
Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

101

BIG DATA TECHNOLOGIES AND CLOUD

COMPUTING FOR DATA SCIENCE ANALYTICS

Abstract

Big Data refers to extremely large, complex

datasets that challenge traditional data processing

systems, characterized by the four Vs: Volume

(sheer data size), Velocity (rapid data

generation/ingestion), Variety (diverse formats

like structured, unstructured, and semi-structured

data), and Veracity (data quality and reliability).

Managing these datasets poses significant

challenges in storage, distributed processing, and

scalability, necessitating specialized tools such as

Hadoop’s HDFS for distributed storage,

MapReduce for batch processing, and Spark for

in-memory analytics. Modern solutions leverage

distributed computing frameworks and NoSQL

databases (e.g., MongoDB, Cassandra) to handle

heterogeneity and scale. Cloud platforms like

AWS and Azure further address these challenges

through elastic resources and managed services

(e.g., AWS EMR, Azure HDInsight), enabling

efficient data pipeline orchestration. However,

organizations must still navigate trade-offs

between consistency, avail- ability, and partition

tolerance (CAP theorem) in distributed systems.

Emerging advancements in real-time stream

processing (e.g., Apache Flink) and hybrid cloud

architectures continue to reshape Big Data

ecosystems, driving innovation in sectors from

healthcare to finance. [1, 2].

Keywords: Big data, cloud computing,

distributed systems, data pipelines, NoSQL

Authors

Shubneet

Department of Computer Science

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

jeetshubneet27@gmail.com;

Anushka Raj Yadav

Department of Computer Science

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

ay462744@gmail.com;

Partha Chanda

Department of Computer Science

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

partha.chanda.ai@gmail.com;

Arnab Das

Department of Computer Science

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

arnabdasctg20@gmail.com;

Atahar Shihab
Department of Computer Science

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

ataharshihab5112@gmail.com;

mailto:jeetshubneet27@gmail.com
mailto:ay462744@gmail.com
mailto:partha.chanda.ai@gmail.com
mailto:arnabdasctg20@gmail.com
mailto:ataharshihab5112@gmail.com

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

102

I. Introduction

The exponential growth of data generation from IoT devices, social media plat- forms, and

AI-driven applications has necessitated a paradigm shift from traditional relational databases

to modern Big Data ecosystems. Early relational database management systems (RDBMS),

such as Oracle and MySQL, excelled at structured data storage and transactional consistency

but struggled to scale with the volume, velocity, and variety of data produced in the digital

age. The rise of distributed systems, cloud computing, and real-time analytics has redefined

how organizations store, process, and derive value from data, giving birth to technologies like

Hadoop, Spark, and NoSQL databases [3]. These tools address the limitations of traditional

systems through horizontal scalability, fault tolerance, and support for unstructured data,

enabling applications ranging from real-time fraud detection to personalized recommendation

engines.

Three key drivers underpin this evolution:

 IoT and Sensor Data: Billions of connected devices generate continuous streams of

telemetry data, demanding scalable storage and low-latency processing.

 Social Media: Platforms like Facebook and Twitter produce petabytes of unstructured
text, images, and video, requiring distributed processing frame- works.

 AI/ML Workloads: Training deep learning models on massive datasets necessitates
parallelized computation and efficient resource orchestration.

Central to this transformation are two foundational concepts: the CAP theorem and Lambda

architecture. The CAP theorem posits that distributed systems can only simultaneously

guarantee two of three properties: consistency, availability, and partition tolerance [4]. This

trade-off has shaped the design of NoSQL databases like Cassandra (prioritizing availability)

and MongoDB (emphasizing consistency). Meanwhile, the Lambda architecture reconciles

batch and stream processing by maintaining separate "cold" (batch) and "hot" (real-time) data

paths, ensuring both comprehensive analytics and low-latency insights.

Chapter Outline: This chapter explores the technological and conceptual pillars of Big Data

ecosystems:
 Fundamentals of Big Data: Characteristics (4Vs) and challenges
 Core Technologies: Hadoop, Spark, Hive, and NoSQL databases
 Distributed storage (HDFS) and computing paradigms (MapReduce)
 Cloud platforms (AWS, Azure, GCP) and managed services
 Data pipeline design principles and orchestration tools
 Real-world case study: Retail analytics at scale
 Hands-on exercises and framework comparisons

As organizations increasingly adopt hybrid cloud architectures and decentralized data

meshes, understanding these components becomes critical for building scalable, resilient data

infrastructure. The following sections provide both theoretical frameworks and practical

insights to navigate this complex landscape.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

103

II. HADOOP, SPARK, AND HIVE

The Hadoop ecosystem is foundational for Big Data analytics, providing robust tools for

distributed storage and processing. Its architecture comprises three core components: HDFS

for scalable storage, YARN for resource management, and MapReduce for batch

computation. HDFS splits large files into blocks distributed across DataN- odes, managed by

a central NameNode. YARN coordinates computational resources, allowing multiple

processing engines to share the cluster.

