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BIG DATA TECHNOLOGIES AND CLOUD 

COMPUTING FOR DATA SCIENCE ANALYTICS 
 

Abstract 

 

Big Data refers to extremely large, complex 

datasets that challenge traditional data processing 

systems, characterized by the four Vs: Volume 

(sheer data size), Velocity (rapid data 

generation/ingestion), Variety (diverse formats 

like structured, unstructured, and semi-structured 

data), and Veracity (data quality and reliability). 

Managing these datasets poses significant 

challenges in storage, distributed processing, and 

scalability, necessitating specialized tools such as 

Hadoop’s HDFS for distributed storage, 

MapReduce for batch processing, and Spark for 

in-memory analytics. Modern solutions leverage 

distributed computing frameworks and NoSQL 

databases (e.g., MongoDB, Cassandra) to handle 

heterogeneity and scale. Cloud platforms like 

AWS and Azure further address these challenges 

through elastic resources and managed services 

(e.g., AWS EMR, Azure HDInsight), enabling 

efficient data pipeline orchestration. However, 

organizations must still navigate trade-offs 

between consistency, avail- ability, and partition 

tolerance (CAP theorem) in distributed systems. 

Emerging advancements in real-time stream 

processing (e.g., Apache Flink) and hybrid cloud 

architectures continue to reshape Big Data 

ecosystems, driving innovation in sectors from 

healthcare to finance. [1, 2]. 
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I. Introduction 

 

The exponential growth of data generation from IoT devices, social media plat- forms, and 

AI-driven applications has necessitated a paradigm shift from traditional relational databases 

to modern Big Data ecosystems. Early relational database management systems (RDBMS), 

such as Oracle and MySQL, excelled at structured data storage and transactional consistency 

but struggled to scale with the volume, velocity, and variety of data produced in the digital 

age. The rise of distributed systems, cloud computing, and real-time analytics has redefined 

how organizations store, process, and derive value from data, giving birth to technologies like 

Hadoop, Spark, and NoSQL databases [3]. These tools address the limitations of traditional 

systems through horizontal scalability, fault tolerance, and support for unstructured data, 

enabling applications ranging from real-time fraud detection to personalized recommendation 

engines. 

 

Three key drivers underpin this evolution: 

 IoT and Sensor Data: Billions of connected devices generate continuous streams of 

telemetry data, demanding scalable storage and low-latency processing. 

 Social Media: Platforms like Facebook and Twitter produce petabytes of unstructured 
text, images, and video, requiring distributed processing frame- works. 

 AI/ML Workloads: Training deep learning models on massive datasets necessitates 
parallelized computation and efficient resource orchestration. 

 

Central to this transformation are two foundational concepts: the CAP theorem and Lambda 

architecture. The CAP theorem posits that distributed systems can only simultaneously 

guarantee two of three properties: consistency, availability, and partition tolerance [4]. This 

trade-off has shaped the design of NoSQL databases like Cassandra (prioritizing availability) 

and MongoDB (emphasizing consistency). Meanwhile, the Lambda architecture reconciles 

batch and stream processing by maintaining separate "cold" (batch) and "hot" (real-time) data 

paths, ensuring both comprehensive analytics and low-latency insights. 

 

Chapter Outline: This chapter explores the technological and conceptual pillars of Big Data 

ecosystems: 
 Fundamentals of Big Data: Characteristics (4Vs) and challenges 
 Core Technologies: Hadoop, Spark, Hive, and NoSQL databases 
 Distributed storage (HDFS) and computing paradigms (MapReduce) 
 Cloud platforms (AWS, Azure, GCP) and managed services 
 Data pipeline design principles and orchestration tools 
 Real-world case study: Retail analytics at scale 
 Hands-on exercises and framework comparisons 

 

As organizations increasingly adopt hybrid cloud architectures and decentralized data 

meshes, understanding these components becomes critical for building scalable, resilient data 

infrastructure. The following sections provide both theoretical frameworks and practical 

insights to navigate this complex landscape. 
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II. HADOOP, SPARK, AND HIVE 

 

The Hadoop ecosystem is foundational for Big Data analytics, providing robust tools for 

distributed storage and processing. Its architecture comprises three core components: HDFS 

for scalable storage, YARN for resource management, and MapReduce for batch 

computation. HDFS splits large files into blocks distributed across DataN- odes, managed by 

a central NameNode. YARN coordinates computational resources, allowing multiple 

processing engines to share the cluster. 

 

Hadoop vs. Spark Processing 

 

Hadoop’s MapReduce framework processes data in batch mode, writing intermediate results 

to disk. This disk-based approach is reliable but incurs high latency, making it less suitable 

for iterative or interactive workloads. Apache Spark addresses these limitations with in-

memory processing using Resilient Distributed Datasets (RDDs), enabling up to 100x faster 

execution for many analytics and machine learning tasks. Spark supports both batch and real-

time streaming, making it versatile for modern data pipelines. 

