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High-Throughput Phenotyping: Enabling Precision 

Breeding for Plant Improvement 
 

Abstract 

 

Plant improvement involves a huge data 

collection and analysis, which is 

laborious and time consuming. For the 

development of genomics data, there are 

numerous high-throughputs DNA 

sequencing methods available, but the 

ability to provide high-quality 

phenotypic data is far behind. Collecting 

phenotypic data from large populations is 

significantly hindered by the use of 

manual measurements, which are time-

consuming, labor-intensive, and incorrect 

in traditional approaches for plant 

phenotyping. An automatic system which 

helps in the accurate and timely 

measurement of different traits and its 

analysis is the need of the hour. It is then 

met by the high throughput phenotyping, 

which enables the precision breeding for 

plant improvement. High-throughput 

phenotyping, on the other hand, provides 

distinct benefits that allow for quick, 

non-destructive, and high-throughput 

detection, thus overcoming the 

drawbacks of conventional techniques. 

This helps in connecting phenotype to 

genotype and in efficient selection of the 

genotypes. It provides different platforms 

for data collection, analysis and storage, 

useful for sustainable research. 
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I. INTRODUCTION 
 

The term “Phenotype” comes from the Greek word, phainein and typos 

(meaning show and type, respectively), which was characterized by Wilhelm 

Johannsen in 1911. Phenotype refers not only to the size, shape, colour like 

observable characteristics but also, the physiological and biochemical behavior 

of plants. Recording observations in a small population is possible, whereas the 

precise measurement of data in large number of plants is tedious and time 

consuming. However, acquisition of large-scale phenotypic data has become 

one of the major bottlenecks hindering crop breeding. The main aim of plant 

breeding programmeis to develop the best performing genotypes with high 

yielding traits which requires large scale screening of different genotypes. 

Nevertheless, recent technological advances provide us potential solutions to 

relieve this bottleneck and to explore advanced methods for large-scale 

phenotyping data acquisition and processing in the coming years. Because of 

improvements in a variety of technologies, including sensors, information 

technology (IT), and data extraction, systems integration, and falling costs, it is 

now possible to regularly and non-destructively evaluate morphology and 

physiology across entire populations, throughout stages of development (Houle 

et al., 2010). In thisHigh-throughput phenotyping, which facilitates non- contact 

and dynamic measurements, has the potential to offer large scale, high-quality 

trait data. This opened a new subject of discussion called ‘phenomics’, which 

denotes the use of high throughput technologies including automation and 

artificial intelligence-based technologies to enhance the data acquisition, storage 

and easy processes. This chapter explains a brief about phenomics and different 

high throughput phenotyping tools, its components and their uses in agriculture 

and crop improvement. 

 

II. PHENOMICS 
 

In world, three main challenges occur in current agriculture. There are climate 

change, resource depletion, and population growth. To meet the challenges of 

global food security in the changing climatic scenario, it would be most 

imperative to enhance crop productivity under resource competence. The plant 

research community needs accurate phenotyping to help plants to adapt to 

resource-limiting environments and low-input agricultural systems (Pieruschka 

and Schurr 2019) and one of the major challenges is large-scale screening of 

crop performance as a consequence of its genetic makeup. 

 

According to David Houle et al., (2010) phenomics defined as the acquisition of 

multidimensional phenotypic data in an organism as a whole. The word 



Genetic Horizons: Advancement in Plant Breeding 

E-ISBN: 978-1-68576-554-5 

Chapter 9: 

High-Throughput Phenotyping: Enabling Precision Breeding for Plant Improvement 

 

152 | P a g e  

“phenomics” was coined by Steven A. Garan at a guest lecture he gave at the 

University of Waterloo in 1996. Phenomics, the study of the phenome, is a 

rapidly emerging area of science which aims at characterizing phenotypes in a 

rigorous and formal way and links these traits to the associated genes and gene 

variants (alleles) (Close et al., 2011). Phenomics technology can be used to 

study plants from the small scale, i.e., individual cell, leaf, or plant to the large 

scale, i.e., ecosystem. Phenomics is the science of largescale phenotypic data 

collection and analysis. The “-omics” -technologies like genomics, 

transcriptomics, metabolomics, to analyze the plant performance in the field and 

further link it to the core molecular genetics. The science of phenomics speeds 

up phenotyping by using automated high-tech sensors, imaging systems, and 

computing power (Kushwaha et al., 2024). Depending on the trait under 

observation, phenomics techniques can be used to characterize large number of 

lines/ individual plants accurately in a fraction of time, it has few advantages 

over manual phenotyping, viz., reduced time, reduced labor, and cost involved 

(Furbank, 2009). The high speed of phenomics based plant phenotyping 

accelerate the process of selecting plant varieties/ germplasms that perform 

better in the field under drought, salinity, or hightemperaturestress condition or 

crops with highphotosynthetic efficiency or those which can performbetter 

under higher levels of atmosphericcarbon dioxide. 