Hadoop vs. Spark Processing

Hadoop’s MapReduce framework processes data in batch mode, writing intermediate results

to disk. This disk-based approach is reliable but incurs high latency, making it less suitable

for iterative or interactive workloads. Apache Spark addresses these limitations with in-

memory processing using Resilient Distributed Datasets (RDDs), enabling up to 100x faster

execution for many analytics and machine learning tasks. Spark supports both batch and real-

time streaming, making it versatile for modern data pipelines.

Hive: SQL on Hadoop

Hive brings SQL-like querying to Hadoop through HiveQL, translating queries into

MapReduce or Tez jobs. Its Metastore manages schema and metadata, while its optimizer

improves query execution. Hive is ideal for ETL, reporting, and data warehousing, allowing

analysts to leverage familiar SQL syntax on massive datasets.

Spark Word Count Example

from pyspark . sql import Spark Session

spark = Spark Session . builder. app Name (" Word Count"). getOrCreate ()
text_rdd = spark . spark Context. textFile (" hdfs :/// input. txt")
word_counts = (text_rdd

. flatMap (lambda line : line . split ())

. map (lambda word : (word , 1))

. reduce By Key (lambda a, b: a + b))
word_counts . save As TextFile (" hdfs :/// output")
spark . stop ()

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

104

Hadoop Ecosystem Architecture

Figure 1: Hadoop ecosystem architecture with core components

Technology Comparison

Table 1: Comparison of Hadoop, Spark, and Hive

Feature Hadoop Spark Hive

Processing Model Batch (MapReduce) In-Memory SQL-to-MapReduce

Latency High (minutes+) Low (seconds) High (minutes+)

Data Types Structured/Unstructured All Structured/Semi-

structured

Real-Time

Support

No Yes (Streaming) No

ML Support Limited (Mahout) MLlib None

Storage

Dependency

HDFS Any HDFS

Use Cases ETL, batch analytics ML, streaming,

graph

Data warehousing,

ETL

Hadoop, Spark, and Hive together form a flexible and scalable foundation for Big Data

analytics, supporting a wide range of business and scientific applications [5, 6].

III. HDFS AND NOSQL DATABASES

HDFS Replication and Fault Tolerance

Hadoop Distributed File System (HDFS) ensures data durability through block replication

and erasure coding. By default, HDFS stores 3 replicas of each data block across multiple

DataNodes, providing fault tolerance against node failures. For example, if a file is split into

blocks A, B, and C, replicas are distributed such that losing one DataNode does not

compromise data accessibility [7].

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

105

Hadoop 3 introduced erasure coding, which splits data into fragments with parity

information, reducing storage overhead by 50% while maintaining fault tolerance. This

contrasts with replication, which triples storage usage. HDFS also automatically re-replicates

blocks if nodes fail, maintaining the replication factor dynamically.

NoSQL Database Types
 Document (MongoDB): Stores JSON-like documents with dynamic schemas. Ideal

for content management and real-time analytics. Supports rich queries and

aggregation pipelines.
 Columnar (Cassandra): Organizes data into column families for high write

throughput. Used in IoT and time-series data. Provides linear scalability and multi-

datacenter support.
 Key-Value (Redis): In-memory store for low-latency caching. Handles session

management and leaderboards. Supports TTL (time-to-live) for automatic data

expiration.

HDFS Architecture

Replication Factor = 2: Each block is stored on two DataNodes

Figure 2: HDFS architecture: DataNodes store replicated blocks and report to the

NameNode, which manages metadata. The Secondary NameNode provides check- pointing.

HDFS vs. NoSQL Comparison

MongoDB Aggregation Example

Table 2: HDFS vs. NoSQL Databases

Feature HDFS NoSQL

Consistency Strong (via replication) Eventual (Cassandra), Strong (MongoDB)

Scalability Horizontal (add nodes) Horizontal (sharding)

Query Support MapReduce jobs Domain-specific (CQL, HiveQL)

Data Model File blocks Document/Column/Key-Value

Use Case Batch analytics Real-time apps, caching

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

106

from pymongo import Mongo Client

client = Mongo Client(" mongodb :// localhost :27017 / ")
db = client[" sales_db "]
pipeline = [

{" $match ": {" region ": " North ␣America "}},
{" $group ": {" _id ": " $product", " total_sales ": {" $sum ": "

$revenue "}}},
{" $sort": {" total_sales ": -1}}

]
results = db. sales . aggregate (pipeline)
for doc in results :

print(doc)

HDFS and NoSQL databases address complementary needs in modern data architectures-

HDFS for scalable storage and NoSQL for flexible data modeling [8].

