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PROGRAMMING FOR DATA SCIENCE: PYTHON,  

R, SQL, AND NOSQL 
 

Abstract 

 

Programming is the backbone of modern data 

science, enabling practitioners to manipulate, 

analyze, and extract insights from vast and 

complex datasets. This chapter explores the 

essential roles of Python, R, SQL, and NoSQL 

technologies in the data science workflow. 

Python, with its extensive libraries such as 

NumPy, Pandas, and Scikit-learn, has become 

the most widely used language for data 

manipulation, machine learning, and 

automation due to its simplicity and versa- 

tility [1, 2]. R remains a powerful tool for 

statistical analysis and visualization, especially 

in academia and research, offering specialized 

packages for modeling and graphics. SQL 

continues to be indispensable for querying and 

managing structured data in relational 

databases, while NoSQL solutions like 

MongoDB and Cassandra address the needs of 

unstructured and large-scale data. Mastery of 

these programming languages and tools allows 

data scientists to efficiently pre- process data, 

perform statistical analyses, build predictive 

models, and deploy solutions in real-world 

environments. As the field evolves, the 

integration of these technologies supports 

robust, scalable, and reproducible data science 

projects across diverse industries. 
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I. INTRODUCTION 

 

In the modern data science landscape, programming languages serve as the foundational tools 

for transforming raw data into actionable insights. Python, R, and SQL have emerged as the 

triumvirate of technologies driving innovation across industries, from healthcare diagnostics 

to financial forecasting. These languages enable data scientists to clean, analyze, and model 

data at scale while supporting critical workflows such as ETL (Extract, Transform, Load) 

pipelines, machine learning deployment, and real-time analytics. For instance, Python’s 

dominance in machine learning-used by 90% of data scientists as of 2025-stems from its 

versatility in automating workflows and integrating with cloud platforms like AWS and 

Azure [1]. Similarly, SQL remains indispensable for querying relational databases, with 53% 

of enterprises relying on it for business intelligence tasks [2]. 

 

The choice of programming language often depends on the problem context. Python excels in 

end-to-end machine learning pipelines through libraries like Tensor- Flow and Scikitlearn, 

while R’s specialized statistical packages (e.g., ggplot2, caret) make it preferred in academia 

and bioinformatics. SQL bridges the gap between data storage and analysis, enabling efficient 

manipulation of structured datasets. Emerging technologies like NoSQL databases (e.g., 

MongoDB) further expand these capabilities, addressing the challenges of unstructured data 

and distributed systems. This chapter explores how these languages collectively empower 

data scientists to solve complex problems through code-driven methodologies. 

 

Chapter Outline 
 Why Programming is Essential in Data Science 
 Python for Data Science: Key Libraries (NumPy, Pandas, Scikit-learn) 
 R for Statistical Analysis and Visualization 
 SQL for Data Extraction and Manipulation 
 Introduction to NoSQL Databases (MongoDB, Cassandra) 
 Code Examples and Best Practices 
 Integrating Programming in Data Science Projects 
 Hands-on Exercises 

 

As data volumes grow exponentially, proficiency in these languages ensures data scientists 

can adapt to evolving tools like PySpark for big data processing or MLflow for model 

tracking. This chapter equips readers with both theoretical knowledge and practical skills to 

leverage programming languages effectively in real-world scenarios 

 

II. WHY PROGRAMMING IS ESSENTIAL IN DATA SCIENCE 

 

Programming is the engine that powers modern data science, transforming raw data into 

actionable insights through automation, reproducibility, scalability, and seamless integration 

with data platforms. As data grows in volume and complexity, the ability to write and 

maintain code is no longer optional but fundamental for anyone seeking to extract value from 

data [3, 4]. 

 

Automation is a cornerstone of efficient data science workflows. Coding allows data 

scientists to automate repetitive and time-consuming tasks such as data collection, cleaning, 

feature engineering, and model evaluation. For example, scripts can be scheduled to fetch 

data from APIs, preprocess new data daily, retrain models, and update dashboards without 
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manual intervention. This automation not only saves time but also minimizes human error, 

ensuring consistency in results [3, 4]. As machine learning and AI become more prevalent, 

automation through programming is essential for deploying models that adapt to new data in 

real-time. 

