
Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

28

PROGRAMMING FOR DATA SCIENCE: PYTHON,

R, SQL, AND NOSQL

Abstract

Programming is the backbone of modern data

science, enabling practitioners to manipulate,

analyze, and extract insights from vast and

complex datasets. This chapter explores the

essential roles of Python, R, SQL, and NoSQL

technologies in the data science workflow.

Python, with its extensive libraries such as

NumPy, Pandas, and Scikit-learn, has become

the most widely used language for data

manipulation, machine learning, and

automation due to its simplicity and versa-

tility [1, 2]. R remains a powerful tool for

statistical analysis and visualization, especially

in academia and research, offering specialized

packages for modeling and graphics. SQL

continues to be indispensable for querying and

managing structured data in relational

databases, while NoSQL solutions like

MongoDB and Cassandra address the needs of

unstructured and large-scale data. Mastery of

these programming languages and tools allows

data scientists to efficiently pre- process data,

perform statistical analyses, build predictive

models, and deploy solutions in real-world

environments. As the field evolves, the

integration of these technologies supports

robust, scalable, and reproducible data science

projects across diverse industries.

Keywords: Python, R, SQL, NoSQL, Data

Manipulation

Authors

Shubneet

Department of Computer Science

Chandigarh University, Gharuan

Mohali, 140413, Punjab, India.

jeetshubneet27@gmail.com;

Anushka Raj Yadav

Department of Computer Science

Chandigarh University, Gharuan

Mohali, 140413, Punjab, India.

ay462744@gmail.com;

Partha Chanda

Department of Computer Science

Chandigarh University, Gharuan

Mohali, 140413, Punjab, India.

partha.chanda.ai@gmail.com;

Mohammad Yasir Bin Taleb Abrar

Department of Computer Science

Chandigarh University, Gharuan

Mohali, 140413, Punjab, India.

yasirbintaleb@gmail.com;

Nitya

Department of Computer Science

Chandigarh University, Gharuan

Mohali, 140413, Punjab, India.

nityachadha140@gmail.com;

mailto:jeetshubneet27@gmail.com
mailto:ay462744@gmail.com
mailto:partha.chanda.ai@gmail.com
mailto:yasirbintaleb@gmail.com
mailto:nityachadha140@gmail.com

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

29

I. INTRODUCTION

In the modern data science landscape, programming languages serve as the foundational tools

for transforming raw data into actionable insights. Python, R, and SQL have emerged as the

triumvirate of technologies driving innovation across industries, from healthcare diagnostics

to financial forecasting. These languages enable data scientists to clean, analyze, and model

data at scale while supporting critical workflows such as ETL (Extract, Transform, Load)

pipelines, machine learning deployment, and real-time analytics. For instance, Python’s

dominance in machine learning-used by 90% of data scientists as of 2025-stems from its

versatility in automating workflows and integrating with cloud platforms like AWS and

Azure [1]. Similarly, SQL remains indispensable for querying relational databases, with 53%

of enterprises relying on it for business intelligence tasks [2].

The choice of programming language often depends on the problem context. Python excels in

end-to-end machine learning pipelines through libraries like Tensor- Flow and Scikitlearn,

while R’s specialized statistical packages (e.g., ggplot2, caret) make it preferred in academia

and bioinformatics. SQL bridges the gap between data storage and analysis, enabling efficient

manipulation of structured datasets. Emerging technologies like NoSQL databases (e.g.,

MongoDB) further expand these capabilities, addressing the challenges of unstructured data

and distributed systems. This chapter explores how these languages collectively empower

data scientists to solve complex problems through code-driven methodologies.

Chapter Outline
 Why Programming is Essential in Data Science
 Python for Data Science: Key Libraries (NumPy, Pandas, Scikit-learn)
 R for Statistical Analysis and Visualization
 SQL for Data Extraction and Manipulation
 Introduction to NoSQL Databases (MongoDB, Cassandra)
 Code Examples and Best Practices
 Integrating Programming in Data Science Projects
 Hands-on Exercises

As data volumes grow exponentially, proficiency in these languages ensures data scientists

can adapt to evolving tools like PySpark for big data processing or MLflow for model

tracking. This chapter equips readers with both theoretical knowledge and practical skills to

leverage programming languages effectively in real-world scenarios

II. WHY PROGRAMMING IS ESSENTIAL IN DATA SCIENCE

Programming is the engine that powers modern data science, transforming raw data into

actionable insights through automation, reproducibility, scalability, and seamless integration

with data platforms. As data grows in volume and complexity, the ability to write and

maintain code is no longer optional but fundamental for anyone seeking to extract value from

data [3, 4].

