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Abstract:  

In this work, I conducted a numerical investigation of the effects of viscous dissipation 

on the thermal radiation of a magneto-hydrodynamics (MHD) flow of an incompressible nano-

fluid caused by an exponentially stretched sheet subject to heat and mass fluxes at the boundary 

layer. To numerically solve the governing PDEs, we first use self-similarity transformation to 

convert them into a set of ODEs, which we then solve using the shooting technique and a fourth-

order Runge-Kutta method. The effects of a wide variety of limitations are demonstrated with 

respect to the non-dimensional flow, temperature, percentage of nano-particle capacity, and local 

Nusselt and Sherwood number. Calculated and analysed are the friction factor coefficient values, 

as well as the local Nusselt and Sherwood numbers. 
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1. Introduction  

 

The study of motion and heat transport over a stretched surface has gained a lot of 

attention in recent years due to its many applications, including persistent casting, exchangers, 

metal spinning, bundle wrapping, food processing, substance processing, and equipment, in 

addition to polymer extrusion. Crane was the first to investigate the Newtonian flowing flow 

produced by a stretched sheet [1]. Many researchers enhanced Crane's [1] work by taking into 

account the impact of mass transit in various contexts, such as Dutta et al. [2], Chen and Char 

[3], and Gupta [4]. Nadeem et al. [5] investigated the heat conduction property of a water-based 

nanofluid using the exponential stretched sheet. Bhattacharyya [6] looked at heat and 

mass conduction across a rapidly contracting sheet in the boundary layer.  
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Mukhopadhyay et al. [7] investigated the high-temperature transport flow through a 

permeable exponential stretched sheet with thermal radiation. Sajid and Hayat [8] investigated 

the implications of heat production on the boundary layer flow due to an exponentially stretched 

sheet. In the presence of velocity slip and a magnetic field, Zhang et al. [9] research focuses on 

the heat transport of a power law nanofluid thin film induced by a stretched sheet. Majeed et al.'s 

[10] demonstration of the boundary layer flow of ferromagnetic fluid across a stretched surface. 

Using an unsteady stretched sheet, Pal and Saha [11] looked into the heat and mass transfer in a 

thin liquid film under the impact of non linear thermal emission. Stretched surfaces were 

included in Weidman [12] investigation of a uniform formulation for stagnation point flows. 

 

Modern metallurgical and metal-working processes use MHD flow of an electrically 

conductive fluid over a stretched sheet in unique manners. In order to cool them, continuous 

strips and filaments are frequently pulled from a moving fluid in professional polymer 

operations. The structure of the boundary layer adjacent to the stretched sheet influences the 

cooling rate, which greatly affects the outcome. Mukhopadhyay et al. [13] investigated the MHD 

flow of Casson fluid caused by an exponentially stretched sheet with heat emission. The impact 

of magnetohydrodynamics on a bidirectional nanofluid flow with a second-order slip flow and 

homogeneous-heterogeneous reactions has been examined by Hayat et al. in their study [14]. 

 

A stretched surface with internal heat generation was the subject of Lin et al.'s [15] 

investigation into the flow and heat transfer of an unstable MHD pseudo-plastic nanofluid in a 

finite thin film. To examine the impact of thermal radiation on the magnetohydrodynamics 

nanofluid flow and heat transfer, Sheikholeslami et al. [16] employed a two-phase model. On an 

MHD Falkner-Skan nanofluid stream, Farooq et al.'s [17] demonstration of the HAM-based 

Mathematica tool BVP h 2.0. In order to investigate the effects of thermal emission in a three-

dimensional Jeffrey nanofluid stream with internal heat generation and magnetic field, Shehzad 

et al. [18] undertook an analytical investigation. 