 

Reproducibility is another critical aspect enabled by programming. By scripting every step 

of the analysis-from data import to model validation-data scientists create transparent 

workflows that others can review, replicate, and build upon. Version- controlled scripts and 

reproducible notebooks (e.g., Jupyter, R Markdown) allow for easy tracking of changes and 

facilitate peer review [5]. Automation tools and CI/CD pipelines further enhance 

reproducibility by running analyses automatically whenever code is updated, ensuring that 

results remain consistent across environments and over time. 

 

Scalability is vital as organizations increasingly deal with big data. Programming skills allow 

data scientists to optimize code for performance, work with distributed computing 

frameworks, and process massive datasets efficiently. Python’s integration with big data tools 

like PySpark and Dask, or SQL’s ability to handle large queries in cloud warehouses, 

exemplifies how code enables scalable analytics. This scalability is essential for industries 

such as finance, healthcare, and e-commerce, where rapid analysis of large datasets drives 

competitive advantage [1]. 

 

Integration with Data Platforms is made possible through programming. Data science 

projects often require connecting to diverse data sources-relational databases (SQL), NoSQL 

stores, cloud storage, or web APIs. Coding skills are crucial for extracting, transforming, and 

loading (ETL) data across these platforms, allowing seamless movement and transformation 

of information. Libraries like SQLAlchemy (Python) or DBI (R) enable flexible database 

interactions, while cloud SDKs facilitate integration with platforms like AWS, Azure, or 

Google Cloud. 

 

Beyond these technical benefits, programming fosters collaboration and innovation. 

Production-level code can be shared, reused, and maintained by teams, bridging the gap 

between data scientists and software engineers [6]. Collaborative platforms like GitHub and 

cloud-based notebooks allow geographically dispersed teams to work together, review code, 

and ensure high-quality, reliable solutions. 

 

In summary, programming is indispensable in data science for automating work- flows, 

ensuring reproducibility, enabling scalability, and integrating with diverse data platforms. 

Mastery of programming not only accelerates analytics but also underpins the credibility, 

efficiency, and impact of data-driven solutions in today’s data-centric world. 

 

III. PYTHON FOR DATA SCIENCE: KEY LIBRARIES 

 

Python dominates modern data science workflows through its rich ecosystem of specialized 

libraries. These tools streamline data manipulation, analysis, and machine learning 

implementation. Below we examine five foundational libraries that every data scientist 

should master. 
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Core Libraries 

 NumPy: Fundamental package for numerical computing with support for multi-

dimensional arrays and matrices. Enables vectorized operations for high- performance 

calculations [2]. 

 Pandas: Primary tool for data manipulation and analysis through DataFrame objects. 
Handles missing data, time series, and relational operations efficiently [7]. 

 Scikit-learn: Comprehensive machine learning library offering algorithms for 
classification, regression, clustering, and model evaluation [8]. 

 Matplotlib: Foundational plotting library for creating static, animated, and interactive 

visualizations. 

 TensorFlow: End-to-end platform for deep learning and neural network development. 
 

Data Cleaning with Pandas 

 

Listing 1 Data cleaning example using Pandas 

 
import pandas as pd 
# Load dataset with missing values  
data = pd. read_csv (’ sales_data . csv ’) 
# Handle missing values  
data_clean = ( data 

. dropna ( subset =*’ customer_id ’+) 

. fillna (,’ revenue ’: data *’ revenue ’+. median ()-) 

. astype (,’ order_date ’:  ’ datetime 64 * ns+’-) 

. rename ( columns =,’ revenue ’: ’ sales_amount ’-) 
) 

# Remove outliers using IQR 
Q1 = data_clean *’ sales_amount ’+. quantile (0 .25 )  
Q3 =  data_clean *’ sales_amount ’+. quantile (0 .75 ) 

data_clean = data_clean . query (’@Q1 ␣ <=␣sales_amount␣ <=␣@Q3 ’) 
 
Library Comparison  

 

Advanced Capabilities 

 

NumPy underpins numerical operations in higher-level libraries. Its C-implemented core 

enables vectorized operations that outperform native Python loops by 10-100x [2]. For 

example: 