 

2.1 Forward Phenomics 

 

It is phenotyping tools to “sieve” collections of germplasm for visible and 

valuable traits. It is used to find out the best germplasm suitable for a particular 

trait. It also speeds up phenotyping of large number of plants (in case of 

mapping population) or germplasm lines using automated imaging technology 

which leads to identification of interesting trait/plant suitable to particular 

situation. Thousands of plants are grown in pots pre-labeled with barcodes and 

screened for interesting traits by automated imaging system (Furbank and Tester 

2011). The selected plants with the target traits can then be grown up to produce 

seed for further analysis and breeding. 

 

2.2 Reverse Phenomics 

 

Reverse phenomics attempts to find out why the germplasm is behaving better 

(Furbank and Tester, 2011).The phenotype or desired trait such as drought 

tolerance present in a particular germplasm – is already known.Researchers then 

try to find out the mechanisms that control the trait and the gene(s) underlying 

the mechanism (Furbank and Tester, 2011). This is done by large- scale 

physiological and biochemical analysis and then linking the data with genes 
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participating in particular biochemical or physiological pathway. Once the 

candidate gene(s) has been identified by reverse phenomics approach, then 

expression pattern of the candidate gene(s) will be compared with other 

genotypes. Thus, reverse phenomics is the detailed dissection of mechanisms 

underlying specific traits which allows exploitation of this mechanism or the 

candidate gene(s) associated with the trait which can be introgressed into new 

varieties or can be transferred to other plant species using genetic 

transformation technology (Furbank and Tester, 2011). 

  

III. PHENOTYPING 
 

Phenotyping is the measurement of aspects of plant growth, development, and 

physiology and arises from interactions between genotypes and environment, 

including photosynthetic efficiency, rates of growth, disease resistance, abiotic 

stress tolerance, gross morphology, phenology, and, ultimately, yield 

components and yield (Hickey et al., 2019). Plant breeding and biotechnology 

promote the development of new cultivars for sustainable agriculture. In order 

to enhance the selection process, robust phenotyping is critical because it is a 

basic tool to determine line selection at each stage of the years-long breeding 

pipeline. Traditional plant phenotyping for breeders includes walking through 

their trial fields and scoring plots based on how they look, taste, and/or feel. 

Improvements in phenotyping methods are highly desired and must address the 

balance of accuracy, speed, and cost. Engineered phenotyping can augment 

what the breeders can see and offer better phenotype-based choices. 

 

3.1 High Throughput Phenotyping (HTP) 

 

High throughput phenotyping (HTP) platforms could provide the keys to 

connecting the genotype to phenotype by both increasing the capacity and 

precision and reducing the time to evaluate huge plant populations. To replace 

the laborious and inconsistent method of conventional manual phenotyping, 

breeding industry and public institutes are highly motivated to deploy image-

based automated high throughput phenotyping (HTP). However, it is 

challenging to achieve a reliable imaging solution due to the variability of 

images affected by lighting intensity and angle. To get to the point of predicting 

the real-world performance of plants, HTP platforms must innovate and advance 

to the level of quantitatively assessing millions of plant phenotypes. To 

contribute to this piece of the challenge, a semi-automated HTP analysis 

pipeline using a low cost unmanned aerial system (UAS) platform, which will 

increase the capacity of breeders to assess large numbers of lines in field trials. 

High-throughput phenotyping, particularly through the application of remote 
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sensing tools, offers a rapid and non-destructive approach to plant screening 

(White et al., 2012). Recent advances in remote sensing technologies as well as 

in data processing has increased applications in both field and controlled 

growing conditions (Araus and Cairns, 2014) with important consequences for 

crop improvement. 

 

A plant phenotype is a set of structural, morphological, physiological, and 

performance- related traits of a given genotype in a defined environment 

(Granier et al., 2014). The phenotype results from the interactions between a 

plant’s genes and environmental (abiotic and biotic) factors. Plant phenotyping 

involves a wide range of plant measurements such as growth development, 

canopy architecture, physiology, disease and pest response and yield. In this 

context, HTP is an assessment of plant phenotypes on a scale and with a level of 

speed and precision not attainable with traditional methods (Dhondt et al., 

2013), many of which include visual scoring and manual measurements. To be 

useful to breeding programs, HTP methods must be amenable to plot sizes, 

experimental designs and field conditions in these programs. This entails 

evaluating a large number of lines within a short time span, methods that are 

lower cost and less labor intensive than current techniques, and accurately 

assessing and making selections in large populations consisting of thousands to 

tens-of-thousands of plots. To rapidly characterize the growth responses of 

genetically different plants in the field and relate these responses to individual 

genes, use of information technologies such as proximal or remote sensing and 

efficient computational tools are necessary. 

