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Abstract 

 

Deep learning, a specialized subset of machine 

learning, employs multi-layered neural 

networks to autonomously learn hierarchical 

data representations, eliminating the need for 

manual feature engineering required in 

traditional machine learning. Key innovations 

like convolutional neural networks (CNNs) rev 

olutionized computer vision through spatial 

hierarchy learning, while recurrent neural 

networks (RNNs) enabled sequential data 

processing for time-series and NLP tasks. The 

backpropagation algorithm remains central to 

training these models, optimizing weights via 

gradient descent while leveraging activation 

functions (e.g., ReLU, Softmax) to introduce 

non-linearity. Modern frame- works such as 

TensorFlow and PyTorch democratize 

implementation through automatic 

differentiation and GPU acceleration, 

supporting architectures like Transformers and 

GANs that dominate 2025’s AI landscape. 

These advancements power applications 

ranging from medical image analysis to real-

time language translation, with CNNs achieving 

>98% accuracy in image classification 

benchmarks and Transformers enabling context-

aware chatbots. As deep learning evolves, 

techniques like mixed-precision training and 

neuro-symbolic integration address 

computational and interpretability challenges, 

solidifying its role in next-generation AI 

systems [1, 2]. 
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I. INTRODUCTION 

 

The evolution of neural networks represents one of the most transformative journeys in 

artificial intelligence, transitioning from rudimentary mathematical models to architectures 

capable of human-like reasoning. Beginning with Frank Rosenblatt’s perceptron in 1958-a 

single-layer network simulating basic biological neurons-the field languished for decades 

until the 1980s revival of backpropagation. This algorithm enabled multi-layer perceptrons 

(MLPs) to learn hierarchical representations, laying the groundwork for modern deep 

learning. The 21st century witnessed exponential growth, with convolutional neural networks 

(CNNs) revolutionizing computer vision and transformers redefining natural language 

processing (NLP). Today, architectures like ResNet and GPT-4 demonstrate superhuman 

performance in specialized tasks, powered by innovations in parallel computation and self-

attention mechanisms [3, 4]. 

 

From Perceptrons to Parallel Processing 

 

The perceptron’s inability to solve non-linear problems limited early progress until 

backpropagation emerged. By iteratively adjusting weights through gradient descent, 

networks could now learn complex patterns. The 2010s saw CNNs dominate image 

recognition, with ResNet’s skip connections (2015) enabling unprecedented 1,000-layer 

networks that achieved 96% accuracy on ImageNet. Simultaneously, recurrent neural 

networks (RNNs) and long short-term memory (LSTM) networks advanced sequential data 

processing, though their sequential computation remained inefficient. 
 

The 2017 transformer architecture marked a paradigm shift. By replacing recurrence with 

self-attention, models like BERT and GPT could process entire text sequences in parallel 

while capturing long-range dependencies. This innovation fueled NLP breakthroughs: GPT-3 

generates human-like text with 175 billion parameters, while vision transformers (ViTs) now 

rival CNNs in image classification. These advancements stem from three core drivers: (1) 

exponential growth in computational power, (2) availability of massive labeled datasets, and 

(3) theoretical innovations in network design. 
 

Landmark Architectural Innovations 

 ResNet (2015): Introduced residual learning with skip connections, solving vanishing 

gradients in deep CNNs. Enabled networks exceeding 1,000 layers while improving 

accuracy. 

 Transformers (2017): Scaled self-attention mechanisms for parallel processing, 
achieving state-of-the-art results in translation (BLEU score >40) and text generation. 

 GPT Series (2018–2024): Autoregressive transformers pretrained on web-scale text 
data, demonstrating few-shot learning capabilities. 