 

Hive: SQL on Hadoop 

 

Hive brings SQL-like querying to Hadoop through HiveQL, translating queries into 

MapReduce or Tez jobs. Its Metastore manages schema and metadata, while its optimizer 

improves query execution. Hive is ideal for ETL, reporting, and data warehousing, allowing 

analysts to leverage familiar SQL syntax on massive datasets. 

 

Spark Word Count Example 

 
from pyspark . sql import Spark Session 
 
spark = Spark Session . builder. app Name (" Word Count"). getOrCreate ()  
text_rdd = spark . spark Context. textFile (" hdfs :/// input. txt")  
word_counts = ( text_rdd 

. flatMap ( lambda line : line . split ()) 

. map ( lambda word : ( word , 1)) 

. reduce By Key ( lambda a, b: a + b))  
word_counts . save As TextFile (" hdfs :/// output")  
spark . stop () 
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Hadoop Ecosystem Architecture 

 

 
 

Figure 1: Hadoop ecosystem architecture with core components 

 

Technology Comparison 

 

Table 1: Comparison of Hadoop, Spark, and Hive 

 

Feature Hadoop Spark Hive 

Processing Model Batch (MapReduce) In-Memory SQL-to-MapReduce 

Latency High (minutes+) Low (seconds) High (minutes+) 

Data Types Structured/Unstructured All Structured/Semi-

structured 

Real-Time 

Support 

No Yes (Streaming) No 

ML Support Limited (Mahout) MLlib None 

Storage 

Dependency 

HDFS Any HDFS 

Use Cases ETL, batch analytics ML, streaming, 

graph 

Data warehousing, 

ETL 

 

Hadoop, Spark, and Hive together form a flexible and scalable foundation for Big Data 

analytics, supporting a wide range of business and scientific applications [5, 6]. 

 

III. HDFS AND NOSQL DATABASES 

 

HDFS Replication and Fault Tolerance 

 

Hadoop Distributed File System (HDFS) ensures data durability through block replication 

and erasure coding. By default, HDFS stores 3 replicas of each data block across multiple 

DataNodes, providing fault tolerance against node failures. For example, if a file is split into 

blocks A, B, and C, replicas are distributed such that losing one DataNode does not 

compromise data accessibility [7]. 

 

 



Artificial Intelligence Technology in Healthcare: Security and Privacy Issues 

ISBN: 978-93-7020-738-7 

Chapter 8 

BIG DATA TECHNOLOGIES AND CLOUD COMPUTING FOR DATA SCIENCE ANALYTICS 

 

105  

Hadoop 3 introduced erasure coding, which splits data into fragments with parity 

information, reducing storage overhead by 50% while maintaining fault tolerance. This 

contrasts with replication, which triples storage usage. HDFS also automatically re-replicates 

blocks if nodes fail, maintaining the replication factor dynamically. 

 

NoSQL Database Types 
 Document (MongoDB): Stores JSON-like documents with dynamic schemas. Ideal 

for content management and real-time analytics. Supports rich queries and 

aggregation pipelines. 
 Columnar (Cassandra): Organizes data into column families for high write 

throughput. Used in IoT and time-series data. Provides linear scalability and multi-

datacenter support. 
 Key-Value (Redis): In-memory store for low-latency caching. Handles session 

management and leaderboards. Supports TTL (time-to-live) for automatic data 

expiration. 

 

HDFS Architecture 

 

 
 

Replication Factor = 2: Each block is stored on two DataNodes 

Figure 2: HDFS architecture: DataNodes store replicated blocks and report to the 

NameNode, which manages metadata. The Secondary NameNode provides check- pointing. 
 

HDFS vs. NoSQL Comparison  
 

MongoDB Aggregation Example 
 

Table 2: HDFS vs. NoSQL Databases 

 

Feature HDFS NoSQL 

Consistency Strong (via replication) Eventual (Cassandra), Strong (MongoDB) 

Scalability Horizontal (add nodes) Horizontal (sharding) 

Query Support MapReduce jobs Domain-specific (CQL, HiveQL) 

Data Model File blocks Document/Column/Key-Value 

Use Case Batch analytics Real-time apps, caching 
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from pymongo import Mongo Client 
 
client = Mongo Client(" mongodb :// localhost :27017 / ")  
db = client[" sales_db "] 
pipeline = [ 

{" $match ":  {" region ":  " North ␣America "}}, 
{" $group ": {" _id ": " $product", " total_sales ": {" $sum ": " 

$revenue "}}}, 
{" $sort": {" total_sales ": -1}} 

] 
results = db. sales . aggregate ( pipeline )  
for doc in results : 

print( doc ) 
 

HDFS and NoSQL databases address complementary needs in modern data architectures-

HDFS for scalable storage and NoSQL for flexible data modeling [8]. 