 

The increase of interest inground-based and aerial HTP platforms, particularly 

for applications in breeding and germplasm evaluation activities (Furbank et al., 

2011). Ground-based phenotyping platforms includemodified vehicles 

deploying proximal sensing sensors (Busemeyer et al., 2013). Measurements 

made at a short distance with tractors and hand-held sensors that do not 

necessarily involve measurements of reflected radiation, are classified as 

proximal sensing. Proximal, or close-range sensing, is expected to provide 

higher resolution for phenotyping studies as well as allowing collection of data 

with multiple view-angles, illumination control and known distance from the 

plants to the sensors (White et al., 2012). The ground-based platforms do have 

limitations mainly on the scale at which they can be used, limitations on 

portability and time required to make the measurements in different field 

locations. As a complement to ground-based platforms, aerialbased phenotyping 

platforms enable the rapid characterization of many plots, overcoming one of 

the limitations associated with ground-based phenotyping platforms. There is a 

growing body of literature showing how these approaches in remote and 
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proximal sensing enhance the precision and accuracy of automated high-

throughput fieldbased phenotyping techniques (Berger et al., 2010). One of the 

emerging technologies in aerial based platforms is UAS, which have undergone 

a remarkable development in recent years and are now powerful sensor-bearing 

platforms for various agricultural and environmental applications (Baluja et al., 

2012). UAS can cover an entire experiment in a very short time, giving a rapid 

assessment of all of the plots while minimizing the effect of environmental 

conditions that change rapidly such as wind speed, cloud cover, and solar 

radiation. UAS enables measuring with high spatial and temporal resolution 

capable of generating useful information for plant breeding programs. Different 

types of imaging systems for remote sensing of crops are being used on UAS 

platforms. Some of the cameras used are RGB, multispectral, hyper-spectral, 

thermal cameras, and low-cost consumer grade cameras modified to capture 

near infrared (NIR) (Chapman et al., 2012). Consumer grade digital cameras are 

widely used as the sensor of choice due to their low cost, small size and weight, 

low power requirements, and their potential to store thousands of images. The 

consumer grade cameras often have the challenge of not being radio-metrically 

calibrated. Radiometric calibration accounts for both variations from photos 

within an observation day along with changes between different dates of image. 

The result of radiometric calibration is a more generalized and, most 

importantly, repeatable, method for different image processing techniques (such 

as derivation of VIs, change detection, and crop growth mapping) applied to the 

orthomosaic image instead of each individual image in a dataset. There are well-

established radiometric calibration approaches for satellite imagery. These 

approaches are not necessarily applicable in UAS workflows due to several 

factors such as conditions of data acquisition during the exact time of image 

capture using these platforms. There are many private and public sectors 

pursuing plant phenotyping, with the goal of developing and implementing new 

HTP approaches that accelerate plant breeding for food, fiber, and bioenergy 

crops in certain environments. 

 

3.2 Components of High Throughput Phenotyping 

 

The HTP system consists of four components including the sensor, platform, 

analysis, and data, so called SPAD. These four components are interrelated and 

technically connected for seamless integration. 
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Components of high throughput phenotyping (Kim et al., 2019) 

 

Sensor: The sensor is the first component to consider when answering 

questions of what plant traits are of interest and what phenotypic metrics can be 

delivered. Typical phenotypic metrics include plant vigor, biomass, canopy 

temperature, plant height, stand count, etc. There are several types of sensors 

that can be used for phenotyping: multispectral, hyperspectral, thermal, and 

light detection and ranging (LiDAR). Spectral and morphological features are 

commonly measured by multispectral cameras that can estimate vegetation 

indexes, a leaf area index, stand count, yield, and growth rate. Plant height can 

be measured by LiDAR (Bai et al., 2019). 

 

Canopy temperature can be measured by IR thermometer (Thompson et al.  

2018) thermal imager (Bai et al., 2019) and has been commonly used for plant 

stress detection and phenotyping. Other metrics such as CO2and chlorophyll are 

also measured by a gas analyzer and chlorophyll sensors, respectively. Among 

the variety of choices of sensors and metrics, the common consideration is to 

find cost-effective and robust sensors. 