Automation is a cornerstone of efficient data science workflows. Coding allows data

scientists to automate repetitive and time-consuming tasks such as data collection, cleaning,

feature engineering, and model evaluation. For example, scripts can be scheduled to fetch

data from APIs, preprocess new data daily, retrain models, and update dashboards without

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

30

manual intervention. This automation not only saves time but also minimizes human error,

ensuring consistency in results [3, 4]. As machine learning and AI become more prevalent,

automation through programming is essential for deploying models that adapt to new data in

real-time.

Reproducibility is another critical aspect enabled by programming. By scripting every step

of the analysis-from data import to model validation-data scientists create transparent

workflows that others can review, replicate, and build upon. Version- controlled scripts and

reproducible notebooks (e.g., Jupyter, R Markdown) allow for easy tracking of changes and

facilitate peer review [5]. Automation tools and CI/CD pipelines further enhance

reproducibility by running analyses automatically whenever code is updated, ensuring that

results remain consistent across environments and over time.

Scalability is vital as organizations increasingly deal with big data. Programming skills allow

data scientists to optimize code for performance, work with distributed computing

frameworks, and process massive datasets efficiently. Python’s integration with big data tools

like PySpark and Dask, or SQL’s ability to handle large queries in cloud warehouses,

exemplifies how code enables scalable analytics. This scalability is essential for industries

such as finance, healthcare, and e-commerce, where rapid analysis of large datasets drives

competitive advantage [1].

Integration with Data Platforms is made possible through programming. Data science

projects often require connecting to diverse data sources-relational databases (SQL), NoSQL

stores, cloud storage, or web APIs. Coding skills are crucial for extracting, transforming, and

loading (ETL) data across these platforms, allowing seamless movement and transformation

of information. Libraries like SQLAlchemy (Python) or DBI (R) enable flexible database

interactions, while cloud SDKs facilitate integration with platforms like AWS, Azure, or

Google Cloud.

Beyond these technical benefits, programming fosters collaboration and innovation.

Production-level code can be shared, reused, and maintained by teams, bridging the gap

between data scientists and software engineers [6]. Collaborative platforms like GitHub and

cloud-based notebooks allow geographically dispersed teams to work together, review code,

and ensure high-quality, reliable solutions.

In summary, programming is indispensable in data science for automating work- flows,

ensuring reproducibility, enabling scalability, and integrating with diverse data platforms.

Mastery of programming not only accelerates analytics but also underpins the credibility,

efficiency, and impact of data-driven solutions in today’s data-centric world.

III. PYTHON FOR DATA SCIENCE: KEY LIBRARIES

Python dominates modern data science workflows through its rich ecosystem of specialized

libraries. These tools streamline data manipulation, analysis, and machine learning

implementation. Below we examine five foundational libraries that every data scientist

should master.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

31

Core Libraries

 NumPy: Fundamental package for numerical computing with support for multi-

dimensional arrays and matrices. Enables vectorized operations for high- performance

calculations [2].

 Pandas: Primary tool for data manipulation and analysis through DataFrame objects.
Handles missing data, time series, and relational operations efficiently [7].

 Scikit-learn: Comprehensive machine learning library offering algorithms for
classification, regression, clustering, and model evaluation [8].

 Matplotlib: Foundational plotting library for creating static, animated, and interactive

visualizations.

 TensorFlow: End-to-end platform for deep learning and neural network development.