IV. PARALLEL AND DISTRIBUTED PROCESSING

Modern Big Data ecosystems rely on parallel and distributed processing frame- works to

handle large-scale computations efficiently across clusters. Two foundational paradigms-

MapReduce and Spark’s Resilient Distributed Datasets (RDDs)- demonstrate contrasting

approaches to distributed computation.

MapReduce Workflow

The MapReduce framework processes data in three phases:

 Map: Processes input key-value pairs and emits intermediate pairs

 Shuffle: Transfers and groups intermediate data by key across nodes

 Reduce: Aggregates values for each key to produce final results

The shuffle phase sorts intermediate keys and redistributes data to reducers, enabling

grouping by key. This disk-based approach ensures reliability but introduces latency [9].

Spark RDDs and DAG Execution

Spark improves on MapReduce through in-memory RDDs and Directed Acyclic Graph

(DAG) execution:
 RDDs: Immutable distributed datasets partitioned across nodes
 DAG Scheduler: Optimizes execution by pipelining narrow transformations (map,

filter) into stages
 Wide Transformations: Require shuffling (e.g., reduceByKey) and create stage

boundaries

Spark’s DAG-driven execution avoids unnecessary disk I/O, achieving up to 100xfaster

performance for iterative algorithms compared to Hadoop [10].

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

107

Word Frequency Algorithm in MapReduce

Algorithm 1 Word Count in MapReduce

1. Map Phase:
2. for each line in input do
3. for each word in line.split() do
4. Emit ⟨ word, 1⟩
5. end for
6. end for
7. Reduce Phase:
8. for each word in grouped keys do
9. Sum = Σ values
10. Emit ⟨ word, Sum⟩
11. end for

After presenting the MapReduce algorithm for word frequency counting, it is important to

recognize how such parallel workflows are executed in practice. In a distributed environment,

large datasets are partitioned and processed simultaneously across multiple nodes,

significantly reducing computation time compared to serial execution. The efficiency of this

approach depends on effective data partitioning, load balancing, and minimizing data transfer

during the shuffle phase. Modern frameworks like Hadoop and Spark automate much of this

orchestration, allowing developers to focus on defining transformation logic rather than

managing low-level parallelism. As a result, organizations can scale their data processing

pipelines to handle terabytes or petabytes of information, enabling timely insights and

supporting advanced analytics tasks.

Parallel Processing Across Nodes

The following diagram illustrates how a typical parallel processing workflow is structured

across nodes in a cluster, highlighting the flow of data from initial partitioning through

mapping, shuffling, and final reduction.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

108

Figure 3: Parallel processing flow: Mappers process partitions independently, shuffle phase

groups data, reducer aggregates results

V. BUILDING SCALABLE DATA PIPELINES

Modern data pipelines require robust orchestration and processing frameworks to handle

diverse workloads. This section explores key tools and patterns for constructing production-

grade data workflows.

ETL/ELT Orchestration

 Apache Airflow: Python-based DAGs with rich operator ecosystem [11]

 Luigi: Spotify’s simpler alternative for dependency resolution

 Prefect: Modern workflow system with hybrid execution

Batch vs. Stream Processing

 Spark: Micro-batch processing (RDDs) with mature ML support

 Flink: True streaming with sub-second latency and stateful computations

Pipeline Architecture

Figure 4: Minimal data pipeline architecture

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

109

Airflow DAG Example

from airflow import DAG
from airflow . operators . python import Python Operator
from datetime import datetime

def extract (): pass
def transform (): pass
def load (): pass

with DAG (

dag_id =’ etl_pipeline ’,
start_date = datetime (2025 , 1 , 1),
schedule =’@ daily ’

) as dag :
extract_task = Python Operator(task_id =’ extract ’,

python_callable = extract)
transform_task = Python Operator (task_id =’ transform ’,

python_callable = transform)
load_task = Python Operator (task_id =’ load ’, python_callable = load)
extract_task >> transform_task >> load_task

Orchestration Tool Comparison

Table 3: Data Orchestration Tools

Feature Airflow Prefect Dagster

Workflow Type Static DAGs Dynamic Flows Asset-Centric

Error Handling Retries Auto-recovery Declarative

UI Mature Modern Developer-Focused

Best For ETL/ELT Cloud-Native Data Contracts

VI. BIG DATA ANALYTICS IN RETAIL

Modern retailers leverage big data technologies to optimize operations and enhance customer

experiences. This section explores two critical applications: real-time inventory management

and customer segmentation, enabled by distributed processing frameworks.

