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Abstract: In this paper, we found a new model for compact star with charged anisotropic matter distribution considering the generalized Chaplygin equation of state. The Einstein-Maxwell field equations have been solved with a particular form of metric potential and electric field intensity. The plots generated show that physical variables such as radial pressure, energy density, charge density, anisotropy, radial speed sound and the mass are fully well defined and are regular in the interior of star. We obtained some models consistent with stellar objects as GJ 832, LHS 43, SAO 81292, GJ 380, GJ 412 and SAO 62377. The new models of this research are physically relevant in the analysis of compact structures.
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1. Introduction 

   Research on compact objects and strange stars within the framework of the general theory of relativity is a central issue of great importance in theoretical astrophysics in the last decades [1,2]. The obtained models in general relativity have been used to describe fluid spheres with strong gravitational fields as is the case in strange stars and neutron stars. The physics of ultrahigh densities is not well understood and many of the strange stars studies have been performed within the framework of the MIT bag model where the matter equation of state has the following linear form  . In this equation ρ is the energy density, P is the isotropic pressure and B is the bag constant. In the first detailed models of strange stars based on a strange quark matter equation of state were considered specific features of accretion on strange stars [3]. Other authors  [4-10] analyzed strange stars with the normal crust and proposed scenarios for the formation of these compact objects. 
   Researches as Komathiraj and Maharaj [11], Ivanov [12], Malaver and Kasmaei [13], Bowers and Liang [14],Gokhroo and Mehra [15], Esculpi et al.  [16], Malaver [17,18], Chan et al.[19], Malaver [20] and Cosenza et al. [21] have used numerous mathematical strategies to try to obtain exact solutions which indicates that the Einstein-Maxwell field equations  is of great importance to describe compact objects. 
   In order to propose physical models of interest that behave well it is important to consider an adequate equation of state. Many researchers have developed exact analytical models of strange stars within the framework of linear equation of state based on MIT bag model together with a particular choice of metric potentials or mass function [22-32]. Thirukkanesh and Ragel [33] obtained new exact solutions to the Einstein-Maxwell system of equations with a polytropic equation of state.  Feroze and Siddiqui [34,35], Sunzu et al. [36], Pant et al. [37]  and Malaver [38-41] consider a quadratic equation of state for the matter distribution and specify particular forms for the gravitational potential and electric field intensity. Sunzu and Danford  [42] and Komathiraj and Maharaj  [43] obtained new relativistic stellar models with a particular type of metric function. Tello-Ortiz et al. [44] also found an anisotropic fluid sphere solution of the Einstein-Maxwell field equations with a modified version of the Chaplygin equation. More recently Malaver and Iyer [45] generated new models of compact stars considering the new version of Chaplygin equation of state proposed for Errehymy and Daoud [46].  
   The presence of an electric field within a fluid sphere has been a subject of great interest because it has allowed studying the effect of electromagnetic fields on astrophysical stellar objects [47-51]. According Bhar and Murad [52] the existence of charge affects the values of redshifts, luminosities and mass for stars. Malaver and Iyer [53,54] have developed some stellar models with a well-defined electric field.  
   In recent decades, the theoretical research [54-64] in realistic stellar models show that the nuclear matter may be locally anisotropic in certain very high density ranges (ρ˃1015 gcm-3), where the relativistic treatment of nuclear interactions in the stellar matter becomes important. From the pioneering work of Bowers and Liang [54] that generalized the equation of hydrostatic equilibrium for the case local anisotropy, there has been an extensive literature devoted to study the effect of local anisotropy on the bulk properties of spherically symmetric static general relativistic compact objects [55-70]. Therefore it is always interesting to explore the consequences produced by the appearance of local anisotropy under variety of circumstances. 
    Presently there are efforts underway to understand the underlying quantum aspects with astrophysical charged stellar models [52-57]. How the energy matter quantum wavefunction creates situations with equation of state potential, expansions with quintessence field cosmologies with interior having dark energy matter generation compact stellar anisotropic gravitational potential and structure of many objects, especially strange quark stars as well have been key in Quantum Astrophysical projects ongoing [54-60]. There is also study of the symmetry group theory with authors advancing that will help to classify general field-particle metrics linking towards Standard Model Particle Physics String Theories with Hubble and James Webb Telescope observations of the expanding universe models that is supposed to manifest from natural astrophysical Big Bang Theory [56-67] .