 

The significance of emission in processes carried out at extremely high temperatures 

cannot be emphasised. Radiative effects are used by gas turbines, missiles, aeroplanes, 



spacecraft, and nuclear power plants. The interaction of emission in a thermally convective 

viscous liquid stream across an inclined surface is studied by Moradi et al. [19]. The two 

phasemodel was utilised by Sheikholeslami et al. [20] to investigate the impact of emission in a 

viscous nanofluid stream. The laminar stream of an Oldroyd-B liquid with nanoparticles and 

emission is studied by Hayat et al. [21]. Ashraf et al. [22] conducted study on the radiative three-

dimensional Maxwell fluid stream with thermophoresis and convective condition. The heat 

emission in a Powell-Eyring nanofluid laminar stream over a stretched sheet was studied by 

Hayat et al. [23]. 

 

The effect of thermal emission on the continuous laminar two-dimensional frontierlayer 

stream and heat transfer over an exponentially stretched sheet was studied by Bidin and Nazar 

[24]. Hady et al. [25] examined the effect of emission on viscous nanofluid over nonlinear 

stretched sheet using the Runge-Kutta fourth-order method. The effects of Joule heating and 

thermophoresis in a Maxwell model stretched stream under convection were examined by Hayat 

et al. [26]. Sakiadis stream of Maxwell fluid with convective frontiercondition is addressed by 

Mustafa et al. [27]. The Maxwell fluid's stagnation point stream in the presence of thermal 

emission and convection was examined by Hayat et al. [28]. The effects of an inclined magnetic 

field on heat generation in a nanofluid stream with non-linear thermal emission were examined 

by Hayat et al. [29]. The nonlinear radiative stream of a three-dimensional Burgers nanofluid is 

studied by Khan et al. [30] with a novel mass flux Prominence. 

 

The goal of the current study is to numerically look into the impact of thermal emission 

on the magnetohydrodynamic (MHD) flow of a viscous incompressible nano-sized particle fluid 

appropriate to an exponentially stretched sheet with heat and mass fluxes conditions. The 

governing PDEs are converted into self-similar ODEs via similarity transformations and are then 

numerically solved via the Shooting technique. 

2. Mathematical Formulation 

 

A two-dimensional hydromagnetic flow of an incompressible fluid is modelled using an 

exponentially stretched sheet. Heat and mass transport analysis is characterized by the presence 

of thermal radiation, viscous dissipation, heat generation, and chemical reactions. A non-uniform 

magnetic field B(x) = B0exp(x/2l) is applied in the y-direction. In the case of low magnetic 



Reynolds numbers, the contribution of the induced magnetic field is disregarded. Heated and 

mass flux boundary conditions were applied at the surface of the sheet. The following equations 

represent the fundamental principles of motion: 

(i) Continuity: 
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(ii) Momentum: 
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(iii) Energy:  
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(iv) Nanoparticle volume fraction:  
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subject to the frontier conditions: 
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Here u and v denote the stream mechanism in the x and y information respectively,   a 

kinematic viscosity, 
p

k

c



 a thermal diffusivity, k  a fluid density,   a thermal conductivity, 

pc a specific heat, T  a fluid temperature, T∞ a ambient temperature, N a fluid concentration, C∞ a 

ambient concentration, / pk c    a thermal diffusivity, k a thermal conductivity, cp a specific 



heat, 
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 a radiative heat flux, k* a mean absorption coefficient, *  a Stefan-

Boltzmann constant, ( ) pc  a Prominence heat capacity of nanoparticles, ( ) fc heat capacity of 

the base fluid. N is nanoparticle volume,  D a mass diffusion  0( ) U exp /wU x x l  is a stretched 

stream of sheet, U0 a reference stream,   l a reference length,  0 0 0( ) T / 2 exp /w wq x q U vl x l

 

the variable heat flux,  0 0 0( ) / 2 exp /np npq x q C U vl x l  a variable surface nanoparticle flux, 

0U , 0T , 
0wq , 0npq , 0N , are the reference stream, temperature and heat flux, surface nanoparticle 

flux, nanoparticle capacityfraction respectively,  0( ) exp /V x V x l a special type of stream at 

the wall is considered (Bhattacharyya [30]) where 0V  is a constant. Here ( ) 0V x   is the stream 

of suction and ( ) 0V x  is the stream of injection. 