Real-Time Inventory Management with Kafka and Spark

Apache Kafka serves as the central nervous system for real-time inventory tracking, ingesting

data from POS systems, RFID sensors, and e-commerce platforms. Walmart’s

implementation processes 4+ billion messages in 3 hours to generate replenishment orders

across 4,700+ stores [12]. The architecture combines:

 Kafka Streams: Processes 150K+ events/sec for stock updates

 Spark Structured Streaming: Calculates inventory positions using micro- batches

 KSQL DB: Maintains real-time materialized views of stock levels

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

110

This pipeline reduces stockouts by 23% and improves inventory turnover by 17% compared

to batch systems [13].

Customer Segmentation with Spark MLlib

Retailers use Hadoop/Spark MLlib to cluster customers based on:

 Purchase history (RFM analysis)

 Demographic attributes

 Real-time browsing behavior

from pyspark . ml. clustering import KMeans
from pyspark . ml. feature import VectorAssembler

Feature engineering
assembler = VectorAssembler(
inputCols =[" annual_spend ", " visit_frequency ", " basket_size "],
outputCol=" features ")
df = assembler. transform (customer_data)

K- means clustering
kmeans = KMeans (k=5 , seed =42)
model = kmeans . fit(df)

Migros Switzerland achieved 35% higher campaign conversion rates using this approach

[14].

Analytics Pipeline Architecture

Figure 5: Compact retail analytics pipeline

Performance Metrics

Table 4: Retail Analytics Performance Benchmarks

Metric Kafka/Spark Batch System Improvement

Throughput (msgs/sec) 150,000 5,000 30x

Latency (95th %ile) 1.2s 45min 2250x

Inventory Accuracy 99.8% 92.4% +7.4pp

Segmentation Speed 15min 6hr 24x

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

111

Exercises

Python Tasks

1. Spark DataFrame Analysis (Walmart Stock Data)

Load Walmart stock data (2012 - 2017)
from pyspark . sql import Spark Session
spark = Spark Session . builder. getOrCreate ()
df = spark . read . csv (" walmart_stock . csv ", header=True ,

inferSchema = True)

1. Calculate monthly average closing price
from pyspark . sql. functions import month , avg
monthly_avg = df. with Column (" Month ", month (" Date ")) \

. group By (" Month ") \

. agg (avg (" Close "). alias (" Avg Close ")) \

. orderBy (" Month ")

2. NoSQL Query Optimization (MongoDB)

Create optimized index and projection
db. transactions . create_index ([(" amount", 1), (" timestamp ",

-1)])
optimized_query = db. transactions . find (

{" amount": {" $gt": 1000}} ,
{" _id ":0 , " card_number":1 , " timestamp ":1}

). limit (100). sort(" timestamp ", -1)

Cloud Comparison Task

Implement cluster deployment for both platforms:

AWS CLI:

aws emr create - cluster -- name " Fraud Cluster" -- release - label emr
 - 6 .10 .0

Service AWS GCP

Managed Spark EMR Dataproc

Object Storage S3 Cloud Storage

ML Service SageMaker Vertex AI

CLI Tool AWS CLI gcloud

GCP CLI:

gcloud dataproc clusters create " fraud - detection " -- region us

- central1

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 8

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS

112

Mini-Project: Fraud Detection Pipeline

Build a real-time fraud detection system with:
 Kafka topic for transaction streaming (1M msg/sec)
 Spark Structured Streaming for anomaly detection
 Redis for blacklist IP caching (5ms latency SLA)
 Dashboard using Streamlit/Plotly

Discussion Question

Compare MongoDB and Cassandra in the context of CAP theorem tradeoffs for financial

transactions. Which would you choose for:
 Credit card fraud detection (AP vs CP)?
 Transaction ledger system (CA vs CP)?

