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COMPUTER ORGANIZATION AND OPERATING 

SYSTEMS 
 

Abstract 

 

This chapter examines the intricate 

relationship between computer hard- ware 

architecture and operating system (OS) 

functionalities, emphasizing how resources are 

managed to achieve efficiency and reliability. 

It begins with the von Neumann architecture, 

detailing the roles of the control unit, 

arithmetic logic unit (ALU), memory 

hierarchy (from registers to hard disk), and the 

critical function of system buses in data 

transfer [1]. The chapter then explores the OS 

as an intermediary between hardware and user 

applications, highlighting core responsibilities 

such as process scheduling, memory 

management, and input/out- put operations [2, 

3]. Special attention is given to the kernel‘s 

role in resource protection, multitasking, and 

security, as well as to mechanisms like paging 

and direct memory access (DMA) for efficient 

data handling. Case studies, including Linux 

kernel multitasking, and visual aids such as the 

OSI model, provide practical insights into real-

world implementations. By integrating 

hardware and software perspectives, this 

chapter equips readers with a holistic 

understanding of how modern computing 

systems orchestrate complex tasks and 

maintain robust performance 
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I. INTRODUCTION 

 

The symbiotic relationship between computer hardware and operating systems (OS) forms 

the foundation of modern computing. Hardware, comprising physical components like the 

CPU, memory, and I/O devices, provides the computational power and resources necessary 

for task execution. The OS, as a software layer, orchestrates these resources to deliver 

functionality, security, and usability. This interdependence ensures efficient resource 

allocation-for instance, the OS relies on the CPU‘s arithmetic logic unit (ALU) for 

computations, while hardware components depend on the OS for task scheduling and 

memory management. This synergy enables systems to balance performance, reliability, and 

user accessibility, from embedded devices to enterprise servers [4]. 

 

Historically, computing evolved from rudimentary batch processing to sophisticated 

multitasking environments. In the 1950s–60s, batch systems processed jobs sequentially 

using punched cards, requiring minimal user interaction. The 1970s introduced time-sharing, 

allowing multiple users to access mainframes simultaneously through terminals, a paradigm 

that prioritized resource fairness over raw speed. By the 1980s, multitasking OSes like UNIX 

enabled single users to run concurrent applications, leveraging advancements in CPU clock 

speeds and memory hierarchy. Modern systems integrate preemptive scheduling and virtual 

memory, with kernels like Linux managing billions of operations daily across diverse 

hardware architectures [5]. 

 

Key milestones in this evolution include 

 Batch Processing: Jobs executed in sequence without user input (e.g., IBM‘s 

OS/360). 

 Time-Sharing: Interactive access via terminals (e.g., MIT‘s CTSS). 

 Multitasking: Concurrent application execution (e.g., Windows NT, Linux). 

 Virtualization: Hardware abstraction for cloud computing (e.g., VMware, Docker). 

 

This chapter explores these concepts through the following structure: 

 Hardware Components: Von Neumann architecture, CPU subsystems, and memory 

hierarchy. 

 OS Functions: Process scheduling, paging, and I/O management. 

 I/O Systems: Interrupt handling, DMA controllers, and network protocols. 

 Case Study: Linux kernel‘s multitasking implementation. 

 Visual Aids: Diagrams of hardware-OS interactions and layered architectures. 

 

II. HARDWARE COMPONENTS 

 

Modern computing systems rely on tightly integrated hardware architectures and memory 

subsystems to balance performance, cost, and energy efficiency. This section examines the 

von Neumann model, CPU subsystems, memory hierarchies, and key performance metrics. 

 

1. Von Neumann Architecture: The von Neumann architecture forms the basis of most 

general-purpose computers, unifying program instructions and data in a single memory 

system. As shown in Figure 1, it comprises five components: 
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Figure 1: Von Neumann architecture with unified memory and bus structure 

 

 CPU: Executes instructions via ALU and control unit 

 Memory: Stores instructions and data (RAM/SSD/HDD) 

 Buses: 
 Data: Transfers operands/results (bidirectional) 

 Address: Specifies memory locations (unidirectional) 

 Control: Manages operations (interrupts, timing) 

 

This design introduces the von Neumann bottleneck, where shared buses limit concurrent 

instruction/data access [6, 7]. 