 Vision Transformers (2020): Applied transformer principles to image patches, 
matching CNN performance on ImageNet with 85% fewer parameters 

 

Chapter Outline 

 

This chapter systematically explores deep learning through: 

 Foundational Concepts: Perceptrons, activation functions, and backpropagation 

 Neural Network Architectures: CNNs, RNNs, and transformer blocks 
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 Training Techniques: Optimization, regularization, and transfer learning 

 Framework Ecosystems: TensorFlow, PyTorch, and Keras 

 Applications: Medical imaging diagnostics, real-time speech translation, and 
autonomous systems 

 Ethical considerations in deploying deep learning systems 
 

As neural networks evolve toward multimodal reasoning and embodied AI, their ability to 

synthesize vision, language, and sensory data heralds a new era of general- purpose 

intelligence. The following sections provide both theoretical frameworks and practical tools 

to harness these revolutionary technologies. 

 

II. NEURAL NETWORK FUNDAMENTALS 

 

Perceptron Mathematics: The fundamental building block of neural networks is the 

perceptron, which computes a weighted sum of inputs with a bias term: 

 

z = w
T
 x + b 

where: 

 
• w = weight vector (w1, w2, ..., wn) 
• x = input vector (x1, x2, ..., xn) 
• b = bias term 

 

Layer Types 

 Dense Layers: Fully connected layers where each neuron connects to all inputs 

 Convolutional Layers: Use kernel filters for spatial pattern recognition in 

images/video 

 Recurrent Layers: Process sequential data through memory cells (LSTM/- 

 GRU) 
 

Activation Functions 

 
 

3-Layer MLP in Keras 

 

from keras. models import Sequential  
from keras. layers import Dense 
 
model = Sequential ([ 

Dense (128 , activation =’ relu ’, input_shape =(784 ,)),  
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Dense (64 , activation =’ relu ’), 
Dense (10 ,  activation =’ softmax ’) 

]) 
model. compile ( optimizer=’ adam ’, 

loss=’ categorical_crossentropy ’,  
metrics =*’ accuracy ’+) 

 

Feedforward Network Architecture 

 

Figure 1: Feedforward neural network with 3 inputs, 4 hidden neurons, and 2 outputs 

 

Function  Derivative Use Case Range Derivative Use Case 

ReLU  [0, ∞) 0  if z < 0 

1  if z ≥ 0 

Hidden layers, CNN backbone 

 

Sigmoid  (0, 1) σ(z)(1 − σ(z)) Binary classification output 

 

Softmax 

(0, 1) Complex matrix 

form 

Multi-class classifica- tion 

 

Tanh 

(−1, 1) 1 − tanh
2
(z) RNN hidden states, normalization 

 

III. BACKPROPAGATION AND OPTIMIZATION 

 

Gradient Descent and Chain Rule: The backpropagation algorithm calculates error 

gradients through neural networks using the chain rule from calculus. For a loss function L, 

the gradient of weight w(l) in layer l is: 
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where z represents pre-activations and a denotes layer outputs. Batch gradient descent 

updates weights as: 

 

 
 

with η as learning rate. 

 

Common Optimizers 

 Adam: Combines momentum and adaptive learning rates: 

 

mt = β1mt−1 + (1 − β1)gt ; vt = β2vt−1 + (1 − β2)g2 

 

 RMSProp: Adjusts learning rates per parameter using moving average of squared 
gradients: 

 

E[g
2
]t = γE[g

2
]t−1 + (1 − γ)g

2
 

 

Vanishing/Exploding Gradients 

 

Deep networks suffer from unstable gradients due to: 

 

 Vanishing: Small derivatives from activation functions (e.g., sigmoid) compound in 
deep layers 

 

 Exploding: Large weight matrices amplify gradients exponentially Solutions include 

ReLU activations, batch normalization, and gradient clipping. 

 

CNN Training on MNIST 

 
from tensorflow . keras import layers , models 
 
model = models. Sequential ([ 

layers. Conv2D (32 , (3 ,3), activation =’ relu ’, input_shape 
=(28 ,28 ,1)), 

layers. Max Pooling 2 D ((2 ,2)),  
layers. Flatten (), 
layers. Dense (128 , activation =’ relu ’),  
layers. Dense (10 , activation =’ softmax ’) 

]) 
 
model. compile ( optimizer=’ adam ’, 

loss=’ sparse_categorical_crossentropy ’,  
metrics =*’ accuracy ’+) 

model. fit( train_images , train_labels , epochs =10 , validation_split =0.2) 
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Figure 2: Backpropagation flow through CNN layers (red dashed lines) 

