
Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

86

DEEP LEARNING FOR DATA SCIENCE:

ARCHITECTURES, ALGORITHMS, AND REAL-

WORLD APPLICATIONS

Abstract

Deep learning, a specialized subset of machine

learning, employs multi-layered neural

networks to autonomously learn hierarchical

data representations, eliminating the need for

manual feature engineering required in

traditional machine learning. Key innovations

like convolutional neural networks (CNNs) rev

olutionized computer vision through spatial

hierarchy learning, while recurrent neural

networks (RNNs) enabled sequential data

processing for time-series and NLP tasks. The

backpropagation algorithm remains central to

training these models, optimizing weights via

gradient descent while leveraging activation

functions (e.g., ReLU, Softmax) to introduce

non-linearity. Modern frame- works such as

TensorFlow and PyTorch democratize

implementation through automatic

differentiation and GPU acceleration,

supporting architectures like Transformers and

GANs that dominate 2025’s AI landscape.

These advancements power applications

ranging from medical image analysis to real-

time language translation, with CNNs achieving

>98% accuracy in image classification

benchmarks and Transformers enabling context-

aware chatbots. As deep learning evolves,

techniques like mixed-precision training and

neuro-symbolic integration address

computational and interpretability challenges,

solidifying its role in next-generation AI

systems [1, 2].

Keywords: Deep learning, neural networks,

convolutional networks, recurrent networks,

natural language processing

Authors

Shubneet

Department of Computer Science,

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

 jeetshubneet27@gmail.com

Anushka Raj Yadav

Department of Computer Science,

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

ay462744@gmail.com

Paras Mahajan

Department of Computer Science,

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

mahajanparas115@gmail.com

Partha Chanda

Department of Computer Science,

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

Atahar Shihab

Department of Computer Science,

Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

ataharshihab5112@gmail.com

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

87

I. INTRODUCTION

The evolution of neural networks represents one of the most transformative journeys in

artificial intelligence, transitioning from rudimentary mathematical models to architectures

capable of human-like reasoning. Beginning with Frank Rosenblatt’s perceptron in 1958-a

single-layer network simulating basic biological neurons-the field languished for decades

until the 1980s revival of backpropagation. This algorithm enabled multi-layer perceptrons

(MLPs) to learn hierarchical representations, laying the groundwork for modern deep

learning. The 21st century witnessed exponential growth, with convolutional neural networks

(CNNs) revolutionizing computer vision and transformers redefining natural language

processing (NLP). Today, architectures like ResNet and GPT-4 demonstrate superhuman

performance in specialized tasks, powered by innovations in parallel computation and self-

attention mechanisms [3, 4].

From Perceptrons to Parallel Processing

The perceptron’s inability to solve non-linear problems limited early progress until

backpropagation emerged. By iteratively adjusting weights through gradient descent,

networks could now learn complex patterns. The 2010s saw CNNs dominate image

recognition, with ResNet’s skip connections (2015) enabling unprecedented 1,000-layer

networks that achieved 96% accuracy on ImageNet. Simultaneously, recurrent neural

networks (RNNs) and long short-term memory (LSTM) networks advanced sequential data

processing, though their sequential computation remained inefficient.

The 2017 transformer architecture marked a paradigm shift. By replacing recurrence with

self-attention, models like BERT and GPT could process entire text sequences in parallel

while capturing long-range dependencies. This innovation fueled NLP breakthroughs: GPT-3

generates human-like text with 175 billion parameters, while vision transformers (ViTs) now

rival CNNs in image classification. These advancements stem from three core drivers: (1)

exponential growth in computational power, (2) availability of massive labeled datasets, and

(3) theoretical innovations in network design.

Landmark Architectural Innovations

 ResNet (2015): Introduced residual learning with skip connections, solving vanishing

gradients in deep CNNs. Enabled networks exceeding 1,000 layers while improving

accuracy.

 Transformers (2017): Scaled self-attention mechanisms for parallel processing,
achieving state-of-the-art results in translation (BLEU score >40) and text generation.

 GPT Series (2018–2024): Autoregressive transformers pretrained on web-scale text
data, demonstrating few-shot learning capabilities.