 

Table 1: Python Data Science Libraries: Features and Use Cases (2020-2025) 

 

Library Key Features Common Use Cases 

NumPy N-dimensional arrays, Linear 

algebra, Broadcasting 

Numerical simulations, Matrix 

operations 

Pandas DataFrames, Time series, Missing 

data handling 

EDA, Data preprocessing, CSV/Excel 

processing 
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Scikitlearn Unified API, Model evaluation, 

Pipelines 

Classification, Regression, Clustering 

Matplotlib 2D/3D plotting, Customizable styles Exploratory visualization, Publication 

figures 

TensorFlow Automatic differentiation, GPU 

support 

Neural networks, Deep learning models 

 

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 𝑠𝑢𝑚 =   𝑥𝑖
𝑎
𝑖=1  𝑣𝑠 looped sum 

 

Pandas integrates seamlessly with SQL databases through pd.read_sql_query() and handles 

time series analysis with built-in resampling methods. The groupby functionality enables 

split-apply-combine operations critical for aggregating business metrics. 

 

Scikit-learn provides a unified API across algorithms, making model experimentation 

systematic. Its pipeline functionality encapsulates preprocessing and modeling steps: 

 

from sklearn . pipeline import make_pipeline 
from sklearn . preprocessing import Standard Scaler  
from sklearn . ensemble import Random ForestRegressor 
 
pipe = make_pipeline (  

Standard Scaler (), 
Random ForestRegressor ( n_estimators =100) 

) 
 

 

Matplotlib integrates with Jupyter notebooks for interactive visualization, while TensorFlow 

2.x’s eager execution mode simplifies debugging neural networks. Together, these libraries 

form a complete toolkit for data-driven decision making. 

 

IV. R FOR STATISTICAL ANALYSIS AND VISUALIZATION 

 

R remains a cornerstone of statistical computing, particularly valued for its expressive syntax, 

advanced visualization capabilities, and comprehensive package ecosystem. This section 

explores R’s core packages for modern data workflows and demonstrates their application 

through a linear regression case study. 

 

Key Packages 

 ggplot2: Grammar of Graphics-based plotting system for creating publication- quality 

visualizations [9]. 

 dplyr: Intuitive syntax for data manipulation (filter, mutate, summarize) using the 
pipe (%>%) operator. 

 caret: Unified interface for training and evaluating machine learning models. 

 tidyr: Tools for reshaping data between wide/long formats and handling missing 
values. 
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Linear Regression Example 

 

Listing 2 Linear regression analysis in R 

 
# Load required packages  
library ( dplyr) 
library ( tidyr) 
 library ( ggplot2 ) 
 
# Prepare data  
data ( mtcars ) 
clean _ data <- mtcars % >%  
    select( mpg , wt , hp) % >%  
    drop _na () % >% 

mutate ( wt_ std = ( wt - mean ( wt)) / sd( wt)) 
 
# Fit model 
model <- lm( mpg ~ wt_ std + hp , data = clean _ data ) 
summary ( model) 
 
# Diagnostic plot 
ggplot( model , aes (. fitted , . resid )) +  
    geom _ point () + 

geom _ hline ( yintercept = 0 , linetype = " dashed ") +  

labs ( title = " Residuals ␣vs␣Fitted ␣Values ", 

x = " Fitted ␣Values ", y = " Residuals ") 
 

Tidyverse Workflow 

 

Package Strengths 

 

ggplot2 enables layered visualization through its declarative syntax. A basic scatter- plot with 

regression line can be created as: 

 

ggplot( mtcars , aes ( wt , mpg )) +  
    geom _ point () + 
geom _ smooth ( method = " lm", se = FALSE ) 
 

dplyr simplifies complex data manipulations. To calculate average MPG by cylinder count: 

 

mtcars % >% 
group _by( cyl) % >% 
summarise ( avg _ mpg = mean ( mpg )) 
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Figure 1: Tidyverse data analysis workflow in R 

 

Caret streamlines machine learning workflows with functions like train() for model tuning 

and preProcess() for automated scaling. Recent benchmarks show it reduces model 

development time by 40% compared to base R [10]. 