 

Optimizer Performance Comparison 

 

Table 1: Optimizer Characteristics on MNIST 

 

Optimizer Train Acc Val Acc Time/Epoch 

SGD 92.4% 91.1% 45s 

Adam 98.2%  97.8%  52s 

RMSProp  97.9% 97.5% 55s 

  

IV. CNNS FOR COMPUTER VISION 

 

Convolutional Neural Networks (CNNs) have fundamentally transformed computer vision by 

enabling machines to automatically learn hierarchical feature representations from raw image 

data. Unlike traditional approaches that rely on handcrafted features, CNNs leverage 

convolutional layers to detect spatial patterns such as edges, textures, and complex shapes, 

making them highly effective for tasks like image classification, object detection, and 

segmentation. 

 

Convolutional Layers and Pooling 

 

CNNs are built from two primary types of layers: convolutional and pooling. The 

convolutional layers apply a set of learnable filters (kernels) that slide over the input image to 

produce feature maps. Mathematically, the convolution operation for an input image I and 

kernel K is defined as: 

 

 
 

where i, j denote spatial positions, and m, n index the kernel dimensions. Each filter is trained 

to activate in response to specific visual features, such as vertical or horizontal edges. 

 

Pooling layers reduce the spatial dimensions of feature maps, providing translation invariance 

and reducing computational complexity. Max pooling, the most common type, selects the 

maximum value within a local window: 
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where R is the pooling region. This process helps retain the most salient features while 

discarding redundant information. 

 

CNN Architectures 

 

Over the past decades, several influential CNN architectures have been introduced: 

 LeNet-5 (1998): One of the earliest CNNs, designed for handwritten digit recog- 
nition. It consists of two convolutional layers followed by average pooling and fully 

connected layers. LeNet-5 achieved remarkable accuracy on the MNIST dataset and 

inspired future research. 

 AlexNet (2012): Marked a breakthrough in large-scale image classification, winning 

the ImageNet competition by a large margin and popularizing the use of ReLU 

activations and dropout regularization. 

 VGG-16 (2014): Demonstrated the effectiveness of deeper networks with small 3× 3 
filters, leading to improved accuracy at the cost of increased parameters. 

 ResNet-50 (2015): Introduced residual connections to mitigate the vanishing gradient 
problem, enabling training of very deep networks with over 50 layers. 

  

ResNet-50 achieved state-of-the-art performance on ImageNet and is widely used in transfer 

learning. 

 

TensorFlow Implementation Example 

 
import tensorflow as tf 
from tensorflow . keras import layers , models 
 
model = models. Sequential ([ 

layers. Conv2D (32 , (3 ,3), activation =’ relu ’, input_shape 
=(32 ,32 ,3)), 

layers.  Max Pooling 2 D  ((2  ,2)),  
layers. Conv2D (64 , (3 ,3), activation =’ relu ’),  
layers.  Max Pooling 2 D  ((2  ,2)),  
layers. Flatten (), 
layers. Dense (128 , activation =’ relu ’),  
layers. Dense (10 , activation =’ softmax ’) 

]) 
 
model. compile ( optimizer=’ adam ’, 

loss=’ sparse_categorical_crossentropy ’,  
metrics =*’ accuracy ’+) 
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Figure 3: Feature extraction and classification flow in a typical CNN. 

 

CNN Architecture Comparison 

 

Table 2: Comparison of Popular CNN Architectures 

 

Model Year Layers Parameters Top-1 Acc. 

LeNet-5 1998 7 0.06M 99.2% 

AlexNet 2012 8 60M 63.3% 

VGG-16 2014 16 138M 71.5% 

ResNet-50 2015 50 25.6M 76.0% 

 

CNNs have become the backbone of many computer vision applications, from facial 

recognition to autonomous driving, due to their ability to learn complex features and 

generalize well to new data [5] [6]. 