 

IV. PARALLEL AND DISTRIBUTED PROCESSING 

 

Modern Big Data ecosystems rely on parallel and distributed processing frame- works to 

handle large-scale computations efficiently across clusters. Two foundational paradigms-

MapReduce and Spark’s Resilient Distributed Datasets (RDDs)- demonstrate contrasting 

approaches to distributed computation. 

 

MapReduce Workflow 

 

The MapReduce framework processes data in three phases: 

 Map: Processes input key-value pairs and emits intermediate pairs 

 Shuffle: Transfers and groups intermediate data by key across nodes 

 Reduce: Aggregates values for each key to produce final results 
 

The shuffle phase sorts intermediate keys and redistributes data to reducers, enabling 

grouping by key. This disk-based approach ensures reliability but introduces latency [9]. 

 

Spark RDDs and DAG Execution 

 

Spark improves on MapReduce through in-memory RDDs and Directed Acyclic Graph 

(DAG) execution: 
 RDDs: Immutable distributed datasets partitioned across nodes 
 DAG Scheduler: Optimizes execution by pipelining narrow transformations (map, 

filter) into stages 
 Wide Transformations: Require shuffling (e.g., reduceByKey) and create stage 

boundaries 

 

Spark’s DAG-driven execution avoids unnecessary disk I/O, achieving up to 100xfaster 

performance for iterative algorithms compared to Hadoop [10]. 
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Word Frequency Algorithm in MapReduce 

 

Algorithm 1 Word Count in MapReduce 

1. Map Phase: 
2. for each line in input do 
3.  for each word in line.split() do 
4.  Emit ⟨ word, 1⟩  
5.  end for 
6. end for 
7. Reduce Phase: 
8. for each word in grouped keys do 
9.  Sum = Σ values 
10.  Emit ⟨ word, Sum⟩  
11. end for 
 

After presenting the MapReduce algorithm for word frequency counting, it is important to 

recognize how such parallel workflows are executed in practice. In a distributed environment, 

large datasets are partitioned and processed simultaneously across multiple nodes, 

significantly reducing computation time compared to serial execution. The efficiency of this 

approach depends on effective data partitioning, load balancing, and minimizing data transfer 

during the shuffle phase. Modern frameworks like Hadoop and Spark automate much of this 

orchestration, allowing developers to focus on defining transformation logic rather than 

managing low-level parallelism. As a result, organizations can scale their data processing 

pipelines to handle terabytes or petabytes of information, enabling timely insights and 

supporting advanced analytics tasks. 

 

Parallel Processing Across Nodes 

 

The following diagram illustrates how a typical parallel processing workflow is structured 

across nodes in a cluster, highlighting the flow of data from initial partitioning through 

mapping, shuffling, and final reduction. 
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Figure 3: Parallel processing flow: Mappers process partitions independently, shuffle phase 

groups data, reducer aggregates results 

 

V. BUILDING SCALABLE DATA PIPELINES 

 

Modern data pipelines require robust orchestration and processing frameworks to handle 

diverse workloads. This section explores key tools and patterns for constructing production-

grade data workflows. 

 

ETL/ELT Orchestration 

 Apache Airflow: Python-based DAGs with rich operator ecosystem [11] 

 Luigi: Spotify’s simpler alternative for dependency resolution 

 Prefect: Modern workflow system with hybrid execution 
 

Batch vs. Stream Processing 

 Spark: Micro-batch processing (RDDs) with mature ML support 

 Flink: True streaming with sub-second latency and stateful computations 
 

 

Pipeline Architecture 

 

 
 

Figure 4: Minimal data pipeline architecture 
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Airflow DAG Example 

 
from airflow import DAG 
from airflow . operators . python import Python Operator  
from datetime import datetime 
 
def extract (): pass  
def transform (): pass  
def load (): pass 
 
with DAG ( 

dag_id =’ etl_pipeline ’,  
start_date = datetime (2025 , 1 , 1),  
schedule =’@ daily ’ 

) as dag : 
extract_task = Python Operator( task_id =’ extract ’,  

python_callable = extract) 
transform_task = Python Operator ( task_id =’ transform ’,  

python_callable = transform ) 
load_task = Python Operator ( task_id =’ load ’, python_callable = load ) 
extract_task >> transform_task >> load_task 

 

Orchestration Tool Comparison 

 

Table 3: Data Orchestration Tools 

 

Feature Airflow Prefect Dagster 

Workflow Type Static DAGs Dynamic Flows Asset-Centric 

Error Handling Retries Auto-recovery Declarative 

UI Mature Modern Developer-Focused 

Best For ETL/ELT Cloud-Native Data Contracts 

 

VI. BIG DATA ANALYTICS IN RETAIL 

 

Modern retailers leverage big data technologies to optimize operations and enhance customer 

experiences. This section explores two critical applications: real-time inventory management 

and customer segmentation, enabled by distributed processing frameworks. 