 

 Introducing similarity transformations as follows: 
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The continuity equation is automatically satisfied and using similarity transformation, the system 

of Eqs. (2), (3) and (4) becomes: 
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is a thermophoresis constraint, respectively.   

  

The transformed frontier conditions (5a) and (5b) are given by  
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Where 0
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c l


 is suction/injection constraint. Here the constraint is positive S >0 ( 0v <0) 

for mass suction and negative S <0 ( 0v >0) for mass injection. 

The substantial quantities of concern are the confined skin friction coefficient, the wall 

heat transport coefficient (or the confined Nusselt numbers) and the wall deposition flux (or the 

confined Stanton numbers) which are defined as respectively where the skin friction fC , the heat 

transport  ( )wq x  and the mass transport 
xSh  from the wall are given by 
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From the temperature field, we can study the rate of heat transport which is given by 
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From the concentration field, we can study the rate of mass transport which is given by

  

 
0

(0),
2Re

x
x

wx y

Sh x x C
Sh

l C C y


 

 
     

  
      (13) 

where 
0Rex U x   the confined Reynolds numbers. 

3. Method of solution: 



 

The structure of ordinary differential equations (7) – (9) subject to the frontier conditions 

(10) are solved numerically using Runge–Kutta fourth-order integration with shooting technique. 

A step size of 0.01   was selected to be satisfactory for a convergence criterion of 10-6 in all 

cases. The grades are obtainable graphically in Figs. (1) –(7) and conclusions are drawn for 

stream field and other physical quantities of interest that have noteworthy Prominences. 

 

4. Results and discussion:  

 

Numerical solutions to Eqs. (7)–(9) with frontier conditions (10) are provided in Figs. (1)–(9) 

using the Runge-Kutta fourth-order integration with shooting method. (7). Ha = 1.0, S = 3.0, Le 

= 1.3, R = 0.1, Pr = 0.71, Ec = 0.1, Nt = 0.8, and Nb = 0.5 are the leading restrictions that are 

held constant throughout the computations. Suction constraint Hartmann numbers, Eckert 

numbers Ec, Lewis numbers Le, emission constraint R, thermophoresis numbers Nt, and 

Brownian motion constraints Nb all have an impact on the stream, temperature, and friction 

profiles of nano-sized particles. In Figures 1(a) and (b), we see the profiles of the stream, 

temperature, and nanoparticle capacityfriction for different values of the suction constraint. 

As can be seen in Fig. 1(a), when the suction constraint is raised, the stream profiles go up. when 

can be seen in Figure 1(b), the temperature decreases when the suction constraint is tightened. 

Frictional profiles of streams, temperatures, and nanoparticles, as a result of the Hartmann 

numbers (i.e. the magnetic field constraint Ha), are displayed in Figs. 2(a) and (b). As 

demonstrated in Fig. 2(a), the stream patterns increase as Hartmann numbers are increased. 

Physically increasing the magnetic field also increases the Lorentz force. When greater force is 

used to stop the flow of a fluid, the fluid's velocity increases. As can be seen in Fig. 2(b), as the 

Hartmann numbers increases, the temperature decreases. 

 

Figure 3(a) and (b) display the effects of the dissipative constraint, Eckert numbers Ec, on the 

stream and temperature profiles. As the dissipation constraint Ec is raised, the stream and 

temperature profiles of the stream are shown to expand. Generally speaking, higher viscosities 

result in higher stream profiles because their enhanced heat conductivity. Figure 4(a)-(b) displays 

the results of the thermophoresis constraint Nt on the temperature and the nano-particle capacity 



percent. As shown in Figure 4(a), as the thermophoresis constraint is tightened, both the 

temperature and nano-particle capacity fraction profiles rise. The thermophoresis constraint Nt is 

defined as the ratio of the nanoparticle diffusion rate to the thermal diffusion rate in the 

nanofluid. 