  

V. RNNS FOR SEQUENTIAL DATA 

 

Recurrent Neural Networks (RNNs) specialize in processing sequential data by maintaining 

hidden states that capture temporal dependencies. Unlike feedforward networks, RNNs reuse 

parameters across time steps, making them ideal for time-series analysis, NLP, and speech 

recognition. 

 

LSTM and GRU Gates 

 

Long Short-Term Memory (LSTM) networks address vanishing gradients in vanilla RNNs 

through gated memory cells: 

 Forget Gate: Decides what information to discard 
 

ft = σ(Wf • [ht−1, xt] + bf ) 

 

 Input Gate: Updates cell state with new information 
 

it = σ(Wi • [ht−1, xt] + bi) 

 

 Cell State Update: 

  

 

C˜t = tanh(WC • [ht−1, xt] + bC)  

Ct = ft ⊙ Ct−1 + it ⊙ C˜t 
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 Output Gate: Controls hidden state exposure 
ot = σ(Wo • [ht−1, xt] + bo)  

ht = ot ⊙ tanh(Ct) 

 

Gated Recurrent Units (GRUs) simplify LSTMs by combining forget/input gates into an 

update gate zt and merging cell/hidden states. 

 

Applications in Time-Series Forecasting 

 Stock price prediction using historical OHLC data 

 Energy load forecasting for smart grids 

 Weather pattern modeling with sensor data 

 Anomaly detection in IoT device streams 

 

Text Generation with PyTorch 

 

import torch 
import torch . nn as nn 
class  CharLSTM ( nn. Module ): 

def  init ( self , vocab_size , hidden_size ):  
super ().  init () 
self. lstm = nn. LSTMCell( vocab_size , hidden_size )  
self. fc = nn. Linear( hidden_size , vocab_size ) 

 
def forward ( self , x, hc): 

 h, c = self. lstm (x, hc) 
return self. fc( h), (h, c) 

 
# Sample usage 
model = CharLSTM ( vocab_size =128 , hidden_size =256)  
input_seq = torch . randn (32 , 128) # Batch of 32 sequences  
h, c = torch . zeros (32 , 256) , torch . zeros (32 , 256) 
output , (h, c) = model( input_seq , (h, c)) 
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LSTM Architecture Diagram 

 

 
Figure 4: LSTM cell architecture with gating mechanisms 

 

RNN Variants Comparison 

 

Table 3: Comparison of RNN Architectures 

 

Type Gates Parameters Training Stability 

Vanilla RNN 0 Low Poor 

LSTM 3 High Excellent 

GRU 2 Medium Good 

 

RNNs power applications requiring temporal awareness, from real-time translation to 

predictive maintenance [7, 8]. 

  

VI. DEEP LEARNING FRAMEWORKS 

 

The rapid growth of deep learning has been fueled by powerful frameworks that sim- plify 

model development, training, and deployment. Among these, TensorFlow and PyTorch are 

the most widely adopted, each with distinct philosophies and strengths. Keras, as a high-level 

API, further streamlines deep learning workflows, particularly for beginners and rapid 

prototyping. 

 

TensorFlow vs. PyTorch: Static vs. Dynamic Graphs 

 

TensorFlow is built around a static computation graph paradigm, where the entire model 

architecture is defined before execution. This approach enables advanced graph 

optimizations, efficient parallelization, and is well-suited for large-scale, production- grade 

deployments. TensorFlow’s ecosystem includes tools for distributed training, visualization 

(TensorBoard), and robust deployment options such as TensorFlow Serv- ing and 

TensorFlow Lite. However, static graphs can slow experimentation and make debugging less 

intuitive for newcomers [9]. 
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PyTorch, in contrast, uses dynamic computation graphs (define-by-run). Models are 

constructed and modified on the fly, making PyTorch exceptionally flexible and ―pythonic.‖ 

This dynamic nature is ideal for research, rapid prototyping, and tasks involving variable-

length inputs or custom architectures. PyTorch’s eager execution model allows seamless 

integration with native Python control flow, making debugging and experimentation more 

straightforward. While deployment tools like TorchServe have improved, TensorFlow 

remains stronger for production at scale. 