 

CPU Subsystems: The CPU executes programs through coordinated operation of two 

subsystems: 

 

Arithmetic Logic Unit (ALU): 

 Performs integer arithmetic (add, subtract) 

 Executes logic operations (AND, OR, XOR) 

 Handles bit-shifting and comparisons 

 

Control Unit: Manages the fetch-decode-execute cycle: 

 Fetch: Copies instruction address from PC to MAR, retrieves instruction via data bus 

to MDR/CIR [? ]. 

 Decode: Splits instruction into opcode (operation) and operand (data/address). 

 Execute: Routes operands to ALU/memory, stores results in registers/memory. 

 

Memory Hierarchy: Modern systems employ a layered memory hierarchy to optimize 

speed/cost tradeoffs (Table 1): 
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Table 1: Memory hierarchy characteristics 

 

Level Latency Size Cost/GB 

Registers 0.1ns 1KB $10,000 

L1 Cache 0.5ns 64KB $1,000 

L2 Cache 5ns 512KB $500 

RAM 80ns 16GB $10 

SSD 100 µs 1TB $0.20 

 

 Registers: CPU-integrated storage (e.g., PC, MAR) 

 Cache: SRAM-based L1/L2/L3 reduce RAM access latency 

 RAM: DRAM for volatile program/data storage 

 SSD/HDD: Non-volatile bulk storage [8] 

 

Performance Metrics: Key metrics for evaluating hardware performance: 

 Clock Speed: GHz rate (e.g., 3.5 GHz = 3.5 billion cycles/sec) 

 IPC: Instructions per cycle (higher = better parallelism) 

 CPI: Cycles per instruction (lower = better efficiency) 

 Amdahl’s Law: Speedup = 
1

(1−𝑃)
+  

𝑃

𝑠
  where P = optimized fraction,  

S = speedup factor [9] 

 

For a CPU with 30% vectorized code (10 x faster): 

 

Speedup = 
1

 1−0.3 + 
0.3

10

= 1.27𝑥 

 

III. OPERATING SYSTEM FUNCTIONS 

 

Operating systems serve as intermediaries between hardware and applications, managing 

resources and providing services. This section examines key OS functions: process 

scheduling, memory management, file systems, and security mechanisms. 

 

Process Scheduling: The scheduler determines which processes receive CPU time and in 

what order. Modern operating systems implement various scheduling algorithms to optimize 

system performance: 

 

Round Robin (RR) Scheduling allocates CPU time to processes in a cyclic manner, with 

each process receiving a fixed time quantum before being preempted. This approach ensures 

fairness by preventing any single process from monopolizing the CPU. However, its 

performance heavily depends on the time quantum value-smaller values improve 

responsiveness but increase context switching overhead [10]. 

 

Key characteristics of Round Robin scheduling include: 

 Fairness: All processes receive equal CPU time 

 Responsiveness: Short time slices maintain system responsiveness 

 Overhead: Context switching between processes consumes CPU cycles 
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As time quantum increases, RR scheduling approaches FCFS (First-Come-First- Served) 

behavior; as it approaches infinity, RR becomes identical to FCFS. Most implementations 

use multilevel queue scheduling, organizing processes into multiple queues based on their 

characteristics (CPU-bound or I/O-bound) and applying different scheduling algorithms to 

each queue. 

 

Memory Management: Memory management involves allocating and tracking physical 

memory resources while providing processes with a consistent addressing scheme. 

 

Paging divides physical and virtual memory into fixed-size blocks (pages), map- ping virtual 

addresses to physical ones through page tables. Since constant table lookups would slow the 

system, a specialized cache called the Translation Lookaside Buffer (TLB) stores recent 

address translations [11]. 

 

The TLB functions as follows: 

 When translating a virtual address, the MMU first checks the TLB 

 On a TLB hit, the physical address is retrieved immediately 

 On a TLB miss, the page table in main memory is consulted 

 The new translation is added to the TLB for future reference 

 

Virtual memory extends physical RAM by using disk space as an overflow, allowing 

programs to use more memory than physically available. The OS manages page tables, 

allocates physical memory, and handles exceptions raised by the Memory Management Unit 

(MMU). 

 

Segmentation divides memory into variable-sized segments based on logical divisions 

(code, data, stack). Modern systems often combine segmentation with pag- ing (segmented 

paging), using pages to describe components of segments for easier management. 

 

File Systems: File systems provide organized storage and retrieval mechanisms for data. 

 

Ext4 vs. NTFS represent two widely-used file systems for Linux and Windows respectively. 

Ext4 produces less fragmentation than NTFS, enabling faster data reads, while NTFS offers 

features like online disk checking and user quotas [12]. 