 

HTP system developers need to take a comprehensive decision for sensor 

selection by leveraging the sensor performance and operational cost. The sensor 

selection also must be coordinated with the platform selection to fit its size, 

weight, mounting, and data rate on the platform in height and speed. 

Multispectral cameras capture a spectral image and can deliver both spectral and 

morphological features through image analysis. 
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Platform: In HTP system equipped with various sensors can be mounted on 

three different HTP platforms. They are ground, aerial, and satellite. Each 

platform has its own pros and cons, and the developers need to know what 

outcomes and limitations are expected from each platform. Although there are 

still positive aspects on each platform, in general, the HTP research trend is 

shifting from the ground to the aerial/drone platform with several reasons such 

as increased coverage and mobility due to shortened acquisition window that 

minimizes the solar radiation effects. The future HTP platform design must 

accommodate the two most important factors: the field coverage in acquisition 

and turnaround time in data analytics. 

 

Ground Platform: The ground platform is the most commonly used for plant 

phenotyping under two different environmental setting i.e., indoors and 

outdoors. The most commonly used HTP platform is an outdoor ground 

platform operated by a cart or a tractor. Manual push-behind carts (Crain et al., 

2016). A motorized cart can be equipped with chain-driven electric motors and 

needs gear reduction to increase torque enough to smoothly start from a stop. 

Built-in geared hub motors are another option to simplify the drive and gear 

design and avoid chain maintenance. The motorized cart is controlled by a 

remoter controller through PWM signals and can be programed with GPS 

readings and path planning for upgrading to autonomous navigation. Tractor-

based ground platforms are also widely studied (Wang et al., 2019). These 

ground platforms can measure great details of plant morphological and spectral 

features using proximal and spectral sensors. There are two types of indoor HTP 

platforms depending on stationary or mobile plants. If plants are fed into a 

scanning chamber on a conveyer belt, all sensors are mounted in the sensor 

package in different angles. The mobile plant-based HTP platform takes 

advantage of detailed observation under the controlled environment using 

various sensors such as VIS, NIR, fluorescence, stereo cameras, thermometer, 

and LiDAR. The disadvantage of this method is a long operational time to feed 

all plants to the scanning chamber (e.g., 30 h for 30,000 images of 1140 plants 

(Fahlgren et al., 2015) and frequently occurring maintenance issues in software 

with the sensors and hardware with the conveyer machine. The stationary plant-

based HTP platform requires mobile sensors in a gantry mode to move to a 

target plant (Burnette et al., 2018) using commercially available devices. The 

sensors can also be stationary using a grid of sensors permanently mounted over 

the entire area of the target plants, which relieves the operational issues with 

time delay and allows a localized troubleshooting of an individual sensor 

instead of the entire system stop caused by a single issue of the moving machine 

or sensor on the mobile plant-based platform. 
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 Aerial Platform: Aerial phenotyping has two platforms: a manned aerial 

vehicle (MAV) and an unmanned aerial vehicle (UAV). MAV has been 

well established in urban and forest industry and increasingly adopted for 

agricultural applications (Yang et al., 2013).  Sensors are mounted on a 

small airplane, popularly on Piper Saratoga. UAV has been broadly 

adopted for agricultural applications: crop water use (Thorp et al., 2018), 

cotton boll detection (Yeom et al., 2018), maize green leaf index 

(Blanconet al., 2019), bio-enthaol in cereals (Ostos-Garridoet al., 2019), 

and plant phenotyping (Sagan et al., 2019). UAV platform is capable of 

carrying additional sensors of LiDAR, thermal, and/or hyper-spectral 

sensors and expected to become more popular with decreasing costs and 

improvements in quality. 

 

 Satellite Platform: A satellite platform has been used by several 

government agencies to estimate weather conditions, crop areas, and 

yield. Private firms are investing in satellite remote sensing technology 

for decision support on crop production and developing models from high 

throughput satellite imagery for crop health monitoring. As satellite and 

sensing technology grows, however, it is still possible for satellite as a 

future HTP platform when those limiting factors are addressed. 

 

IV. ANALYSIS OF DATA 
 

HTP has high potential to improve genetic modeling and expedite the 

identification of germplasm that increases the yield and productivity of crop 

plants. Several analytic toolboxes have been published: PlantCV (Fahlgren et 

al., 2015), Lemna Grid (Honsdorf et al., 2014), HTPheno (Hartmann et al., 

2011), and integrated analysis platform (Klukas et al., 2014). Lack of 

standardized analytic tool delays data processing from different platforms and 

sensors and is a major hurdle in the HTP processing pipeline. Despite different 

sensors and platforms in existence, image analysis and trait extraction are 

common challenges for image-based phenotyping platforms, and thus open-

source trait extraction software with a mechanism for community development 

will help to alleviate the phenotyping bottleneck on crop improvement 

(Fahlgren et al., 2015). The main aspects for HTP image analytics include 

image formation, radiometric calibration, stitching, and image analysis. 