 Vision Transformers (2020): Applied transformer principles to image patches,
matching CNN performance on ImageNet with 85% fewer parameters

Chapter Outline

This chapter systematically explores deep learning through:

 Foundational Concepts: Perceptrons, activation functions, and backpropagation

 Neural Network Architectures: CNNs, RNNs, and transformer blocks

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

88

 Training Techniques: Optimization, regularization, and transfer learning

 Framework Ecosystems: TensorFlow, PyTorch, and Keras

 Applications: Medical imaging diagnostics, real-time speech translation, and
autonomous systems

 Ethical considerations in deploying deep learning systems

As neural networks evolve toward multimodal reasoning and embodied AI, their ability to

synthesize vision, language, and sensory data heralds a new era of general- purpose

intelligence. The following sections provide both theoretical frameworks and practical tools

to harness these revolutionary technologies.

II. NEURAL NETWORK FUNDAMENTALS

Perceptron Mathematics: The fundamental building block of neural networks is the

perceptron, which computes a weighted sum of inputs with a bias term:

z = w
T
 x + b

where:

• w = weight vector (w1, w2, ..., wn)
• x = input vector (x1, x2, ..., xn)
• b = bias term

Layer Types

 Dense Layers: Fully connected layers where each neuron connects to all inputs

 Convolutional Layers: Use kernel filters for spatial pattern recognition in

images/video

 Recurrent Layers: Process sequential data through memory cells (LSTM/-

 GRU)

Activation Functions

3-Layer MLP in Keras

from keras. models import Sequential
from keras. layers import Dense

model = Sequential ([

Dense (128 , activation =’ relu ’, input_shape =(784 ,)),

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

89

Dense (64 , activation =’ relu ’),
Dense (10 , activation =’ softmax ’)

])
model. compile (optimizer=’ adam ’,

loss=’ categorical_crossentropy ’,
metrics =*’ accuracy ’+)

Feedforward Network Architecture

Figure 1: Feedforward neural network with 3 inputs, 4 hidden neurons, and 2 outputs

Function Derivative Use Case Range Derivative Use Case

ReLU [0, ∞) 0 if z < 0

1 if z ≥ 0

Hidden layers, CNN backbone

Sigmoid (0, 1) σ(z)(1 − σ(z)) Binary classification output

Softmax

(0, 1) Complex matrix

form

Multi-class classifica- tion

Tanh

(−1, 1) 1 − tanh
2
(z) RNN hidden states, normalization

III. BACKPROPAGATION AND OPTIMIZATION

Gradient Descent and Chain Rule: The backpropagation algorithm calculates error

gradients through neural networks using the chain rule from calculus. For a loss function L,

the gradient of weight w(l) in layer l is:

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

90

where z represents pre-activations and a denotes layer outputs. Batch gradient descent

updates weights as:

with η as learning rate.

Common Optimizers

 Adam: Combines momentum and adaptive learning rates:

mt = β1mt−1 + (1 − β1)gt ; vt = β2vt−1 + (1 − β2)g2

 RMSProp: Adjusts learning rates per parameter using moving average of squared
gradients:

E[g
2
]t = γE[g

2
]t−1 + (1 − γ)g

2

Vanishing/Exploding Gradients

Deep networks suffer from unstable gradients due to:

 Vanishing: Small derivatives from activation functions (e.g., sigmoid) compound in
deep layers

 Exploding: Large weight matrices amplify gradients exponentially Solutions include

ReLU activations, batch normalization, and gradient clipping.

CNN Training on MNIST

from tensorflow . keras import layers , models

model = models. Sequential ([

layers. Conv2D (32 , (3 ,3), activation =’ relu ’, input_shape
=(28 ,28 ,1)),

layers. Max Pooling 2 D ((2 ,2)),
layers. Flatten (),
layers. Dense (128 , activation =’ relu ’),
layers. Dense (10 , activation =’ softmax ’)

])

model. compile (optimizer=’ adam ’,

loss=’ sparse_categorical_crossentropy ’,
metrics =*’ accuracy ’+)

model. fit(train_images , train_labels , epochs =10 , validation_split =0.2)

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

91

Figure 2: Backpropagation flow through CNN layers (red dashed lines)

Optimizer Performance Comparison

Table 1: Optimizer Characteristics on MNIST

Optimizer Train Acc Val Acc Time/Epoch

SGD 92.4% 91.1% 45s

Adam 98.2% 97.8% 52s

RMSProp 97.9% 97.5% 55s

IV. CNNS FOR COMPUTER VISION

Convolutional Neural Networks (CNNs) have fundamentally transformed computer vision by

enabling machines to automatically learn hierarchical feature representations from raw image

data. Unlike traditional approaches that rely on handcrafted features, CNNs leverage

convolutional layers to detect spatial patterns such as edges, textures, and complex shapes,

making them highly effective for tasks like image classification, object detection, and

segmentation.