 

Key differences include: 

 Structure: Ext4 uses inodes while NTFS uses Master File Table (MFT) 

 Size Limits: Ext4 supports volumes up to 1EB and files up to 16TB; NTFS 

theoretically supports volumes up to 2
64

 − 1 clusters 

 Performance: Ext4 generally provides better performance for multiple concurrent 

file operations 

 Fragmentation: Ext4 minimizes fragmentation inherently while NTFS requires 

periodic defragmentation 

 

Inode handling in Ext4 stores metadata including file permissions, timestamps, and pointers 

to data blocks. Each inode has a unique number that serves as an identifier for the file or 

directory it represents. 
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Security: OS security mechanisms protect system integrity by controlling resource access 

and isolating processes. 

 

Kernel-mode vs. User-mode privileges establish a security boundary. In kernel mode, code 

has unrestricted access to hardware and can execute any CPU instruction. In user mode, 

applications run in isolated virtual address spaces with limited hardware access [13]. 

 

When a user-mode application requires privileged operations, it makes system calls that 

temporarily transfer control to kernel-mode code. This separation ensures that: 

 Applications cannot directly access critical hardware 

 Process crashes in user mode don‘t affect the entire system 

 Malicious code has limited ability to compromise the system 

 

Buffer overflow mitigation is critical in kernel code where memory management errors can 

lead to system crashes or privilege escalation. Kernel drivers must carefully validate buffer 

sizes and implement proper bounds checking to prevent attackers from overwriting adjacent 

memory regions with malicious code. 

 

The growing integration of AI and IoT into critical infrastructure, such as digital payment 

systems, underscores the need for robust OS-level security. Recent research demonstrates 

that AI-driven, IoT-enabled platforms can proactively detect and mitigate security threats in 

real time, leveraging advanced fraud detection algorithms and device-level monitoring to 

strengthen system resilience against cyberattacks[14]. 

 

Modern operating systems employ additional protection mechanisms including Address 

Space Layout Randomization (ASLR), Data Execution Prevention (DEP), and stack cookies 

to reduce the exploitability of memory corruption vulnerabilities. 

 

IV. I/O SYSTEMS AND NETWORKING 

 

Input/output (I/O) systems and networking protocols are critical for managing data flow 

between hardware components and enabling efficient communication across net- works. This 

section examines interrupt handling, DMA controllers, network models, and modern storage 

protocols. 

 

1. Interrupt Handling: Interrupts signal the CPU to pause execution and handle high-

priority events. Key components include: 

 Interrupt Requests (IRQs): Hardware-generated signals (e.g., keyboard input, 

network packets) assigned priority levels. 

 Interrupt Service Routines (ISRs): Short, time-sensitive code blocks that handle 

interrupts. 

 Latency Challenges: Prolonged ISR execution delays other tasks. Techniques like 

First-Level Interrupt Handlers (FLIHs) quickly log events, deferring complex 

operations to Second-Level Interrupt Handlers (SLIHs) to minimize CPU stall time 

[15]. 

 

DMA Controllers: Direct Memory Access (DMA) controllers bypass CPU involvement in 

bulk data transfers: 
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 GPU Texture Loading: Transfers texture data from SSD to GPU memory via PCIe 

lanes, leveraging DMA for 7 GB/s throughput. 

 Operation Steps 
 Device sends DMA request. 

 Controller arbitrates bus access. 

 Data moves directly between device and memory. 

 Efficiency: Reduces CPU load by 80% compared to programmed I/O [16]. 

 

OSI Model and TCP/IP: The OSI model standardizes network communication across seven 

layers, while TCP/IP prioritizes practicality: 

 

TCP/IP‘s streamlined design enables faster deployment but sacrifices granularity in error 

handling and encryption [15]. 

 

Table 2: OSI vs. TCP/IP Models 

 

OSI Layer Purpose TCP/IP Layer 

7: Application HTTP, FTP Application 

6: Presentation Encryption (Merged) 

5: Session Connection management (Merged) 

4: Transport TCP/UDP Transport 

3: Network IP routing Internet 

2: Data Link MAC addressing Link 

1: Physical Hardware signaling Physical 

 

Case Study: NVMe Protocol for SSDs: Non-Volatile Memory Express (NVMe) optimizes 

SSD communication: 

 Parallelism: Supports 64K command queues vs. SATA‘s single queue. 

 Latency: Reduces read/write delays to 2.8 µs (vs. SATA‘s 30–100 µs). 