Data Cleaning with Pandas

Listing 1 Data cleaning example using Pandas

import pandas as pd
Load dataset with missing values
data = pd. read_csv (’ sales_data . csv ’)
Handle missing values
data_clean = (data

. dropna (subset =*’ customer_id ’+)

. fillna (,’ revenue ’: data *’ revenue ’+. median ()-)

. astype (,’ order_date ’: ’ datetime 64 * ns+’-)

. rename (columns =,’ revenue ’: ’ sales_amount ’-)
)

Remove outliers using IQR
Q1 = data_clean *’ sales_amount ’+. quantile (0 .25)
Q3 = data_clean *’ sales_amount ’+. quantile (0 .75)

data_clean = data_clean . query (’@Q1 ␣ <=␣sales_amount␣ <=␣@Q3 ’)

Library Comparison

Advanced Capabilities

NumPy underpins numerical operations in higher-level libraries. Its C-implemented core

enables vectorized operations that outperform native Python loops by 10-100x [2]. For

example:

Table 1: Python Data Science Libraries: Features and Use Cases (2020-2025)

Library Key Features Common Use Cases

NumPy N-dimensional arrays, Linear

algebra, Broadcasting

Numerical simulations, Matrix

operations

Pandas DataFrames, Time series, Missing

data handling

EDA, Data preprocessing, CSV/Excel

processing

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

32

Scikitlearn Unified API, Model evaluation,

Pipelines

Classification, Regression, Clustering

Matplotlib 2D/3D plotting, Customizable styles Exploratory visualization, Publication

figures

TensorFlow Automatic differentiation, GPU

support

Neural networks, Deep learning models

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 𝑠𝑢𝑚 = 𝑥𝑖
𝑎
𝑖=1 𝑣𝑠 looped sum

Pandas integrates seamlessly with SQL databases through pd.read_sql_query() and handles

time series analysis with built-in resampling methods. The groupby functionality enables

split-apply-combine operations critical for aggregating business metrics.

Scikit-learn provides a unified API across algorithms, making model experimentation

systematic. Its pipeline functionality encapsulates preprocessing and modeling steps:

from sklearn . pipeline import make_pipeline
from sklearn . preprocessing import Standard Scaler
from sklearn . ensemble import Random ForestRegressor

pipe = make_pipeline (

Standard Scaler (),
Random ForestRegressor (n_estimators =100)

)

Matplotlib integrates with Jupyter notebooks for interactive visualization, while TensorFlow

2.x’s eager execution mode simplifies debugging neural networks. Together, these libraries

form a complete toolkit for data-driven decision making.

IV. R FOR STATISTICAL ANALYSIS AND VISUALIZATION

R remains a cornerstone of statistical computing, particularly valued for its expressive syntax,

advanced visualization capabilities, and comprehensive package ecosystem. This section

explores R’s core packages for modern data workflows and demonstrates their application

through a linear regression case study.

Key Packages

 ggplot2: Grammar of Graphics-based plotting system for creating publication- quality

visualizations [9].

 dplyr: Intuitive syntax for data manipulation (filter, mutate, summarize) using the
pipe (%>%) operator.

 caret: Unified interface for training and evaluating machine learning models.

 tidyr: Tools for reshaping data between wide/long formats and handling missing
values.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

33

Linear Regression Example

Listing 2 Linear regression analysis in R

Load required packages
library (dplyr)
library (tidyr)
 library (ggplot2)

Prepare data
data (mtcars)
clean _ data <- mtcars % >%
 select(mpg , wt , hp) % >%
 drop _na () % >%

mutate (wt_ std = (wt - mean (wt)) / sd(wt))

Fit model
model <- lm(mpg ~ wt_ std + hp , data = clean _ data)
summary (model)

Diagnostic plot
ggplot(model , aes (. fitted , . resid)) +
 geom _ point () +

geom _ hline (yintercept = 0 , linetype = " dashed ") +

labs (title = " Residuals ␣vs␣Fitted ␣Values ",

x = " Fitted ␣Values ", y = " Residuals ")

Tidyverse Workflow

Package Strengths

ggplot2 enables layered visualization through its declarative syntax. A basic scatter- plot with

regression line can be created as:

ggplot(mtcars , aes (wt , mpg)) +
 geom _ point () +
geom _ smooth (method = " lm", se = FALSE)

dplyr simplifies complex data manipulations. To calculate average MPG by cylinder count:

mtcars % >%
group _by(cyl) % >%
summarise (avg _ mpg = mean (mpg))

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

34

Figure 1: Tidyverse data analysis workflow in R

Caret streamlines machine learning workflows with functions like train() for model tuning

and preProcess() for automated scaling. Recent benchmarks show it reduces model

development time by 40% compared to base R [10].

Modern Applications

The Tidyverse ecosystem has become essential for reproducible research pipelines in fields

like epidemiology and econometrics [11]. Its standardized syntax enables seamless

collaboration, while RMarkdown integration supports dynamic reporting.