 

As Nt increases, the thermal boundary layer grows because of the increasing temperature 

difference between the sheet and the fluid. As Nt grows, the thermophoresis force grows, and the 

nano-particle can move from hot to cold areas. This movement results in an increase in the 

capacity fraction of nano-particles. Figure 5(a)-(b) displays the effect that the emission constraint 

R has on the temperature and nano-particle capacity fraction profiles. It's important to remember 

that a better temperature profile results from a higher R value. This is because the average 

absorption coefficient drops with increasing R. As can be shown in Fig. 5(b), the fractional 

capacity of nanoparticles rises with increasing R. 

 

Finally, the impact of the Lewis numbers Le and the Brownian motion constraint Nb on the 

capacity fraction profiles of nano-particles is depicted in Figs. (6) and (7). when can be seen in 

Fig. (6), when the Lewis numbers improves, the distribution of the nano-particle capacity 

fraction narrows. This is because the Brownian diffusion coefficient Nb drops with increasing 

Le, making it harder for nano-particles to disperse throughout the fluid. Therefore, the capacity 

percentage of nano-particles decreases as the Lewis statistic Le increases. In addition, the 

fractional capacity of nanoparticles in the profile falls as the Brownian motion constraint Nb is 

increased. The thermal boundary layer may become more substantial as a result of this. The 

physical mechanism by which an increase in Brownian motion decreases the concentration inside 

the frontier layer is an increase in nano-particle diffusion. 

 

Data on the friction factor term, Nusselt numbers, and Sherwood numbers are shown 

mathematically in Tables 1 and 2, respectively. According to Table 1, increasing either the 

Nusselt numbers N or the Eckert numbers Ec results in a decrease in the skin friction coefficient. 

According to Table 2, the confined Nusselt and Sherwood numbers decrease as the significance 

of Ha increases, while the opposite is true for higher values of S. 



Table 1: Statistical values of  friction factor term and confined Nusselt numbers for different 

values of Ec and R when Ha=2.0, Nt=0.5, Nb=0.8, Pr=0.73, R=0.5, Ec=0.5 and Le = 1.5. 

 

  Constraints(fixed values)                                            Constraints             (0)f                  
1/2Rex xNu

  

 Nt=0.5, Nb = 0.8, S=5.0, Pr=0.73, R=0.5, Le=1.5        R=0.20          1.2205578            0.560558 

                                                                                              0.25          1.216655           0.566655 

                                                                                              0.30          1.197775           0.567775  

                                                                                         Ec=0.0          1.265308           0.559308 

                                                                                               0.3           1.220558           0.560558 

                                                                                               0.5           1.208727              0.568727 

 

 

Table 2: Numerical values of  confined Nusselt numbers and confined Sherwood numbers for 

different values of Ha and S when Ha=2.0, Nt=0.5, Nb=0.8, Pr=0.73, R=0.5, Ec=0.2 and Le = 

1.5. 

  Constraints(fixed values)                                            Constraints           1/2Rex xNu
            

1/2Rex xSh
  

 Nt=0.5, Nb = 0.8, S=5.0, Pr=0.73, R=0.5, Le=1.5      Ha=2.0             0.551146             0.394789 

                                                                                               2.5            0.538588             0.387825 

                                                                                               3.0            0.503747             0.367843 

                                                                                          S=0.1             0.515308             0.351434 

                                                                                               0.3            0.523404             0.362578 

                                                                                               0.5            0.540727             0.378441 
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Conclusion:  

 

Heat transport study employing an exponentially starching sheet under warm and mass flux 

circumstances with viscous dissipation is described, as is the significance of thermal emission 

and Magneto-hydro-dynamics (MHD) in the stream of a viscous dissipating nanofluid. The 
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initial set of leading partial differential equations was transformed into a system of nonlinear 

coupled ordinary differential equations, and the resulting well-posed frontier value issue was 

solved numerically with the Runge-Kutta fourth order based shooting method. Relevant 

limitations on the fields of friction, skin friction, heat, and mass transport coefficients in relation 

to stream, temperature, and nano-particles are discussed and illustrated with graphs and tables. 