 

Modern Applications 

The Tidyverse ecosystem has become essential for reproducible research pipelines in fields 

like epidemiology and econometrics [11]. Its standardized syntax enables seamless 

collaboration, while RMarkdown integration supports dynamic reporting. 

 

V. SQL FOR DATA EXTRACTION AND MANIPULATION 

 

SQL (Structured Query Language) remains the gold standard for interacting with relational 

databases, enabling efficient data extraction, transformation, and aggregation. Its declarative 

syntax allows users to focus on what data to retrieve rather than how to retrieve it, making it 

indispensable for data scientists working with structured datasets [12]. 
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Core Operations 

 SELECT: Retrieves specified columns from tables. Supports filtering with WHERE 

clauses: 

 

SELECT product_name , price FROM products WHERE category = ’ Electronics ’; 
 

 JOIN: Combines data from multiple tables using common keys. Types include 
INNER, LEFT, and RIGHT joins: 

 

SELECT orders . id , customers . name  
FROM orders 
INNER JOIN customers ON orders . customer_id = customers . id 
; 

 

 GROUP BY: Aggregates data by specified columns, often used with functions like 
SUM, AVG: 

 

SELECT department , AVG ( salary )  
FROM employees 
GROUP BY department; 

 

Sales Data Aggregation Example 

 

Listing 3 Monthly sales aggregation query 

 
SELECT 

EXTRACT ( MONTH FROM sale_date ) AS month ,  
products . name AS product , 
SUM ( quantity ) AS total_units ,  
SUM ( amount) AS total_revenue 

FROM sales 
JOIN products ON sales . product_id = products . id 
WHERE sale_date BETWEEN ’ 2024 -01 -01 ’ AND ’ 2024 -12 -31 ’ 
GROUP BY month , product ORDER BY 
total_revenue DESC ; 

 

SQL vs. NoSQL Comparison 

 

SQL’s strength lies in handling structured data with complex relationships, while NoSQL 

excels at scale and flexibility. For instance, SQL databases process 90% of financial 

transactions due to ACID guarantees [12], whereas NoSQL powers 75% of real-time 

analytics pipelines [13]. 
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Table 2: SQL vs. NoSQL Databases (2020-2025) 

 

Feature SQL NoSQL 

Data Structure Tables with fixed schema Documents/Key-Value/Graph 

Schema Static, predefined Dynamic, flexible 

Scalability Vertical Horizontal 

ACID Compliance Full Partial (BASE) 

Best For Complex queries, transactions Unstructured data, high velocity 

Use Cases Financial systems, CRM IoT, real-time analytics [13] 

 

VI. INTRODUCTION TO NOSQL DATABASES (MONGODB, CASSANDRA) 

 

NoSQL databases have revolutionized data management by addressing scalability, flexibility, 

and performance challenges in modern applications. This section com- pares two leading 

NoSQL systems: MongoDB (document-oriented) and Cassandra (wide-column store), 

focusing on their architectural models, scaling capabilities, and industry use cases [14, 15]. 

 

Data Models 

 

MongoDB uses a flexible document model with JSON-like BSON formatting: 

 
{ 

" _id ": ObjectId ("507 f1 f77 bcf86 cd 799439011 "), 
 " name ": " Alice Chen ", 
" email ": " alice@ example . com ",  
" addresses ": [ 
{ 

" type ": " home ", 
" street ": "123 Maple St",  
" city ": " San Francisco " 

}, 
{ 

" type ": " work ", 
" street ": "456 Oak Blvd ",  
" city ": " Palo Alto " 

} 
] 

} 
 
Cassandra employs a partitioned wide-column model optimized for write-heavy workloads. 