Convolutional Layers and Pooling

CNNs are built from two primary types of layers: convolutional and pooling. The

convolutional layers apply a set of learnable filters (kernels) that slide over the input image to

produce feature maps. Mathematically, the convolution operation for an input image I and

kernel K is defined as:

where i, j denote spatial positions, and m, n index the kernel dimensions. Each filter is trained

to activate in response to specific visual features, such as vertical or horizontal edges.

Pooling layers reduce the spatial dimensions of feature maps, providing translation invariance

and reducing computational complexity. Max pooling, the most common type, selects the

maximum value within a local window:

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

92

where R is the pooling region. This process helps retain the most salient features while

discarding redundant information.

CNN Architectures

Over the past decades, several influential CNN architectures have been introduced:

 LeNet-5 (1998): One of the earliest CNNs, designed for handwritten digit recog-
nition. It consists of two convolutional layers followed by average pooling and fully

connected layers. LeNet-5 achieved remarkable accuracy on the MNIST dataset and

inspired future research.

 AlexNet (2012): Marked a breakthrough in large-scale image classification, winning

the ImageNet competition by a large margin and popularizing the use of ReLU

activations and dropout regularization.

 VGG-16 (2014): Demonstrated the effectiveness of deeper networks with small 3× 3
filters, leading to improved accuracy at the cost of increased parameters.

 ResNet-50 (2015): Introduced residual connections to mitigate the vanishing gradient
problem, enabling training of very deep networks with over 50 layers.

ResNet-50 achieved state-of-the-art performance on ImageNet and is widely used in transfer

learning.

TensorFlow Implementation Example

import tensorflow as tf
from tensorflow . keras import layers , models

model = models. Sequential ([

layers. Conv2D (32 , (3 ,3), activation =’ relu ’, input_shape
=(32 ,32 ,3)),

layers. Max Pooling 2 D ((2 ,2)),
layers. Conv2D (64 , (3 ,3), activation =’ relu ’),
layers. Max Pooling 2 D ((2 ,2)),
layers. Flatten (),
layers. Dense (128 , activation =’ relu ’),
layers. Dense (10 , activation =’ softmax ’)

])

model. compile (optimizer=’ adam ’,

loss=’ sparse_categorical_crossentropy ’,
metrics =*’ accuracy ’+)

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

93

Figure 3: Feature extraction and classification flow in a typical CNN.

CNN Architecture Comparison

Table 2: Comparison of Popular CNN Architectures

Model Year Layers Parameters Top-1 Acc.

LeNet-5 1998 7 0.06M 99.2%

AlexNet 2012 8 60M 63.3%

VGG-16 2014 16 138M 71.5%

ResNet-50 2015 50 25.6M 76.0%

CNNs have become the backbone of many computer vision applications, from facial

recognition to autonomous driving, due to their ability to learn complex features and

generalize well to new data [5] [6].

V. RNNS FOR SEQUENTIAL DATA

Recurrent Neural Networks (RNNs) specialize in processing sequential data by maintaining

hidden states that capture temporal dependencies. Unlike feedforward networks, RNNs reuse

parameters across time steps, making them ideal for time-series analysis, NLP, and speech

recognition.

LSTM and GRU Gates

Long Short-Term Memory (LSTM) networks address vanishing gradients in vanilla RNNs

through gated memory cells:

 Forget Gate: Decides what information to discard

ft = σ(Wf • [ht−1, xt] + bf)

 Input Gate: Updates cell state with new information

it = σ(Wi • [ht−1, xt] + bi)

 Cell State Update:

C˜t = tanh(WC • [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C˜t

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

94

 Output Gate: Controls hidden state exposure
ot = σ(Wo • [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

Gated Recurrent Units (GRUs) simplify LSTMs by combining forget/input gates into an

update gate zt and merging cell/hidden states.