The study drew the following main results.: 

 

(i) The suction constraint causes the stream profile and frontier layer thickness to grow. The 

Hartmann Numbers The Eckert-Harrington numbers Ec. 

(ii) Larger suction constraints and Hartmann numbers lead to a lower temperature profile and 

thinner thermal boundary layer. Ha, but the emission parameter R and Eckert numbers Ec 

both go down as their values rise. 

(iii) When the radiation constraint R and the thermophoresis constraint Nt are both high, the 

nano-particle capacity fraction rises. 

(iv) As the values of R and Ec are constrained, the skin fraction coefficient decreases.  

(v) Local Nusselt numbers is increasing function of ,S  R and Ec. 

(vi) Local Sherwood numbers is increasing function of .S  

 

References:  

 

[1] Crane, L .J.,(1970).  Stream past a stretched plate. Zeitschrift für angewandte Mathematik 

und Physik ZAMP, 21(4), 645–647. 

[2] Dutta, B. K, Roy P, Gupta, A.S.( 1985). Temperature field in flow over a stretched sheet with 

uniform heat flux. Int Commun Heat Mass Transport ,12(1):89–94. 

[3] Char, M.I. (1988). Heat transport of a continuous, stretched surface with suction or blowing. 

J Math Anal Appl., 135(2):568–80. 

[4] Gupta ,P.S., and Gupta, A.S., (1977). Warm and mass transport on a stretched sheet with 

suction or blowing. Can J Chem Eng, 55(6):744–746. 



[5] Nadeem S, Haq R.U., and Khan Z .H.,(2014). Heat transport analysis of water-based 

nanofluid over an exponentially stretched sheet. Alexandria Eng. J., 53(1) pp. 219–224. 

[6] Bhattacharyya,  K., (2011)., Frontierlayer stream and heat transport over an exponentially 

shrinking sheet, Chin. Phys. Lett., 28(7), 4701. 

[7] Mukhopadhya S.,(2013). Slip Prominences on MHD Boundary layer stream over an 

exponentially stretched sheet with suction/blowing and thermal emission. Ain Shams Eng J.,   

4(3):485–491. 

[8]. Sajid, M., Hayat, T. (2008). Influence of thermal emission on the frontierlayer stream due to 

an exponentially stretched sheet, Int. Commun. Heat Mass Transf. 35, 347–356. 

[9] Zhang, Y. Zhang, M, Bai Y.,(2017). Unsteady stream and heat transport of power-law 

nanofluid thin film over a stretched sheet with variable magnetic field and power-law stream slip 

Prominence, J. Taiwan Inst Chem Eng., 70:104–110. 

[10] Majeed A, Zeeshan A, Ellahi R (2016). Unsteady ferromagnetic liquid stream and heat 

transport analysis over a stretched sheet with the Prominence of dipole and prescribed heat flux, 

J Mol Liq 223:528–533. 

[11] Pal D, Saha P (2016). Influence of nonlinear thermal emission and variable viscosity on 

hydromagnetic warm and masstransport in a thin liquid film over an unsteady stretched surface. 

Int J Mech Sci, Vol. 119:208–216. 

[12] Weidman P, Turner M R (2017 ). Stagnation-point streams with stretched surfaces: a unified 

formulation and new results. Eur J Mech B Fluids, 61, 144–153. 

[13] S. Mukhopadhyay, I.C. Moindal, T. Hayat(2014). MHD frontierlayer stream of Casson fluid 

passing through an exponentially stretched permeable surface with thermal emission, Chin. Phys. 

B, 23  104701-12. 



[14] T. Hayat, M. Imtiaz, A(2015). Alsaedi, Impact of magnetohydrodynamics in bidirectional 

stream of nanofluid subject to second order slip stream and homogeneous–heterogeneous 

reactions, J. Magn. Magn. Mater., 395  294–302. 