REFERENCES

[1] Quantzig: Exploring the four vs of big data (2024)

[2] Elevondata: The Top Challenges of Big Data. https://www.linkedin.com/pulse/ top-challenges-big-data-

volume-velocity-variety-veracity-elevondata

[3] Academy, F.: Evolution of Big Data: History, Tools, Future Trends. https://www.

fynd.academy/blog/evolution-of-big-data

[4] Software, B.: CAP Theorem Explained: Consistency, Availability & Partition Tolerance.

https://www.bmc.com/blogs/cap-theorem/

[5] Databricks: Hadoop Ecosystem: Components & Architecture. https://www.

databricks.com/glossary/hadoop-ecosystem

[6] upGrad: Hive Vs Spark: Key Differences and Comparison Guide. https://www. upgrad.com/blog/hive-vs-

spark/

[7] DataFlair: How HDFS Achieves Fault Tolerance? https://data-flair.training/ blogs/learn-hadoop-hdfs-fault-

tolerance/

[8] Studio3T: MongoDB Aggregation Example. https://studio3t.com/ knowledge-base/articles/build-

mongodb-aggregation-queries/

[9] DataFlair: Shuffling and Sorting in Hadoop MapReduce. https://data-flair. training/blogs/shuffling-and-

sorting-in-hadoop/

[10] SparkByExamples: What Is DAG in Spark. https://sparkbyexamples.com/ spark/what-is-dag-in-spark/

[11] Astronomer: Introduction to Apache Airflow DAGs. https://www.astronomer. io/docs/learn/dags/

[12] Waehner, K.: Real-Time Supply Chain with Apache Kafka. https://www.kai-

waehner.de/blog/2022/02/25/ real-time-supply-chain-with-apache-kafka-in-food-retail-industry/

[13] Confluent: Real-Time Inventory in Retail. https://www.confluent.io/blog/ real-time-inventory-in-retail/

[14] N-iX: Real-Time Big Data Analytics Use Cases. https://www.n-ix.com/ real-time-big-data-analytics/

[15] Pluralsight: Storage Showdown: AWS Vs Azure Vs GCP.

https://www.pluralsight.com/resources/blog/cloud/storage-showdown-aws-vs-azure-vs-gcp-cloud

comparison

[16] Cloud, G.: Google Cloud Service Comparison. https://cloud.google.com/docs/ get-started/aws-azure-gcp-

service-comparison

[17] RisingWave: Airflow Vs Dagster Vs Prefect Comparison. https://risingwave.com/ blog/airflow-vs-dagster-

vs-prefect

https://www.linkedin.com/pulse/top-challenges-big-data-volume-velocity-variety-veracity-elevondata
https://www.linkedin.com/pulse/top-challenges-big-data-volume-velocity-variety-veracity-elevondata
https://www.linkedin.com/pulse/top-challenges-big-data-volume-velocity-variety-veracity-elevondata
https://www.fynd.academy/blog/evolution-of-big-data
https://www.fynd.academy/blog/evolution-of-big-data
https://www.bmc.com/blogs/cap-theorem/
https://www.databricks.com/glossary/hadoop-ecosystem
https://www.databricks.com/glossary/hadoop-ecosystem
https://www.upgrad.com/blog/hive-vs-spark/
https://www.upgrad.com/blog/hive-vs-spark/
https://www.upgrad.com/blog/hive-vs-spark/
https://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
https://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
https://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
https://studio3t.com/knowledge-base/articles/build-mongodb-aggregation-queries/
https://studio3t.com/knowledge-base/articles/build-mongodb-aggregation-queries/
https://studio3t.com/knowledge-base/articles/build-mongodb-aggregation-queries/
https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/
https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/
https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/
https://sparkbyexamples.com/spark/what-is-dag-in-spark/
https://sparkbyexamples.com/spark/what-is-dag-in-spark/
https://www.astronomer.io/docs/learn/dags/
https://www.astronomer.io/docs/learn/dags/
https://www.kai-waehner.de/blog/2022/02/25/real-time-supply-chain-with-apache-kafka-in-food-retail-industry/
https://www.kai-waehner.de/blog/2022/02/25/real-time-supply-chain-with-apache-kafka-in-food-retail-industry/
https://www.kai-waehner.de/blog/2022/02/25/real-time-supply-chain-with-apache-kafka-in-food-retail-industry/
https://www.confluent.io/blog/real-time-inventory-in-retail/
https://www.confluent.io/blog/real-time-inventory-in-retail/
https://www.n-ix.com/real-time-big-data-analytics/
https://www.n-ix.com/real-time-big-data-analytics/
https://www.pluralsight.com/resources/blog/cloud/storage-showdown-aws-vs-azure-vs-gcp-cloud-comparison
https://www.pluralsight.com/resources/blog/cloud/storage-showdown-aws-vs-azure-vs-gcp-cloud-comparison
https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison
https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison
https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison
https://risingwave.com/blog/airflow-vs-dagster-vs-prefect
https://risingwave.com/blog/airflow-vs-dagster-vs-prefect
https://risingwave.com/blog/airflow-vs-dagster-vs-prefect