V. SQL FOR DATA EXTRACTION AND MANIPULATION

SQL (Structured Query Language) remains the gold standard for interacting with relational

databases, enabling efficient data extraction, transformation, and aggregation. Its declarative

syntax allows users to focus on what data to retrieve rather than how to retrieve it, making it

indispensable for data scientists working with structured datasets [12].

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

35

Core Operations

 SELECT: Retrieves specified columns from tables. Supports filtering with WHERE

clauses:

SELECT product_name , price FROM products WHERE category = ’ Electronics ’;

 JOIN: Combines data from multiple tables using common keys. Types include
INNER, LEFT, and RIGHT joins:

SELECT orders . id , customers . name
FROM orders
INNER JOIN customers ON orders . customer_id = customers . id
;

 GROUP BY: Aggregates data by specified columns, often used with functions like
SUM, AVG:

SELECT department , AVG (salary)
FROM employees
GROUP BY department;

Sales Data Aggregation Example

Listing 3 Monthly sales aggregation query

SELECT

EXTRACT (MONTH FROM sale_date) AS month ,
products . name AS product ,
SUM (quantity) AS total_units ,
SUM (amount) AS total_revenue

FROM sales
JOIN products ON sales . product_id = products . id
WHERE sale_date BETWEEN ’ 2024 -01 -01 ’ AND ’ 2024 -12 -31 ’
GROUP BY month , product ORDER BY
total_revenue DESC ;

SQL vs. NoSQL Comparison

SQL’s strength lies in handling structured data with complex relationships, while NoSQL

excels at scale and flexibility. For instance, SQL databases process 90% of financial

transactions due to ACID guarantees [12], whereas NoSQL powers 75% of real-time

analytics pipelines [13].

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

36

Table 2: SQL vs. NoSQL Databases (2020-2025)

Feature SQL NoSQL

Data Structure Tables with fixed schema Documents/Key-Value/Graph

Schema Static, predefined Dynamic, flexible

Scalability Vertical Horizontal

ACID Compliance Full Partial (BASE)

Best For Complex queries, transactions Unstructured data, high velocity

Use Cases Financial systems, CRM IoT, real-time analytics [13]

VI. INTRODUCTION TO NOSQL DATABASES (MONGODB, CASSANDRA)

NoSQL databases have revolutionized data management by addressing scalability, flexibility,

and performance challenges in modern applications. This section com- pares two leading

NoSQL systems: MongoDB (document-oriented) and Cassandra (wide-column store),

focusing on their architectural models, scaling capabilities, and industry use cases [14, 15].

Data Models

MongoDB uses a flexible document model with JSON-like BSON formatting:

{

" _id ": ObjectId ("507 f1 f77 bcf86 cd 799439011 "),
 " name ": " Alice Chen ",
" email ": " alice@ example . com ",
" addresses ": [
{

" type ": " home ",
" street ": "123 Maple St",
" city ": " San Francisco "

},
{

" type ": " work ",
" street ": "456 Oak Blvd ",
" city ": " Palo Alto "

}
]

}

Cassandra employs a partitioned wide-column model optimized for write-heavy workloads.

Data is organized into tables with dynamic columns per row:

CREATE TABLE user_activity (
user_id UUID,
event_time TIMESTAMP,
action_type TEXT,

device_ip INET,
PRIMARY KEY (user_id, event_time)

);

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

37

Scalability Comparison

NoSQL Architectures:

Figure 2: NoSQL database architectures and relationships

Table 3: MongoDB vs Cassandra Key Differences

Feature MongoDB Cassandra

Data Model Document (BSON) Wide-column

Consistency Strong (configurable) Eventual

Write Throughput 10k-100k ops/sec 100k-1M+ ops/sec

Best For Agile development, mid-size data High-velocity writes, global scale

Use Cases CMS, real-time analytics IoT, time-series data [16]

Use Cases

MongoDB excels in:
 Content management systems (flexible schema evolution)
 Mobile apps with offline synchronization
 Real-time analytics with aggregations

Cassandra dominates:
 IoT sensor data ingestion (high write scalability)
 Time-series data (stock market feeds)
 Global-scale applications (multi-region deployments)

Cassandra’s masterless architecture supports linear scaling across data centers, while

MongoDB’s sharding provides automatic data distribution. Both integrate with Spark and

Kafka for modern data pipelines [15].