Data is organized into tables with dynamic columns per row: 

 

CREATE TABLE user_activity (  
user_id UUID, 
event_time TIMESTAMP,  
action_type TEXT, 

 
device_ip INET, 
PRIMARY KEY (user_id, event_time) 

); 
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Scalability Comparison 

 

NoSQL Architectures: 

 

 
 

Figure 2: NoSQL database architectures and relationships 

 

Table 3: MongoDB vs Cassandra Key Differences 

 

Feature MongoDB Cassandra 

Data Model Document (BSON) Wide-column 

Consistency Strong (configurable) Eventual 

Write Throughput 10k-100k ops/sec 100k-1M+ ops/sec 

Best For Agile development, mid-size data High-velocity writes, global scale 

Use Cases CMS, real-time analytics IoT, time-series data [16] 

 

Use Cases 

 

MongoDB excels in: 
 Content management systems (flexible schema evolution) 
 Mobile apps with offline synchronization 
 Real-time analytics with aggregations 

 

Cassandra dominates: 
 IoT sensor data ingestion (high write scalability) 
 Time-series data (stock market feeds) 
 Global-scale applications (multi-region deployments) 

 

Cassandra’s masterless architecture supports linear scaling across data centers, while 

MongoDB’s sharding provides automatic data distribution. Both integrate with Spark and 

Kafka for modern data pipelines [15]. 

 

VII. CODE EXAMPLES AND BEST PRACTICES 

 

Efficient, readable code is fundamental to successful data science projects. This section 

illustrates best practices through practical examples in Python, R, and SQL, emphasizing 

modularity, clarity, and performance optimization. 
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Python: Feature Engineering Function 

 

Feature engineering transforms raw data into meaningful features that improve model 

performance. Writing reusable Python functions for this purpose ensures consistency and 

reproducibility [?]. Below is a function that creates new features from a Pandas DataFrame, 

including polynomial terms and interaction features: 

 

Listing 4 Reusable feature engineering function in Python 

 

import pandas as pd 
def  add_features ( df): 

# Create polynomial features  
df*’ age_squared ’+ = df*’ age ’+ ** 2  
# Interaction term 
df*’ income_per_age ’+ = df*’ income ’+ / ( df*’ age ’+ + 1)  
# Binary flag 
df*’ is_senior ’+ = ( df*’ age ’+ >= 65). astype ( int)  
return df 

 
# Example usage : 
data = pd. Data Frame (,’ age ’: *25 , 40 , 70+, ’ income ’: *50000 , 80000 , 30000 +-) 
data = add_features ( data )  
print( data ) 

 

R: Visualization with ggplot2 

 

Clear and informative visualizations are essential for exploratory data analysis and 

communicating results. The ggplot2 package in R enables layered, customizable graphics 

with minimal code [9]. The following script creates a scatterplot with a regression line: 

 

Listing 5 Scatterplot with regression line in R 

 

library ( ggplot2 ) 
# Sample data 
df <- data . frame ( 
    hours _ studied = c(2 , 4 , 6 , 8 , 10), 
    exam _ score = c(65 , 70 , 78 , 88 , 95) 
) 
# Scatterplot with linear regression line 
ggplot( df , aes ( x = hours _ studied , y = exam _ score )) +  
     geom _ point( color = " blue ", size = 3) + 
     geom _ smooth ( method = " lm", se = FALSE , color = " red ") +  

     labs ( title = " Exam ␣Score ␣vs. ␣Hours ␣Studied ", 

                  x = " Hours ␣Studied ",  

                  y = " Exam ␣Score ") 
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SQL: Query Optimization Tip 

 

Optimizing SQL queries is crucial for handling large datasets efficiently. One common tip is 

to use indexed columns in WHERE and JOIN clauses to speed up query execution. 

 

Tip: Always filter and join on indexed columns. For example, if customer_id is indexed: 

 

SELECT o. order_id , c. name  
FROM orders o 
JOIN customers c ON o. customer_id = c. customer_id  
WHERE o. customer_id = 12345 ; 
 

This leverages the index for faster lookups and join operations. 

 

Best Practices Summary 
 Write modular, well-documented functions for repeatable analysis. 
 Use expressive visualization libraries to explore and present data. 
 Optimize queries by leveraging database indexes and minimizing unnecessary 

computations. 
 Follow consistent naming conventions and code style for maintainability. 

 

VIII. INTEGRATING PROGRAMMING IN DATA SCIENCE PROJECTS 

 

Integrating programming tools and environments is fundamental to executing robust, 

reproducible, and collaborative data science projects. Modern workflows combine interactive 

development environments (IDEs), workflow orchestration tools, and version control systems 

to streamline the journey from data ingestion to model deployment. 