 

Real-Time Inventory Management with Kafka and Spark 

 

Apache Kafka serves as the central nervous system for real-time inventory tracking, ingesting 

data from POS systems, RFID sensors, and e-commerce platforms. Walmart’s 

implementation processes 4+ billion messages in 3 hours to generate replenishment orders 

across 4,700+ stores [12]. The architecture combines: 

 Kafka Streams: Processes 150K+ events/sec for stock updates 

 Spark Structured Streaming: Calculates inventory positions using micro- batches 

 KSQL DB: Maintains real-time materialized views of stock levels 
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This pipeline reduces stockouts by 23% and improves inventory turnover by 17% compared 

to batch systems [13]. 

 

Customer Segmentation with Spark MLlib 

 

Retailers use Hadoop/Spark MLlib to cluster customers based on: 

 Purchase history (RFM analysis) 

 Demographic attributes 

 Real-time browsing behavior 

 
from pyspark . ml. clustering import KMeans 
from pyspark . ml. feature import VectorAssembler 
 
# Feature engineering  
assembler = VectorAssembler( 
inputCols =[" annual_spend ", " visit_frequency ", " basket_size "],  
outputCol=" features ") 
df = assembler. transform ( customer_data ) 
 
# K- means clustering 
kmeans = KMeans ( k=5 , seed =42)  
model = kmeans . fit( df) 
 

Migros Switzerland achieved 35% higher campaign conversion rates using this approach 

[14]. 

 

Analytics Pipeline Architecture 

 

 
 

Figure 5: Compact retail analytics pipeline 

 

Performance Metrics 

 

Table 4: Retail Analytics Performance Benchmarks 

 

Metric Kafka/Spark Batch System Improvement 

Throughput (msgs/sec) 150,000 5,000 30x 

Latency (95th %ile) 1.2s 45min 2250x 

Inventory Accuracy 99.8% 92.4% +7.4pp 

Segmentation Speed 15min 6hr 24x 
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Exercises 

 

Python Tasks 

1. Spark DataFrame Analysis (Walmart Stock Data) 

 
# Load Walmart stock data (2012 - 2017)  
from pyspark . sql import Spark Session 
spark = Spark Session . builder. getOrCreate () 
df = spark . read . csv (" walmart_stock . csv ", header=True ,  

inferSchema = True ) 
 
# 1. Calculate monthly average closing price  
from pyspark . sql. functions import month , avg 
monthly_avg = df. with Column (" Month ", month (" Date ")) \ 

. group By (" Month ")  \ 

. agg ( avg (" Close "). alias (" Avg Close ")) \ 

. orderBy (" Month ") 
 

2. NoSQL Query Optimization (MongoDB) 

 
# Create optimized index and projection 
db. transactions . create_index ([(" amount",  1),  (" timestamp ", 

-1)]) 
optimized_query = db. transactions . find ( 

{" amount": {" $gt": 1000}} , 
{" _id ":0 ,  " card_number":1 ,  " timestamp ":1} 

). limit (100). sort(" timestamp ", -1) 
 

Cloud Comparison Task 

 

Implement cluster deployment for both platforms: 

 

AWS CLI: 

 
aws emr create - cluster -- name " Fraud Cluster" -- release - label emr 
       - 6 .10 .0 

 

Service AWS GCP 

Managed Spark EMR Dataproc 

Object Storage S3 Cloud Storage 

ML Service SageMaker Vertex AI 

CLI Tool AWS CLI gcloud 

 

GCP CLI: 

 
gcloud dataproc clusters create " fraud - detection " -- region us  

- central1 
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Mini-Project: Fraud Detection Pipeline 

 

Build a real-time fraud detection system with: 
 Kafka topic for transaction streaming (1M msg/sec) 
 Spark Structured Streaming for anomaly detection 
 Redis for blacklist IP caching (5ms latency SLA) 
 Dashboard using Streamlit/Plotly 

 

Discussion Question 

 

Compare MongoDB and Cassandra in the context of CAP theorem tradeoffs for financial 

transactions. Which would you choose for: 
 Credit card fraud detection (AP vs CP)? 
 Transaction ledger system (CA vs CP)? 
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