VII. CODE EXAMPLES AND BEST PRACTICES

Efficient, readable code is fundamental to successful data science projects. This section

illustrates best practices through practical examples in Python, R, and SQL, emphasizing

modularity, clarity, and performance optimization.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

38

Python: Feature Engineering Function

Feature engineering transforms raw data into meaningful features that improve model

performance. Writing reusable Python functions for this purpose ensures consistency and

reproducibility [?]. Below is a function that creates new features from a Pandas DataFrame,

including polynomial terms and interaction features:

Listing 4 Reusable feature engineering function in Python

import pandas as pd
def add_features (df):

Create polynomial features
df*’ age_squared ’+ = df*’ age ’+ ** 2
Interaction term
df*’ income_per_age ’+ = df*’ income ’+ / (df*’ age ’+ + 1)
Binary flag
df*’ is_senior ’+ = (df*’ age ’+ >= 65). astype (int)
return df

Example usage :
data = pd. Data Frame (,’ age ’: *25 , 40 , 70+, ’ income ’: *50000 , 80000 , 30000 +-)
data = add_features (data)
print(data)

R: Visualization with ggplot2

Clear and informative visualizations are essential for exploratory data analysis and

communicating results. The ggplot2 package in R enables layered, customizable graphics

with minimal code [9]. The following script creates a scatterplot with a regression line:

Listing 5 Scatterplot with regression line in R

library (ggplot2)
Sample data
df <- data . frame (
 hours _ studied = c(2 , 4 , 6 , 8 , 10),
 exam _ score = c(65 , 70 , 78 , 88 , 95)
)
Scatterplot with linear regression line
ggplot(df , aes (x = hours _ studied , y = exam _ score)) +
 geom _ point(color = " blue ", size = 3) +
 geom _ smooth (method = " lm", se = FALSE , color = " red ") +

 labs (title = " Exam ␣Score ␣vs. ␣Hours ␣Studied ",

 x = " Hours ␣Studied ",

 y = " Exam ␣Score ")

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

39

SQL: Query Optimization Tip

Optimizing SQL queries is crucial for handling large datasets efficiently. One common tip is

to use indexed columns in WHERE and JOIN clauses to speed up query execution.

Tip: Always filter and join on indexed columns. For example, if customer_id is indexed:

SELECT o. order_id , c. name
FROM orders o
JOIN customers c ON o. customer_id = c. customer_id
WHERE o. customer_id = 12345 ;

This leverages the index for faster lookups and join operations.

Best Practices Summary
 Write modular, well-documented functions for repeatable analysis.
 Use expressive visualization libraries to explore and present data.
 Optimize queries by leveraging database indexes and minimizing unnecessary

computations.
 Follow consistent naming conventions and code style for maintainability.

VIII. INTEGRATING PROGRAMMING IN DATA SCIENCE PROJECTS

Integrating programming tools and environments is fundamental to executing robust,

reproducible, and collaborative data science projects. Modern workflows combine interactive

development environments (IDEs), workflow orchestration tools, and version control systems

to streamline the journey from data ingestion to model deployment.

Workflow orchestration automates and coordinates the sequence of data-related tasks, such

as extraction, transformation, analysis, and reporting. Tools like Apache

Airflow, Prefect, Dagster, and Metaflow allow data scientists to define, schedule, and

monitor complex pipelines as directed acyclic graphs (DAGs), ensuring that dependencies are

respected and tasks are executed in the correct order [2, 17]. This orchestration reduces

manual intervention, minimizes errors, and enables projects to scale efficiently across

distributed systems or cloud platforms.

Reproducibility is a cornerstone of scientific data analysis. Interactive environments such as

Jupyter Notebook and JupyterLab have become synonymous with reproducible research.

They allow users to blend code, narrative text, and visualizations in a single document,

making it easy to track the analytical process and share results with collaborators or reviewers

[18]. RStudio offers similar capabilities for R users, supporting R Markdown for dynamic,

self-contained reports. Both platforms encourage the use of project-oriented workflows,

where all code, data, and outputs are organized in a consistent directory structure, facilitating

seamless reruns and peer verification [19].