 

Workflow orchestration automates and coordinates the sequence of data-related tasks, such 

as extraction, transformation, analysis, and reporting. Tools like Apache 

 

Airflow, Prefect, Dagster, and Metaflow allow data scientists to define, schedule, and 

monitor complex pipelines as directed acyclic graphs (DAGs), ensuring that dependencies are 

respected and tasks are executed in the correct order [2, 17]. This orchestration reduces 

manual intervention, minimizes errors, and enables projects to scale efficiently across 

distributed systems or cloud platforms. 

 

Reproducibility is a cornerstone of scientific data analysis. Interactive environments such as 

Jupyter Notebook and JupyterLab have become synonymous with reproducible research. 

They allow users to blend code, narrative text, and visualizations in a single document, 

making it easy to track the analytical process and share results with collaborators or reviewers 

[18]. RStudio offers similar capabilities for R users, supporting R Markdown for dynamic, 

self-contained reports. Both platforms encourage the use of project-oriented workflows, 

where all code, data, and outputs are organized in a consistent directory structure, facilitating 

seamless reruns and peer verification [19]. 

 

Collaboration is enhanced through integrated version control systems such as Git and 

platforms like GitHub or GitLab. These tools formalize the process of tracking code changes, 
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managing branches, and merging contributions from multiple team members. Version control 

not only supports open science and transparency but also enables experimentation without 

risking the stability of production code. In multi- disciplinary teams, version control is critical 

for coordinating Python, R, and SQL scripts, as well as documentation and configuration 

files. 

 

Cross-language integration is increasingly common. Jupyter supports multiple kernels, 

allowing Python and R code to coexist in the same notebook, while RStudio’s reticulate 

package enables R users to call Python functions directly. This interoperability lets teams 

leverage the strengths of both languages within a single project [20]. 

 

Best practices for integration include modularizing code, managing dependencies with tools 

like Conda or renv, and maintaining clear documentation. Automated testing and continuous 

integration pipelines further ensure that code remains functional as projects evolve. 

 

In summary, integrating programming environments, workflow orchestration, and version 

control is essential for building scalable, reproducible, and collaborative data science 

solutions. These practices not only improve project efficiency but also enhance the credibility 

and impact of data-driven insights across research and industry. 

 

“A reproducible, automated, and collaborative workflow is the hallmark of professional data 

science.” 

 

IX. EXERCISES 

 

Python/Pandas Tasks 

1. Handling Missing Data: Given  a  DataFrame  df  containing  columns  customer_id,  
age,  and purchase_amount, write Python code using Pandas to: 
 Fill missing values in age with the column’s median. 
 Drop rows where customer_id is missing. 

 

2. Removing Duplicates and Outliers: You have a DataFrame sales with columns 

order_id, product, and amount. Write Pandas code to: 
 Remove duplicate rows based on order_id and product. 
 Remove outliers in the amount column using the Z-score method (i.e., keep only rows 

where the Z-score of amount is less than 3 in absolute value). 

 

SQL Query Problem 

 

3. Joining Tables for Customer Orders: Given two tables: customers (customer_id, 
name) and orders (order_id, customer_id, amount), write a SQL query to return each 

customer’s name and the total amount of their orders. Only include customers with at 

least one order. 

 

 

 

 

 



Artificial Intelligence Technology in Healthcare: Security and Privacy Issues 

ISBN: 978-93-7020-738-7 

Chapter 3 

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL 

 

41  

Case Study: Comparing Average Delivery Times: A logistics company 
wants to know if a new route reduces delivery times. You are given two vectors 

in R: old_route = c(42, 45, 47, 43, 44, 46, 48) and new_route = c(39, 41, 40, 38, 

42, 40, 39). 

 

Tasks 
 Formulate the null and alternative hypotheses. 
 Use an appropriate hypothesis test in R to compare the mean delivery 

times. 
 Report the p-value and interpret the result at the 0.05 significance level. 
 State your conclusion about the effectiveness of the new route. 

Case Study: Hypothesis Testing in R 
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