 DMA Integration: Uses Physical Region Page (PRP) lists to map host memory 

directly to SSD controllers, bypassing CPU data copying. 

 

NVMe‘s PCIe interface achieves 7 GB/s throughput, making it ideal for AI training and real-

time analytics [16] 

 

V. CASE STUDY: LINUX KERNEL MULTITASKING 

 

The Linux kernel‘s multitasking capabilities rely on sophisticated algorithms and memory 

management techniques to balance performance, fairness, and resource efficiency across 

thousands of concurrent processes. This case study examines four pivotal components 

enabling this functionality. 

 

Completely Fair Scheduler (CFS): CFS ensures equitable CPU time distribution using a 

Red-Black tree to organize tasks by vruntime (virtual runtime). Key features: 

 Red-Black Tree: Tasks are sorted by vruntime, with the leftmost node (lowest 

vruntime) scheduled next. Insertions/deletions occur in O(log n) time. 

 vruntime Calculation:  
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vruntime = actual_runtime × 
𝑁𝐼𝐶𝐸_0_𝐿𝑂𝐴𝐷

𝑡𝑎𝑠𝑘−𝑤𝑒𝑖𝑔 ℎ𝑡
 

 

Higher-priority tasks (lower task_weight) accumulate vruntime slower, gaining more 

CPU time. 

 Fairness: Tasks waiting longer are prioritized, preventing starvation [16]. 

 

 

Memory Management: Linux combines two allocators for efficient memory utilization: 

 Buddy Allocator: Manages physical memory in power-of-two blocks. Splits blocks 

to fulfill requests (e.g., 4KB → 2×2KB), coalescing freed blocks to avoid 

fragmentation. 

 Slab Cache: Pre-allocates frequently used kernel objects (e.g., inodes, task structs) in 

contiguous memory slabs. Reduces initialization overhead by reusing initialized 

objects [17]. 

 

Inter-Process Communication (IPC): Linux supports three primary IPC mechanisms: 

 Pipes: Unidirectional channels between related processes (e.g., shell command 

chaining). Implemented as kernel-managed circular buffers. 

 Sockets: Bidirectional network/domain communication (e.g., TCP/IP). Supports 

asynchronous data transfer across machines. 

 Shared Memory: Multiple processes access the same memory region via 

shmget()/shmat(), synchronized using semaphores. 

 

These methods enable efficient data sharing while maintaining process isolation [18]. 

 

Kernel Modules: Loadable kernel modules (LKMs) dynamically extend kernel 

functionality: 

 DMA Controllers: Modules like dmaengine. ko manage direct memory access, 

offloading bulk transfers (e.g., NVMe SSD I/O) from the CPU. 

 Benefits: Modules can be loaded/unloaded without rebooting, reducing down-time. 

Custom drivers add hardware support (e.g., GPUs, NICs). 

 

The modprobe tool handles module dependencies and version checks [2]. 

 

VI. VISUAL AIDS 

 

Visual representations are invaluable for understanding complex computer system concepts. 

This section presents three key diagrams: a CPU-memory hierarchy, the OSI network model, 

and a page table walk flowchart. 
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CPU and Memory Hierarchy 

 

 
 

Figure 2: CPU and memory hierarchy with typical access latencies 

 

OSI Model 

 

Layer 7: Application (HTTP, FTP) 

Layer 6: Presentation (TLS/SSL) 

Layer 5: Session (RPC, SIP) 

Layer 4: Transport (TCP, UDP) 

Layer 3: Network (IP, ICMP) 

Layer 2: Data Link (Ethernet, MAC) 

Layer 1: Physical (RJ45, WiFi) 

 

Figure 3: OSI model layers with protocol examples 
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Page Table Walk 

 

 
 

Figure 4: Flowchart for virtual-to-physical address translation (page table walk) 

 

Visual diagrams like these help bridge abstract theory and practical understanding, making it 

easier to grasp architectural and operational details in computer systems [7]. 

 

VII. EXERCISES 

 

This section provides practical exercises on core operating system concepts, focusing on 

process scheduling, memory management, and high-performance I/O. 

 

1. Simulate Round-Robin Scheduling with a Python Queue 

 

Problem: Implement a round-robin scheduler for three processes with burst times of 8, 10, 

and 6 ms, using a time quantum of 2 ms. 