Collaboration is enhanced through integrated version control systems such as Git and

platforms like GitHub or GitLab. These tools formalize the process of tracking code changes,

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

40

managing branches, and merging contributions from multiple team members. Version control

not only supports open science and transparency but also enables experimentation without

risking the stability of production code. In multi- disciplinary teams, version control is critical

for coordinating Python, R, and SQL scripts, as well as documentation and configuration

files.

Cross-language integration is increasingly common. Jupyter supports multiple kernels,

allowing Python and R code to coexist in the same notebook, while RStudio’s reticulate

package enables R users to call Python functions directly. This interoperability lets teams

leverage the strengths of both languages within a single project [20].

Best practices for integration include modularizing code, managing dependencies with tools

like Conda or renv, and maintaining clear documentation. Automated testing and continuous

integration pipelines further ensure that code remains functional as projects evolve.

In summary, integrating programming environments, workflow orchestration, and version

control is essential for building scalable, reproducible, and collaborative data science

solutions. These practices not only improve project efficiency but also enhance the credibility

and impact of data-driven insights across research and industry.

“A reproducible, automated, and collaborative workflow is the hallmark of professional data

science.”

IX. EXERCISES

Python/Pandas Tasks

1. Handling Missing Data: Given a DataFrame df containing columns customer_id,
age, and purchase_amount, write Python code using Pandas to:
 Fill missing values in age with the column’s median.
 Drop rows where customer_id is missing.

2. Removing Duplicates and Outliers: You have a DataFrame sales with columns

order_id, product, and amount. Write Pandas code to:
 Remove duplicate rows based on order_id and product.
 Remove outliers in the amount column using the Z-score method (i.e., keep only rows

where the Z-score of amount is less than 3 in absolute value).

SQL Query Problem

3. Joining Tables for Customer Orders: Given two tables: customers (customer_id,
name) and orders (order_id, customer_id, amount), write a SQL query to return each

customer’s name and the total amount of their orders. Only include customers with at

least one order.

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

41

Case Study: Comparing Average Delivery Times: A logistics company
wants to know if a new route reduces delivery times. You are given two vectors

in R: old_route = c(42, 45, 47, 43, 44, 46, 48) and new_route = c(39, 41, 40, 38,

42, 40, 39).

Tasks
 Formulate the null and alternative hypotheses.
 Use an appropriate hypothesis test in R to compare the mean delivery

times.
 Report the p-value and interpret the result at the 0.05 significance level.
 State your conclusion about the effectiveness of the new route.

Case Study: Hypothesis Testing in R

REFERENCES

[1] upGrad: Latest Trends in Data Science: Python, R, & SQL in 2025. Accessed: 2025-04-26.

https://www.upgrad.com/blog/ future-of-data-science-technology-in-india/

[2] DataCamp: Top 12 Programming Languages for Data Scientists in 2025. Accessed: 2025-04-26.

https://www.datacamp.com/blog/ top-programming-languages-for-data-scientists-in-2022

[3] GUVI: Is Coding Required for Data Science? Accessed: 2025-04-26. https://www. guvi.in/blog/is-coding-

required-for-data-science/

[4] Data, I.: Coding in Data Science: How Much Is Required? Accessed: 2025-04-26.

https://www.institutedata.com/blog/ coding-in-data-science-how-much-is-required/

[5] Analytics, N.: Exploring Reproducibility in Scientific Research and Data Science. Accessed: 2025-04-

26.https://www.numberanalytics.com/blog/exploring-reproducibility-scientific-research-data-science

[6] Canada, S.: Production Level Code in Data Science. Accessed: 2025-04-26.

https://www.statcan.gc.ca/en/data-science/network/production-level-code

[7] Academy, F.: 50 Python Libraries for Data Science in 2025. Accessed: 2025-04-26.

https://www.fynd.academy/blog/python-libraries-for-data-science

[8] Coursera: Python Libraries for Data Science. Accessed: 2025-04-26. https://www.

coursera.org/in/articles/python-libraries-for-data-science

[9] Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis, 3rd edn. Springer, ??? (2020)

[10] Kuhn, M.: The caret package: A unified interface for predictive modeling. Journal of Statistical Software

105(1), 1–30 (2023) https://doi.org/10.18637/jss.v105.i01

[11] Wickham, H., Grolemund, G.: R for Data Science: Tidyverse Principles. Accessed: 2025-04-26.