[15] Y. Lin, L. Zheng, X. Zhang, L. Ma, G. Chen(2015). MHD pseudo-plastic nanofluid 

unsteady stream and heat transport in a finite thin film over stretched surface with internal heat 

generation, Int. J. Heat Mass Transf., 84  903–911. 

[16] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi (2015). Prominence of thermal 

emission on magnetohydrodynamics nanofluid stream and heat transport by means of two phase 

model, J. Magn. Magn. Mater., 374, 36–43. 

[17] U. Farooq, Y.L. Zhao, T. Hayat, A. Alsaedi, S.J. Liao (2015). Application of the HAM-

based Mathematica package BVPh 2.0 on MHD Falkner–Skan stream of nanofluid, Comput. 

Fluids, 11  69–75. 

[18] S.A. Shehzad, Z. Abdullah, A. Alsaedi, F.M. Abbaasi, T. Hayat (2016). Thermally radiative 

three-dimensional stream of Jeffrey nanofluid with internal heat generation and magnetic field, J. 

Magn. Magn. Mater., 397, 108–114. 

[19] A. Moradi, H. Ahmadikia, T. Hayat, A. Alsaedi(2013). On mixed convection emission 

interaction about an inclined plate through a permeable medium, Int. J. Thermal Sci. 64,129–

136. 

[20] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi (2015). Prominence of thermal 

emission on magnetohydrodynamics nanofluid stream and heat transport by means of two phase 

model, J. Mag. Magnetic Materials 374, 36–43. 

[21] Hayat T., T. Hussain, S. Shehzad, A. Alsaedi, A (2015). Stream of Oldroyd-B fluid with 

nanoparticles and thermal emission, Appl. Math. Mech. 36, 69-80. 

[22] M. Ashraf, T. Hayat, S. Shehzad, A. Alsaedi(2015) Mixed convection radiative stream of 

three dimensional Maxwell fluid over an inclined stretched sheet in occurrence of 

thermophoresis and convective condition, AIP Adv. 5,  027134. 



[23] Hayat T., N. Gull, M. Farooq, B. Ahmad (2015). Thermal emission Prominence in MHD 

stream of Powell-Eyring nanofluid induced by a stretched cylinder, J. Aerospace Eng., ASCE. 

29(1),1943-5525. 

 [24] Bidin B and Nazar R(2009)., Numerical Solution of the FrontierLayer Stream over an 

Exponentially Stretched Sheet with Thermal Emission, Eur. J. Sci. Res. 33 (4), 710–717. 

 [25] Hady F.M, Ibrahim F.S, Abdel-Gaied S.M, Eid M.R (2012) Emission Prominence on 

viscous stream of a nanofluid and heat transport over a nonlinearly stretched sheet, Nano Scale 

Res Lett 7:299. 

[26] Hayat T., M. Waqas, S.A. Shehzad, A. Alsaedi (2014). Prominences of Joule heating and 

thermophoresis on stretched stream with convective frontierconditions, Scientia Iranica B 21,  

682–692. 

[27] M. Mustafa, J. Khan, T. Hayat, A. Alsaedi(2015). Sakiadis stream of maxwell fluid 

considering magnetic field and convective frontierconditions, AIP Adv., 5,  027106. 

[28]  Hayat T., M. Waqas, S. Shehzad, A. Alsaedi(2013). Mixed convection radiative stream of 

Maxwell fluid near a stagnation point with convective condition, J. Mech. 29, 403–409. 

[29] Hayat T., S. Qayyum, A. Alsaedi, A. Shafiq(2016). Inclined magnetic field and heat 

source/sink aspects in stream of nanofluid with nonlinear thermal emission, Int. J. Heat Mass 

Transport 103, 99–107. 

[30] Khan, M. Khan, W.A., Alshomrani, A.S. (2016). Non-linear radiative stream of three 

dimensional Burgers nanofluid with new mass flux Prominence, Int. J. Heat Mass Transport, 

101, 570–576. 