 

HTP data management is increasingly important as the big data are built up for 

spatial and temporal phenotypes from multiple fields in various regions under 

different weather conditions. HTP study generates huge volume of raw data in 

diverse formats and undergo data abundance with high-resolution, redundancy, 
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and invalid or unnecessary data, and thus HTP data are heavily involved in big 

data management. Collecting phenotypic data by automated HTP machine like 

TERRA-REF, the world’s largest robotic field scanner, can produce up to 10 

TB data per day (Binder, 2018). The metadata are essential to integrate the 

heterogeneous HTP data, but generating metadata for geospatial data is 

challenging due to the data’s intrinsic characteristics of high-dimensionality and 

complexity such as space-time correction and dependency (Yang et al., 2017). 

 

Phenotypic data collected in the field are transferred to cloud database (DB) 

through a local storage, accessed via cloud for data processing and analysis 

using an analytic toolbox, and cataloged for visualization once data is 

processed, visualization is implemented to allow the end- users to access field 

images and understand the results. HTP research has a challenge to close a gap 

between the plant science and data analytics to ensure for plant science 

communities know how to use the HTP data and for data analytics communities 

understand how to deliver actionable results for scientists and farmers. One of 

the concerns in big data driven agricultural community is lack of data quality. 

There is a consensus that “garbage in” in terms of primary data quality results in 

“garbage out” of final data quality (Shakoor et al., 2019). For instance, poor 

quality of the positive images used for machine learning models would mislead 

to a poor quality of prediction results. Quality assurance and check become 

more important for sensor precision and consistency, and quality protocols need 

to be developed and standardized for the future HTP research programs. 

 

V. A NEW TOOL FOR ADVANCEMENT OF TRADITIONAL 

CROP IMPROVEMENT 
 

Crop Breeding started with the selection of plants based on phenotype. 

Advances in molecular biology led to the development of marker assisted 

breeding, Genome Wide Association Studies, Genomic selection where a large 

population is to be assessed for effective selection. Improvements in 

phenotyping are likely to be necessary to take advantage of breakthroughs in 

conventional, molecular, and transgenic breeding and ensure genetic 

improvement of crops for future food security (Arausand Cairns, 2014). For 

field phenotyping, there are a number of platforms that are used with various 

sensors, including multispectral, hyperspectral, IR and RGB cameras. They 

range from simple ground-based platforms i.e., monopods and tripods, to 

complex unmanned ground vehicles and unmanned aerial vehicles (UAVs). Use 

of High throughput phenotyping could contribute significantly to the fastening 

of the breeding programme.Currentadvanced techniques including thermal, 

near-infraredsensing, fluorescence imaging, 3D scanning, RGB imaging, 
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multispectral and hyperspectral sensing are lucrativelyused for plant growth and 

development identification, quantification and monitoring, disease monitoring, 

and abioticstress tolerance (Furbank et al., 2019). RGB imaging and along with 

multi sensor and portable spectrometers help in the phenotyping of plants and 

helps in monitoring the stem water potential, leaf conductance and leaf area 

index. HTP based field screening is used for measuring canopy temperature 

under heat and cold stress and is strongly associated with the deep root system 

and transpiration flux. This also could be analysed using infrared thermography, 

which analysesleaf surface temperatureto study stomatal conductance and 

plant–water relations.Chlorophyll fluorescence imaging captures the changes in 

photosyntheticperformance of plants related to salt stress. The colour of the 

images reveals the difference between the normal and the affected plants and 

helps in the selection and development of tolerant plants. These imaging 

techniques also helps in the identification of pathogen and insect infestations in 

plants.Thus, high-throughput screening could providehighly accurate and time-

lapsed inspection to monitorplant diseases.Plant breeders are under tremendous 

pressure to create high yielding cultivars due to the growing populationand HTP 

can support these efforts by supplementing mass-scale germplasm 

screening.Multiple sensors, ease handling, and improved mobile networks are 

innovative elements that would be needed for portable HTP. HTP in crop 

breeding may be revolutionised by such sturdy gadgets (next generation 

cellphones), cloud computing, and usage of Artificial Intelligence (AI). Another 

goal will be to concentrate on management techniques for breeding data and 

networking for mutual benefit (Jangra et al., 2021).Aerial sensing technologies 

offer radically new perspectives for assessing these traits at low cost, faster, and 

in a more objective manner. Makanza et al., 2018 used the UAV equipped with 

RGB camera to analyze the crop cover and canopy senescence in maize field. 