Applications in Time-Series Forecasting

 Stock price prediction using historical OHLC data

 Energy load forecasting for smart grids

 Weather pattern modeling with sensor data

 Anomaly detection in IoT device streams

Text Generation with PyTorch

import torch
import torch . nn as nn
class CharLSTM (nn. Module):

def init (self , vocab_size , hidden_size):
super (). init ()
self. lstm = nn. LSTMCell(vocab_size , hidden_size)
self. fc = nn. Linear(hidden_size , vocab_size)

def forward (self , x, hc):

 h, c = self. lstm (x, hc)
return self. fc(h), (h, c)

Sample usage
model = CharLSTM (vocab_size =128 , hidden_size =256)
input_seq = torch . randn (32 , 128) # Batch of 32 sequences
h, c = torch . zeros (32 , 256) , torch . zeros (32 , 256)
output , (h, c) = model(input_seq , (h, c))

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

95

LSTM Architecture Diagram

Figure 4: LSTM cell architecture with gating mechanisms

RNN Variants Comparison

Table 3: Comparison of RNN Architectures

Type Gates Parameters Training Stability

Vanilla RNN 0 Low Poor

LSTM 3 High Excellent

GRU 2 Medium Good

RNNs power applications requiring temporal awareness, from real-time translation to

predictive maintenance [7, 8].

VI. DEEP LEARNING FRAMEWORKS

The rapid growth of deep learning has been fueled by powerful frameworks that sim- plify

model development, training, and deployment. Among these, TensorFlow and PyTorch are

the most widely adopted, each with distinct philosophies and strengths. Keras, as a high-level

API, further streamlines deep learning workflows, particularly for beginners and rapid

prototyping.

TensorFlow vs. PyTorch: Static vs. Dynamic Graphs

TensorFlow is built around a static computation graph paradigm, where the entire model

architecture is defined before execution. This approach enables advanced graph

optimizations, efficient parallelization, and is well-suited for large-scale, production- grade

deployments. TensorFlow’s ecosystem includes tools for distributed training, visualization

(TensorBoard), and robust deployment options such as TensorFlow Serv- ing and

TensorFlow Lite. However, static graphs can slow experimentation and make debugging less

intuitive for newcomers [9].

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

96

PyTorch, in contrast, uses dynamic computation graphs (define-by-run). Models are

constructed and modified on the fly, making PyTorch exceptionally flexible and ―pythonic.‖

This dynamic nature is ideal for research, rapid prototyping, and tasks involving variable-

length inputs or custom architectures. PyTorch’s eager execution model allows seamless

integration with native Python control flow, making debugging and experimentation more

straightforward. While deployment tools like TorchServe have improved, TensorFlow

remains stronger for production at scale.

Keras: High-Level API for Productivity

Keras is a high-level, user-friendly API that runs on top of TensorFlow (and previously

supported Theano and CNTK). It offers three ways to build models: the Sequential API (for

simple, linear stacks of layers), the Functional API (for complex, multi- input/output

architectures), and Model Subclassing (for full customization). Keras is designed for fast

experimentation, code readability, and accessibility, making it an excellent choice for both

beginners and professionals. With TensorFlow 2.x, Keras is tightly integrated as tf.keras,

combining ease of use with TensorFlow’s scalability and deployment capabilities [10].

Code Example: Identical MLP in Keras vs. PyTorch

TensorFlow/Keras

 from tensorflow . keras import Sequential
from tensorflow . keras. layers import Dense

model = Sequential ([

Dense (64 , activation =’ relu ’, input_shape =(100 ,)),
Dense (10 , activation =’ softmax ’)

])
model. compile (optimizer=’ adam ’, loss=’ categorical_crossentropy ’)

PyTorch:

import torch
import torch . nn as nn

class MLP (nn. Module):

def init (self):
super (). init ()
self. fc1 = nn. Linear (100 , 64)
self. relu = nn. ReLU ()
self. fc2 = nn. Linear (64 , 10)
self. softmax = nn. Softmax (dim =1)

def forward (self , x):
x = self. relu (self. fc1 (x))
x = self. softmax (self. fc2 (x))

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

97

return x
model = MLP ()

Framework Comparison Table

Aspect TensorFlow PyTorch Keras

Computation

Graph

Static(define-and-

run)

Dynamic

(define-by-run)

High-level API

(on TensorFlow)

Ease of Use Moderate,improved

with Keras

Very Pythonic

intuitive,

Extremely user-

friendly

Deployment Excellent (Serving,

Lite, JS)

Good (TorchServe) Excellent via Tensor-

Flow

Best For Production,

scalability

Research,

prototyping

Rapid prototyping,

education

Visualization TensorBoard Visdom,

TensorBoard

support

TensorBoard via

tf.keras

Community Large, mature Fast-growing, strong

in academia

Large, especially for

beginners

In summary, PyTorch is favored in research for its flexibility and native Python feel, while

TensorFlow dominates production with scalability and deployment tools. Keras bridges both

worlds, offering a productive interface for building and deploying deep learning models.