 

Keras: High-Level API for Productivity 

 

Keras is a high-level, user-friendly API that runs on top of TensorFlow (and previously 

supported Theano and CNTK). It offers three ways to build models: the Sequential API (for 

simple, linear stacks of layers), the Functional API (for complex, multi- input/output 

architectures), and Model Subclassing (for full customization). Keras is designed for fast 

experimentation, code readability, and accessibility, making it an excellent choice for both 

beginners and professionals. With TensorFlow 2.x, Keras is tightly integrated as tf.keras, 

combining ease of use with TensorFlow’s scalability and deployment capabilities [10]. 

 

Code Example: Identical MLP in Keras vs. PyTorch 

 

TensorFlow/Keras 

 

 from tensorflow . keras import Sequential  
from tensorflow . keras. layers import Dense 
 
model = Sequential ([ 

Dense (64 , activation =’ relu ’, input_shape =(100 ,)),  
Dense (10 , activation =’ softmax ’) 

]) 
model. compile ( optimizer=’ adam ’,  loss=’ categorical_crossentropy ’) 
 

PyTorch: 

 

import torch 
import torch . nn as nn 
 
class MLP ( nn. Module ):  

def  init  ( self): 
super ().   init  () 
self. fc1 = nn. Linear (100 , 64)  
self. relu  =  nn. ReLU ()  
self. fc2 = nn. Linear (64 , 10) 
self. softmax = nn. Softmax ( dim =1)  

def forward ( self , x): 
x = self. relu ( self. fc1 ( x)) 
x = self. softmax ( self. fc2 ( x))  
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return x 
model = MLP () 
 

Framework Comparison Table 

 

Aspect TensorFlow PyTorch Keras 

Computation 

Graph 

Static(define-and-

run) 

Dynamic  

(define-by-run) 

High-level API 

(on TensorFlow) 

Ease of Use Moderate,improved 

with Keras 

Very Pythonic 

intuitive, 

Extremely user- 

friendly 

Deployment Excellent (Serving, 

Lite, JS) 

Good (TorchServe) Excellent via Tensor- 

Flow 

Best For Production, 

scalability 

Research, 

prototyping 

Rapid prototyping, 

education 

Visualization TensorBoard Visdom, 

TensorBoard 

support 

TensorBoard via 

tf.keras 

Community Large, mature Fast-growing, strong 

in academia 

Large, especially for 

beginners 

 

In summary, PyTorch is favored in research for its flexibility and native Python feel, while 

TensorFlow dominates production with scalability and deployment tools. Keras bridges both 

worlds, offering a productive interface for building and deploying deep learning models. 

 

VII. DEEP LEARNING IN PRACTICE 

 

Deep learning architectures have become foundational across industries, enabling 

breakthroughs in healthcare, speech technology, and natural language processing. 

  

Their ability to learn complex, hierarchical representations from raw data has driven adoption 

in real-world applications. 

 

CNNs for Medical Imaging Diagnostics 

 

Convolutional Neural Networks (CNNs) have transformed medical image understanding. By 

learning to detect patterns in X-rays, CT scans, and MRIs, CNNs now assist clinicians in 

diagnosing diseases such as lung cancer, breast cancer, and heart anomalies. For example, 

CNN models have achieved diagnostic accuracies rivaling or surpassing human experts in 

tasks like tumor detection, COVID-19 identification from chest X-rays, and segmentation of 

brain lesions. These models are routinely used for image classification, localization, and 

segmentation, helping radiologists make faster and more accurate decisions [11, 12]. 

 

RNNs for Speech Recognition 

 

Recurrent Neural Networks (RNNs), particularly when augmented with attention or 

implemented as encoder-decoder architectures, excel at modeling sequential data such as 

speech. OpenAI’s Whisper, for instance, leverages a transformer-based encoder- decoder 
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(with RNN-like sequence modeling) to perform robust, multilingual speech recognition. 

Whisper is trained on hundreds of thousands of hours of diverse audio, enabling it to 

transcribe speech with near-human accuracy, even in noisy environments or across different 

languages. This has enabled new levels of accessibility, voice- driven interfaces, and real-

time transcription in applications from virtual assistants to automated subtitling [13]. 