They concluded that UAV-based aerial sensing platforms have great potential 

for monitoring the dynamics of crop canopy characteristics like crop vigor 

through ground canopy cover and canopy senescence in breeding trial. 

Increased precision and accuracy with less time and expense for data collection, 

increases the efficiency of selection. 

 

VI. BIOTIC STRESS RESISTANCE ENHANCEMENT THROUGH 

HIGH THROUGHPUT PHENOTYPING 
 

For the intent of identifying and evaluating both simple and complex plant traits 

for crop improvement,  such  as  plant  height,  biomass,  flowering  time,  and  

grain  yield,  high throughputphenotyping has recently emerged as a rapidly 

evolving discipline by flourishingly integrating disciplines of plant science, 

engineering and computational science (Tanger et al., 2017). Field crop 
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breeding may be hastened up, the rate of genetic gain and disease tolerance 

increased, and entire sets of field data can be produced using phenotyping 

methods that boost plant screening (Mahlein, 2016). HTP makes it possible to 

assess characteristics including seedling vigour, flower counts, biomass and 

grain production, height, leaf erectness, and canopy structure in a precise, 

automated, and repeatable manner (Shakoor et al., 2017).Moreover, HTP could 

potentially be used to test physiological characteristics including 

photosynthesis, transpiration, pest infestation, pathogen incidence, and stress 

tolerance. To minimize yield losses due to plant diseases, credible and timely 

identification biotic stress is essential. Conventionally plant disease diagnosis 

depends on visual evaluation and symptom detection which is tiring and error-

some. In recent past, plant diseases have been identified, measured, and 

monitored with efficacy using HTP.Techniques and recent advancements in 

RGB imaging, 3D scanning, thermal and near-infrared sensing, multi-spectral 

and hyperspectral sensing, and fluorescence imaging has enhanced the overall 

efficiency of HTP in biotic stress identification also. 

 

The scales of HTP platforms for biotic stress management vary from single 

plant organ/plant to full field, from ground vehicles to UAVs and satellites 

(Liebisch et al., 2015). In particular, satellite platforms have high potential for 

identifying and tracking crop diseases over large cultivated lands. As of late, 

satellite platforms with multi- and hyperspectral sensors, such as NASA's 

Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS), Soil Moisture Active Passive (SMAP), and 

HyperspectralInfraRed Imager (HyspIRI), have been developed with the goal of 

gathering high-resolution spectral and environmental data to help develop new 

approaches for drought mitigation and water use efficiency (Lee et al., 2015, 

Entekhabi et al., 2010, Fisher et al., 2015). 

 

Laterly, various sensor technologies has been advocated for different plant 

pathogen systems (Mahlein, 2016) viz. RGB/ Stereo RGB, 3D laser scanner, 

multispectral sensor, thermal infrared (IR), near infrared (NIR), visual near IR 

(VNIR), shortwave IR and fluorescence sensors. Each sensor has its own 

potential application in assessment of different disease/pathogens in different 

crop fields. RGB cameras with their high-resolution data and fast acquisition 

rates allows for assessment of plant growth dynamics, plant and root 

architecture and disease screening (Smith, 2009 & Suguria et al., 2016). The 3D 

lasers have been in use for more than 10 years in HTP due to their resolution 

and precise scanning. They are used in the assessment of leaf area index, canopy 

structure and height (Roscher et al, 2016). A thermal IR sensor identifies the 

temperature fluctuations in the crop canopy level which greatly aids in the 
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identification of disease outbreak and water stress condition. The visible (400-

700 nm), near infrared (700-1300 nm), and short-wavelength infrared (1400-

3000 nm) wavelength bands of electromagnetic energy reflected by plants are 

all captured by multi- and hyperspectral imaging methods which convey 

information about leaf physiology of the crop including leaf pigments and leaf 

contents (Yendrek et al., 2016). Using hyperspectral imaging the severity of 

disease can be estimated (Kuska et al., 2015). For instance, levels of stripe rust 

infection and N deficit in wheat crops have been measured using successive 

combinations of several hyperspectral indices (Devadas et al., 2015). 

Fluorescence imaging measures the light that the chlorophyll a emits back into 

the atmosphere and provides insights into the photosynthetic system under 

biotic and abiotic stress. Disturbances in fluorescence measurements can 

frequently occur before the onset of apparent symptoms, making them useful for 

early diagnosis (Konaz et al., 2014, Tatagiba et al., 2015). Fluorescencespectros 

copy, for instance, was used to identify citrus trees with bacterial infections 

causing citrus greening (Wetterich et al., 2017). 