VII. DEEP LEARNING IN PRACTICE

Deep learning architectures have become foundational across industries, enabling

breakthroughs in healthcare, speech technology, and natural language processing.

Their ability to learn complex, hierarchical representations from raw data has driven adoption

in real-world applications.

CNNs for Medical Imaging Diagnostics

Convolutional Neural Networks (CNNs) have transformed medical image understanding. By

learning to detect patterns in X-rays, CT scans, and MRIs, CNNs now assist clinicians in

diagnosing diseases such as lung cancer, breast cancer, and heart anomalies. For example,

CNN models have achieved diagnostic accuracies rivaling or surpassing human experts in

tasks like tumor detection, COVID-19 identification from chest X-rays, and segmentation of

brain lesions. These models are routinely used for image classification, localization, and

segmentation, helping radiologists make faster and more accurate decisions [11, 12].

RNNs for Speech Recognition

Recurrent Neural Networks (RNNs), particularly when augmented with attention or

implemented as encoder-decoder architectures, excel at modeling sequential data such as

speech. OpenAI’s Whisper, for instance, leverages a transformer-based encoder- decoder

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

98

(with RNN-like sequence modeling) to perform robust, multilingual speech recognition.

Whisper is trained on hundreds of thousands of hours of diverse audio, enabling it to

transcribe speech with near-human accuracy, even in noisy environments or across different

languages. This has enabled new levels of accessibility, voice- driven interfaces, and real-

time transcription in applications from virtual assistants to automated subtitling [13].

Transformers for NLP

Transformers, and especially models like BERT, have revolutionized natural language

processing. Using self-attention mechanisms, transformers capture long-range dependencies

and context, enabling state-of-the-art performance on tasks such as text classification,

sentiment analysis, question answering, and named entity recognition. BERT, in particular,

can be fine-tuned for a wide range of NLP tasks, making it a cornerstone model for chatbots,

document search, and language understanding in enterprise and consumer applications [14,

15].

Mapping Architectures to Use Cases

Architecture Industry Use Cases

CNN Healthcare Tumor detection, organ seg- mentation, COVID-19

diagnosis from X-rays

RNN/Transformer Speech/Media Voice assistants, speech-to-text

(Whisper), automated captioning

Transformer

(BERT)

NLP/Enterprise Text classification, chatbots, search, sentiment

analysis

Deep learning’s versatility and accuracy have made it indispensable for extracting insights

and automating decision-making across sectors.

Exercises

Python Tasks

1. MNIST CNN Classification

Train a CNN on MNIST dataset
import tensorflow as tf
from tensorflow . keras import layers , models

(x_train , y_train), (x_test , y_test) = tf. keras. datasets. mnist. load_data ()
x_train = x_train . reshape (-1 , 28 , 28 , 1). astype (’ float32 ’) / 255.0
x_test = x_test. reshape (-1 , 28 , 28 , 1). astype (’ float32 ’) / 255.0

model = models. Sequential ([

layers. Conv2 D (32 , (3 ,3), activation =’ relu ’, input_shape
=(28 ,28 ,1)),
layers. Max Pooling 2 D ((2 ,2)),
layers. Conv2 D (64 , (3 ,3), activation =’ relu ’),

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

99

layers. Max Pooling 2 D ((2 ,2)), layers. Flatten (),
layers. Dense (128 , activation =’ relu ’), layers. Dense (10 , activation =’ softmax ’)

])

model. compile (optimizer=’ adam ’,

loss=’ sparse_categorical_crossentropy ’,
metrics =*’ accuracy ’+)

model. fit(x_train , y_train , epochs =5 , validation_split =0.2)

2. LSTM Text Prediction

Character - level LSTM text generator
import torch
import torch . nn as nn

class CharLSTM (nn. Module):
 def init (self , vocab_size , hidden_size):

super (). init ()
self. embed = nn. Embedding (vocab_size , 64)
self. lstm = nn. LSTM (64 , hidden_size , batch_first= True

