This method effectively restored periodontal defects, demonstrating a rapid progression 

from chondrogenesis to osteogenesis, cementogenesis, and the anticipated bridging of 

bone defects. However, the introduction of the noggin gene hindered periodontal bone 

and cementum recovery in both tissue-engineered cementum and periodontal defects [30]. 

PDGF, known for its potential to promote gingival, alveolar bone [31], and cementum 

regeneration in various wound healing models, was utilized. Adenovirus encoding PDGF-

B was administered for treating periodontal issues, resulting in significant bone and 

cementum regeneration compared to control vectors. This approach led to nearly four-

fold increases in bridging bone and six-fold increases in tooth-lining cement repair [32]. 

Moreover, the localized production of the luciferase reporter gene persisted in periodontal 

lesions for up to 21 days following gene transfer. These findings underscore the potential 

of gene therapy as an effective and durable method for stimulating the regeneration of 

periodontal tissues [33]. 

 

5. Challenges and Future Directions: In periodontal medicine, the currently used 

therapies, which are based on "damage to heal approaches," have had only patchy 

effectiveness. Tissue-engineering techniques have paved the way for the successful 

regeneration of numerous different tissues, offering significant solutions and hope for the 

treatment of periodontal disease in the face of an aging population. The currently 

available therapy options for periodontal repair have been greatly enhanced by the 

discovery of biological transplants for reconstructive therapies. Interest in the potential 

clinical application of stem cells has been sparked, in part, by the quickening speed of 

research in the field of stem cells and the growing volume of knowledge [34]. Because of 

its significant economic and therapeutic potential, both the corporate and public sectors 

are paying greater attention to this emerging subject. The field is heading toward human 

therapeutic utility, however there are important measures to take [35]. Particularly, there 

is a lack of understanding of what happens after cell transplantation, which emphasizes 

the critical need for reliable preclinical modeling to assess the safety and effectiveness of 

stem cells. Researchers and clinicians should be aware of the potential side effects of 

stem-cell therapies even if the clinical use of stem cells for the regeneration of periodontal 

tissue has already started. 
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There are two key requirements for effective tissue engineering. First and 

foremost, it is essential to understand technical principles related to scaffold 

biomechanics, architectural geometry, and space maintenance. In order to distribute cells 

and factors, biomaterials that resemble in vivo stem cell habitats are being developed. But 

it's possible that the intricacy of natural stem cell regulation mechanisms is not adequately 

captured by existing techniques. Second, effective differentiation and tissue regeneration 

depend on the biological functions of the engineered construct, including cell recruitment, 

proliferation, survival, neovascularization, and growth factor supply. Controlling stem 

cell behavior in a complicated in vivo environment, however, is still a difficult task. 

 

Periodontal therapy is being revolutionized by tissue engineering, and human 

patient clinical studies using stem cell transplantation have already started or are almost 

set to get started. A novel therapeutic paradigm for usage in clinical settings is being 

investigated by researchers who also want to improve and direct the healing of 

periodontal wounds. Host modulation therapies are essential for managing periodontal 

disorders and encouraging tissue reengineering, and it is necessary to understand that 

tissue regeneration alone might not be sufficient for long-term stable therapy. 

 

Investigating engineering techniques in polluted or infectious wound beds brought 

on by periodontitis is becoming more and more important in the field of periodontal tissue 

engineering. It is extremely difficult to maximize treatment effectiveness in passive or 

permissive settings with few biological signals. Critical issues that need to be addressed 

include selecting the best cell sources, figuring out therapeutically useful cell quantities, 

discovering efficient delivery techniques, incorporating new cells into preexisting tissue 

matrices, and achieving functional qualities using a variety of biomaterials. 

 

A major barrier that needs careful study is the clinical implementation of tissue 

engineering technologies' practical, safety, and regulatory considerations. 
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