 

Once the initial data is obtained, it is used for data preparation using open-

source platforms such as Python and ImageJ to analyse the yield attributes and 

disease diagnosis (Schindelin et al., 2012, Van der walt et al., 2014). From the 

unique data, novel patterns, forecast trends are drawn using probabilistic 

algorithms. This process is called machine learning (ML). Even though there 

are numerous ML techniques have been used for identification and 

classification for phenotyping, each technique has their own shortcomings. So it 

is important to wisely select the ML methods. However, as picture databases 

grow in size, scope, and complexity, ML continues to stand as the best practical 

method for deriving useful insights and analysis from field crop image datasets, 

which are exponentially expanding (Shakoor et al., 2017). 

 

VII. ROLE IN GENOMICS 
 

Agriculture research has been transformed by plant genetics and genomics, and 

crop plants have amassed a tremendous number of genomics resources. A 

deeper comprehension of the physiology and genetic underpinnings of critical 

traits related to yield, quality, and biotic and abiotic stresses is required for the 

effective exploitation of the germplasm using genomics for crop development 

(Edwards et al., 2012). Therefore, in order to take full advantage from this 

plethora of genomic data for crop development, it is necessary to link and 

incorporate it with the phenotypic data in a real-life scenario (Furbank and 

Tester, 2011). As a result, precise and economical phenotyping is crucial. The 

area of phenomics has seen significant advancements that will allow for a more 
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accurate and thorough screening of the features. These developments have aided 

in the creation of high throughput phenotyping systems for germplasm 

screening. Utilizing techniques/approaches enhanced the gathering of 

phenotypic data more precisely and economically with less experimental noise. 

For this reason, proper phenotyping will be helpful in estimating the true 

heritability of a trait, which is necessary to create genetic improvement through 

genomic selection (Mir et al., 2015; Kumar et al., 2020). As a consequence, 

genetic resources may be used to their fullest extent by locating the true QTL 

for complicated characteristics, discovering the genes in the QTL, and 

determining the function of those gene sequences whose functions are yet 

unknown (Cobb et al., 2013). Plant breeders will shortly have access to 

phenotyping facilities that will be routinely used to screen huge populations for 

genetic improvement in crops and precise gene modification using genomics. 

 

VIII. CONCLUSION 
 

Machine Learning tools provide a very powerful framework to assimilate data, 

and the utility of these tools is especially important considering current progress 

in HTP approaches that easily generate of data. Appropriate choice and usage of 

ML tools is crucial for obtaining the maximum possible benefits of these 

sophisticated approaches. Efficient, high-throughput phenotyping methods can 

be implemented only when data accuracy, process speed, and cost is well 

balanced within the permitted limits. It is clear that limitations of the technology 

exist, such as low payload and a narrow area for image collection. The 

utilization of cost-effective commercial UAV platforms for phenotyping and 

methodologies for high-throughput phenotyping accelerate plant breeding 

cycles. To promote the next green revolution in crop breeding, the development 

of an International Crop Phenome Project (ICPP) should also be encouraged. 

 

Questions 
 

1. Differentiate between conventional phenotyping and High Throughput 

Phenotyping 

2. Detail the components of High Throughput Phenotyping 

3. Write in detail about the shortcomings of implementation of High 

Throughput Phenotyping 

4. Role of High Throughput Phenotyping in genomics 

5. Role of High Throughput Phenotyping in biotic stress breeding 
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Self Assesment 
 

2. Some examples of high-throughput phenotyping tools 

a. Genomics, transcriptomics, and metabolomics 

b. Forward phenomics and reverse phenomics 

c. Sensors, imaging systems, and computing power 

d. Climate change, resource depletion, and population growth 
 

3. Forward phenomics work by 

a. Analyzing the core molecular genetics of plants 

b. Studying the effects of climate change on crop performance 

c. Identifying the mechanisms underlying specific traits 

d. Using automated imaging technology to screen germplasm for 

valuable traits 
 

4. What is phenomics? 

a. Study of climate change effects on plant genetics 

b. Acquisition of multidimensional phenotypic data in an organism as a 

whole 

c. Use of automated imaging technology to screen germplasm for valuable 

traits 

d. Analysis of the core molecular genetics of plants 
 

5. What is reverse phenomics? 

a. The study of climate change effects on plant genetics 

b. Identifying valuable traits in germplasm using automated imaging 

c. Studying the core molecular genetics of plants 

d. Dissecting mechanisms underlying specific traits and identifying 

associated genes 
 

6. Phenomics affect agriculture by 

a. Analyzing the core molecular genetics of plants 

b. Studying the effects of climate change on crop performance 

c. Providing large-scale, high-quality trait data through advanced 

technologies 

d. Manually phenotyping plants for accurate data collection 
 

7. What is the primary goal of Forward Phenomics? 

a. Analyzing core molecular genetics 

b. Identifying valuable traits in germplasm 

c. Studying the effects of climate change on crops 

d. Dissecting mechanisms underlying specific traits 
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8. After screening, what is the next step for plants with target traits in Forward 