)
self. fc = nn. Linear(hidden_size , vocab_size)

def forward (self , x, hidden = None):

x = self. embed (x)
out , hidden = self. lstm (x, hidden)
return self. fc(out), hidden

Example usage
model = CharLSTM (vocab_size =128 , hidden_size =256)
input_seq = torch . randint (0 , 128 , (16 , 100)) # (batch_size , seq_length)
output , hidden = model(input_seq)

Framework Comparison Task

Implement the same neural network architecture in both TensorFlow/Keras and PyTorch:

 Input Layer: 784 dimensions (MNIST flattened)

 Hidden Layer: 128 units with ReLU activation

 Output Layer: 10 units with softmax

 Compare: Model definition syntax, training loops, debugging tools

Mini-Project: Sentiment Analysis

Build an RNN-based sentiment classifier:

 Dataset: IMDB movie reviews

Artificial Intelligence Technology in Healthcare: Security and Privacy Issues

ISBN: 978-93-7020-738-7

Chapter 7

DEEP LEARNING FOR DATA SCIENCE: ARCHITECTURES,

ALGORITHMS, AND REAL-WORLD APPLICATIONS

100

 Preprocessing: Tokenization, padding/truncating sequences

 Model: Embedding → LSTM → Dense layers

 Evaluation: Accuracy, precision, recall, ROC-AUC

 Deployment: Export as TensorFlow SavedModel or TorchScript

REFERENCES

[1] Lee, S.: Applying Backpropagation in Deep Learning for Enhanced Model Accuracy.

https://www.numberanalytics.com/blog/ backpropagation-deep-learning-model-accuracy

[2] iQuanta: Top 5 Deep Learning Algorithms in 2025. https://www.iquanta.in/ blog/top-5-deep-learning-

algorithms-in-2025/

[3] Ikomia: Mastering ResNet: Deep Learning Breakthrough in Image Recognition.

https://www.ikomia.ai/blog/mastering-resnet-deep-learning-image-recognition

[4] IndustryWired: 10 AI Breakthroughs in Natural Language Processing. https: //industrywired.com/10-ai-

breakthroughs-in-natural-language-processing/

[5] Topics, S.: LeNet-5 Architecture Explained. https://www.scaler.com/topics/ lenet/

[6] IBM: Convolutional Neural Networks Guide. https://www.ibm.com/think/ topics/convolutional-neural-

networks

[7] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

https://doi.org/10.1162/neco.1997.9.8.1735

[8] Team, P.: LSTM Documentation. https://pytorch.org/docs/stable/generated/ torch.nn.LSTM.html

[9] OpenCV: PyTorch Vs TensorFlow: Comparative Guide of AI Frameworks 2025.

https://opencv.org/blog/pytorch-vs-tensorflow/

[10] Team, K.: Keras Activation Functions. https://keras.io/api/layers/activations/

[11] Shankar, K., Perumal, E., et al.: Convolutional neural networks in medical image understanding.

Computers in Biology and Medicine 137, 104835 (2021)

[12] Al-Tarawneh, M., et al.: Diagnosis of medical images using convolutional neural networks. Journal of

Engineering Science and Technology Review (2023)

[13] OpenAI: Introducing Whisper. https://openai.com/index/whisper/

[14] Cloud, G.: Transformer Models and BERT Model | Google Cloud Skills Boost.

https://cloudskillsboost.google/course_templates/538

[15] Kumar, S.: Overview of Transformer and BERT. https://www.linkedin.com/ pulse/overview-transformer-

bert-sanjay-kumar-mba-ms-phd

[16] Labs, V.: Activation Functions in Neural Networks. https://www.v7labs.com/ blog/neural-networks-

activation-functions

[17] Schmidt, R.M., Schneider, F., Hennig, P.: Benchmarking deep learning optimiz- ers. arXiv preprint

arXiv:1910.05446 (2021)

[18] Brownlee, J.: How to Develop a CNN for MNIST Handwrit- ten Digit Classification.

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-

mnist-handwritten-digit-classification/

[19] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

https://doi.org/10.1038/nature14539

[20] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778

(2016). https://doi.org/10.1109/CVPR.2016.90

[21] Team, T.: Text Classification with TensorFlow. https://www.tensorflow.org/ tutorials/keras/

text_classification