https://r4ds.hadley.nz

[12] IBM: SQL Vs. NoSQL Databases: What’s the Difference? Accessed: 2025-04-26.

https://www.ibm.com/think/topics/sql-vs-nosql

[13] Smith, J., Lee, H.: Sql vs. nosql databases: Choosing the right option for fintech. SSRN (2020). SSRN

5112525

[14] PeerSpot: Cassandra Vs MongoDB Comparison. Accessed: 2025-04-26. https://

www.peerspot.com/products/comparisons/cassandra_vs_mongodb

[15] Airbyte: Cassandra Vs. MongoDB: Navigating the NoSQL Landscape. Accessed: 2025-04-26.

https://airbyte.com/data-engineering-resources/ mongodb-vs-cassandra

[16] phoenixNAP: Cassandra Vs MongoDB - Key Differences. Accessed: 2025-04-26.

https://phoenixnap.com/kb/cassandra-vs-mongodb

[17] AI, N.: Best Workflow and Pipeline Orchestration Tools. Accessed: 2025-04-26.

https://neptune.ai/blog/best-workflow-and-pipeline-orchestration-tools

[18] Academy, D.: The Best IDEs and Tools for Data Science Projects. Accessed: 2025-04-26.

https://www.dataskillacademy.com/post-detail/ the-best-ides-and-tools-for-data-science-project/

[19] Project, E.: Reproducible Forecasting Workflows. Accessed: 2025-04-26.

https://ecoforecast.org/reproducible-forecasting-workflows/

https://www.upgrad.com/blog/future-of-data-science-technology-in-india/
https://www.upgrad.com/blog/future-of-data-science-technology-in-india/
https://www.datacamp.com/blog/top-programming-languages-for-data-scientists-in-2022
https://www.datacamp.com/blog/top-programming-languages-for-data-scientists-in-2022
https://www.guvi.in/blog/is-coding-required-for-data-science/
https://www.guvi.in/blog/is-coding-required-for-data-science/
https://www.guvi.in/blog/is-coding-required-for-data-science/
https://www.institutedata.com/blog/coding-in-data-science-how-much-is-required/
https://www.institutedata.com/blog/coding-in-data-science-how-much-is-required/
https://www.numberanalytics.com/blog/exploring-reproducibility-scientific-research-data-science
https://www.numberanalytics.com/blog/exploring-reproducibility-scientific-research-data-science
https://www.numberanalytics.com/blog/exploring-reproducibility-scientific-research-data-science
https://www.statcan.gc.ca/en/data-science/network/production-level-code
https://www.statcan.gc.ca/en/data-science/network/production-level-code
https://www.fynd.academy/blog/python-libraries-for-data-science
https://www.coursera.org/in/articles/python-libraries-for-data-science
https://www.coursera.org/in/articles/python-libraries-for-data-science
https://doi.org/10.18637/jss.v105.i01
https://r4ds.hadley.nz/
https://www.ibm.com/think/topics/sql-vs-nosql
https://www.peerspot.com/products/comparisons/cassandra_vs_mongodb
https://www.peerspot.com/products/comparisons/cassandra_vs_mongodb
https://airbyte.com/data-engineering-resources/mongodb-vs-cassandra
https://airbyte.com/data-engineering-resources/mongodb-vs-cassandra
https://phoenixnap.com/kb/cassandra-vs-mongodb
https://neptune.ai/blog/best-workflow-and-pipeline-orchestration-tools
https://www.dataskillacademy.com/post-detail/the-best-ides-and-tools-for-data-science-project/
https://www.dataskillacademy.com/post-detail/the-best-ides-and-tools-for-data-science-project/
https://ecoforecast.org/reproducible-forecasting-workflows/
https://ecoforecast.org/reproducible-forecasting-workflows/

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 3

PROGRAMMING FOR DATA SCIENCE: PYTHON, R, SQL, AND NOSQL

42

[20] Pickl.ai: How to Integrate Both Python & R Into Data Science Workflows. Accessed: 2025-04-26.

https://www.pickl.ai/blog/python-r-into-data-science/

[21] KDnuggets: Data Cleaning with Pandas: Step-by-Step Tutorial. Accessed: 2025- 04-26.

https://www.kdnuggets.com/data-cleaning-with-pandas

https://www.pickl.ai/blog/python-r-into-data-science/
https://www.kdnuggets.com/data-cleaning-with-pandas