Phenomics? 

a. Discarding them for further analysis 

b. Growing them to produce seeds 

c. Analyzing their core molecular genetics 

d. Studying their physiological and biochemical behavior 

 

9. Phenotyping impact crop breeding by 

a. Analyzing the core molecular genetics of plants 

b. Manually phenotyping plants for accurate data collection 

c. Providing large-scale, high-quality trait data through advanced 

technologies 

d. Studying the effects of climate change on crop performance 

 

10. Why is robust phenotyping considered critical in plant breeding? 

a. To analyze core molecular genetics 

b. To expedite the identification of germplasm 

c. To determine line selection at each breeding stage 

d. To replace traditional manual phenotyping methods 

 

11. What is the significance of barcodes in the Forward Phenomics process? 

a. Identifying climate change effects on plants 

b. Manual data collection for large populations 

c. Labeling plants for automated screening 

d. Studying the core molecular genetics of plants 

 

12. Phenotyping is primarily concerned with 

a. Core molecular genetics 

b. Plant growth, development, and physiology 

c. Climate change effects on crops 

d. Soil composition and nutrient levels 

 

13. High Throughput Phenotyping (HTP) aims to achieve 

a. Decreasing the capacity and precision of evaluations 

b. Increasing the time required to evaluate plant populations 

c. Providing keys to connect genotype to phenotype 

d. Using manual phenotyping for large plant populations 
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14. Challenge associated with image-based automated high throughput 

phenotyping (HTP) 

a. Consistency of lighting intensity and angle in images 

b. Dependence on traditional manual phenotyping methods 

c. Lack of interest from the breeding industry 

d. Inability to assess plant phenotypes accurately 
 

15. What is one of the advantages of aerial-based phenotyping platforms? 

a. Limited coverage and mobility 

b. Increased scale of their usage 

c. Dependence on ground-based platforms 

d. Longer operational time for data analytics 
 

16. The main challenge involved in HTP data management 

a. Lack of standardized analytic tools 

b. Consistency of lighting in images 

c. Generating metadata for geospatial data 

d. Inability to collect phenotypic data automatically 
 

17. RGB imaging spectrometers is used for phenotyping the following data 

a. Stem water potential 

b. Leaf conductance 

c. Leaf Area Index 

d. All of these 
 

18. Leaf surface temperature fluctuations are diagnosed using   

a. RGB imaging 

b. InfraRed Thermography 

c. Fluorescence spectroscopy 

d. Hyperspectral sensing 

 

19. Photosynthetic parameters are measured using  imaging 

a. RGB imaging 

b. InfraRed Thermography 

c. Fluorescence spectroscopy 

d. Hyperspectral sensing 
 

20. Biotic stress breeding uses the imaging for diagnosis 

a. RGB imaging 

b. InfraRed Thermography 

c. Fluorescence spectroscopy 

d. Hyperspectral sensing 
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21. Wavelength of visible spectrum is   

a. 600-700 nm 

b. 400-700 nm 

c. 300-500 nm 

d. 1400-1500 nm 

 

22. From the unique data, novel patterns, forecast trends are drawn using 

probabilistic algorithms which is called  . 

a. Data processing 

b. Machine learning 

c. Phenomics 

d. Data storage 

 

23. Dynamics in Crop canopy can be supervised using   

a. RGB imaging 

b. InfraRed Thermography 

c. UAV Aerial sensing platform 

d. Fluorescence imaging 

 

24. Allows for assessment of plant growth dynamics, plant and root architecture 

and disease screening 

a. InfraRed Thermography 

b. RGB imaging 

c. Fluorescence spectroscopy 

d. Hyperspectral sensing 

 

25. Wavelength of Near infrared radiation 

b. 600-700 nm 

c. 400-700 nm 

d. 700- 1300 nm 

e. 1400-1500 nm 

 

26. Wavelength of Short-wavelength infrared 

b. 1400-3000 nm 

c. 600-700 nm 

d. 400-700 nm 

e. 700- 1300 nm 
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