 

Solution: 

from collections import deque class Process: 
 
def   init  (self, name, burst):  
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self.name = name 
self.burst = burst 

 
def round_robin(processes, quantum):  
      queue = deque(processes) 
      t = 0 
      while queue: 

p = queue.popleft() 
exec_time = min(quantum, p.burst) 
print(f"{p.name} runs from {t} to {t+exec_time} ms") 
 t += exec_time 
p.burst -= exec_time  
if p.burst > 0: 

queue.append(p)  
else: 

print(f"{p.name} completes at {t} ms") 
 
# Example 
plist = *Process(’P1’, 8), Process(’P2’, 10), Process(’P3’, 6)+ 
round_robin(plist, 2) 
 

Explanation: Each process receives up to 2 ms per turn. If unfinished, it rejoins the queue. 

This simulates fair CPU sharing and highlights context switching overhead typical of round-

robin scheduling [3]. 

 

2. Calculate Effective Memory Access Time with TLB Hit Ratios 

 

Problem: Given a TLB hit ratio of 90%, TLB lookup time of 10 ns, and memory access time 

of 100 ns, what is the effective memory access time (EAT) for a single-level page table? 

 

Solution: 

EAT = (TLB hit ratio) × (TLB time + Memory time) 

+ (TLB miss ratio) × (TLB time + 2 × Memory time) 

= 0.9 × (10 + 100) + 0.1 × (10 + 200) 

= 0.9 × 110 + 0.1 × 210 

= 99 + 21 = 120 ns 

 

Explanation: On a TLB miss, the system must access both the page table and the actual data, 

resulting in two memory accesses [19]. 

 

3. DMA’s Role in a PCIe-based NVMe SSD Case Study 

 

Problem: Explain how DMA improves data transfer efficiency in PCIe-based NVMe SSDs. 

 

Solution: Direct Memory Access (DMA) allows the NVMe SSD to transfer data directly 

between its internal storage and the host system‘s RAM without involving the CPU for each 

byte. When a large file is read, the NVMe driver initiates a DMA transaction; the SSD 
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streams data into system memory at high speed via PCIe lanes. The CPU is free to perform 

computation (such as decrypting data) while the DMA engine handles the transfer. This 

parallelism maximizes throughput and minimizes CPU idle time. Modern NVMe SSDs use 

advanced DMA engines capable of scatter- gather operations, efficiently handling non-

contiguous memory and supporting deep command queues for concurrent transfers [20]. 

 

Explanation: DMA offloads repetitive I/O tasks from the CPU, enabling high- bandwidth, 

low-latency storage operations essential for modern workloads. 

 

VIII. SUMMARY AND FURTHER READING 

 

This chapter has explored the foundational principles of computer organization and operating 

systems, emphasizing the interplay between hardware architecture and sys- tem software. We 

examined how the CPU, memory hierarchy, and I/O subsystems work in concert to deliver 

efficient computation, and how the operating system man- ages resources through process 

scheduling, memory management, file systems, and security mechanisms. Key concepts such 

as the von Neumann architecture, paging, DMA, and process scheduling algorithms were 

illustrated with diagrams and case studies. We also discussed the importance of modern 

protocols and standards, including the OSI model and NVMe for high-speed storage. 

 

For readers seeking to deepen their understanding, several authoritative resources are 

recommended. "Computer Organization and Design" by Patterson and Hennessy is a 

comprehensive textbook that covers hardware/software interfaces, instruction set 

architectures, and the latest developments in RISC-V and cloud/mobile computing 

environments [21]. For operating systems, "Operating Systems: Three Easy Pieces" by 

Arpaci-Dusseau and Arpaci-Dusseau provides clear explanations of virtualization, 

concurrency, and persistence, with practical examples and historical context. 

 

To stay current with research trends, recent IEEE and ACM articles on heterogeneous 

memory architectures offer insights into the challenges and opportunities of integrating 

multiple memory technologies within a single system [22]. These papers discuss data 

management strategies, performance trade-offs, and hardware/software co-design for 

emerging memory systems. 

 

For structured learning, MIT‘s 6.004 "Computation Structures" course covers dig- ital logic, 

computer architecture, and system design, while Stanford‘s "Introduction to Operating 

Systems" lectures provide a deep dive into process management, synchronization, and file 

systems [23, 24]. These courses combine theory with hands-on exercises, making them ideal 

for both self-study and academic use. 

 

By engaging with these books, articles, and courses, readers can build a robust foundation in 

computer systems and stay abreast of the latest developments in hardware and operating 

system design. 
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