 

Transformers for NLP 

 

Transformers, and especially models like BERT, have revolutionized natural language 

processing. Using self-attention mechanisms, transformers capture long-range dependencies 

and context, enabling state-of-the-art performance on tasks such as text classification, 

sentiment analysis, question answering, and named entity recognition. BERT, in particular, 

can be fine-tuned for a wide range of NLP tasks, making it a cornerstone model for chatbots, 

document search, and language understanding in enterprise and consumer applications [14, 

15]. 

  

Mapping Architectures to Use Cases 

 

Architecture Industry Use Cases 

CNN Healthcare Tumor detection, organ seg- mentation, COVID-19 

diagnosis from X-rays 

RNN/Transformer   Speech/Media Voice assistants, speech-to-text 

(Whisper), automated captioning 

Transformer 

(BERT) 

NLP/Enterprise Text classification, chatbots, search, sentiment 

analysis 

 

Deep learning’s versatility and accuracy have made it indispensable for extracting insights 

and automating decision-making across sectors. 

 

Exercises 

 

Python Tasks 

1. MNIST CNN Classification 
 

# Train a CNN on MNIST dataset 
import tensorflow as tf 
from tensorflow . keras import layers , models 
 
( x_train , y_train ), ( x_test , y_test) = tf. keras. datasets. mnist. load_data () 
x_train = x_train . reshape (-1 , 28 , 28 , 1). astype (’ float32 ’) / 255.0 
x_test = x_test. reshape (-1 , 28 , 28 , 1). astype (’ float32 ’) / 255.0 
 
model = models. Sequential ([ 

layers. Conv2 D (32 , (3 ,3), activation =’ relu ’, input_shape 
=(28 ,28 ,1)), 
layers.  Max Pooling 2 D  ((2  ,2)),  
layers. Conv2 D (64 , (3 ,3), activation =’ relu ’),  
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layers.  Max Pooling 2 D  ((2  ,2)), layers. Flatten (), 
layers. Dense (128 , activation =’ relu ’), layers. Dense (10 , activation =’ softmax ’) 

]) 
 
model. compile ( optimizer=’ adam ’, 

loss=’ sparse_categorical_crossentropy ’,  
metrics =*’ accuracy ’+) 

model. fit( x_train , y_train , epochs =5 , validation_split =0.2) 
  

2. LSTM Text Prediction 

 
# Character - level LSTM text generator  
import torch 
import torch . nn as nn 
 
class  CharLSTM ( nn. Module ): 
 def  init  ( self , vocab_size , hidden_size ):  

super ().   init () 
self. embed = nn. Embedding ( vocab_size , 64) 
self. lstm = nn. LSTM (64 , hidden_size , batch_first= True 

) 
self. fc = nn. Linear( hidden_size , vocab_size ) 

 
def forward ( self , x, hidden = None ):  

x = self. embed ( x) 
out , hidden = self. lstm (x, hidden )  
return self. fc( out), hidden 

 
# Example usage 
model = CharLSTM ( vocab_size =128 , hidden_size =256) 
input_seq = torch . randint (0 , 128 , (16 , 100)) # ( batch_size , seq_length ) 
output , hidden = model( input_seq ) 
 
Framework Comparison Task 

 

Implement the same neural network architecture in both TensorFlow/Keras and PyTorch: 

 Input Layer: 784 dimensions (MNIST flattened) 

 Hidden Layer: 128 units with ReLU activation 

 Output Layer: 10 units with softmax 

 Compare: Model definition syntax, training loops, debugging tools 

 

Mini-Project: Sentiment Analysis 

 

Build an RNN-based sentiment classifier: 

 Dataset: IMDB movie reviews 
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 Preprocessing: Tokenization, padding/truncating sequences 

 Model: Embedding → LSTM → Dense layers 

 Evaluation: Accuracy, precision, recall, ROC-AUC 

 Deployment: Export as TensorFlow SavedModel or TorchScript 
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