   In this paper, we generated a new model of charged anisotropic compact object with the modified Chaplygin equation of state proposed for Pourhassan [68] and studied by Bernardini and Bertolami [69]. The modified Chaplygin equation of state is described by   where A, B, α are constants and 0 ≤ α ≤ 1. If we take α=1 then it gives generalized Chaplygin equation of state [52]. Using a particular form of gravitational potential Z(x) that is nonsingular, continuous and well behaved in the interior of the star, we can obtain a new class of static spherically symmetrical model for a charged anisotropic matter distribution. It is expected that the solution obtained in this work can be applied in the description and the study of internal structure of strange quark stars. The article is organized as follows: In section 2 we present Einstein-Maxwell field equations. In section 3 we make a particular choice for gravitational potential  and the electric field intensity and generated new models for charged anisotropic matter. In Section 4, physical acceptability conditions are discussed. The physical properties and physical validity of these new solutions are analyzed in section 5.  The conclusions of the results obtained are shown in the section 6. 

  2.  Einstein-Maxwell system of equations

We consider a spherically symmetric, static and homogeneous space-time. In Schwarzschild coordinates, the metric is given by:

                      (1)


where  and are two arbitrary functions. 
The Einstein field equations for the charged anisotropic matter are given by [30]:

                                     (2)

                                 (3)

                                  (4)

                                                         (5) 









where is the energy density, is the radial pressure,  is electric field intensity,is the tangential pressure and primes denote differentiations with respect to .Using the transformations,and with arbitrary constants and C>0 suggested by Durgapal and Bannerji [70], the Einstein field equations can be written as:

                                                (6)

                                               (7)

                                      (8)

                                                        (9)

                                      (10)

                                                (11)




 is the charge density,  is the anisotropy factor and dots denote differentiations with respect to .With the transformations of [70], the mass within a radius  of the sphere takes the form: 

                                                                                               (12)
Where 


In this paper, we assume the following equation of state where the radial pressure and the density ρ are related to the following form:   

                                                                                                                     (13)
with A and B as constant parameters, and α=1 . 


with A and B as constant parameters and   .
 
3.   Charged Anisotropic Model 
 In this work, we take the form of the gravitational potential Z(x) as Z(x)=1-ax proposed for Thirukanesh and Ragel [33] and Malaver [38] where a is a real constant. This potential is regular at the origin and well behaved in the interior of the sphere. Following Liguda et al. [71] for the electric field ,we make the particular choice:

                                                                                                            (14)

This electric field is finite at the center of the star and remains continuous in the interior.  Using  and eq.(14) in eq.(6), we obtain 

                                                                                                                      (15)    
  Substituting eq. (15) in eq. (13), the radial pressure can be written in the form:  

                                                                            (16)                                         
Using eq. (15) in eq. (12), the expression of the mass function is 

                                                                                   (17)
With eq. (14) and Z(x) in eq. (11), the charge density is


                                                                                                    (18)


With equations (13), (14), (15) and ,eq.(7) becomes:  


                                 (19)
Integrating eq. (19) we obtain: 

                         (20)                                                                                 
where for the convenience we have let 
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                                                                                                                                      (22)
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and   is the constant of integration.   


The metric functions and can be written as: 


                                                                                                                                         (25)


                           (26)
	                                              
and the anisotropy Δ is given by: 

             
                                                                                                                                                                                         (27)                                                                                                                                         

4. Elementary Criteria  for Physical Acceptability 
 A physically acceptable interior solution of the gravitational field equations must comply with the certain (not necessarily mutually independent) physical conditions [3, 48,72] : 
(i) 



The solution should be free from physical and geometric singularities, i.e., ˃ 0,    ˃ 0 and , , ρ are finite in the range 0 ≤ r ≤ R.
(ii) 

 The radial and tangential pressures and density are non-negative , , ρ ≥  0
(iii) 



 Radial pressure    should be zero at the boundary r= R , i.e., , the  energy density and tangential pressure may follow     and . 
(iv) 
The condition    be the condition that the speed of sound not exceeds that of light. 
(v)  Pressure and density should be maximum at the center and monotonically decreasing towards the pressure free interface (i.e., boundary of the fluid sphere). Mathematically 


               ≤ 0 and   ≤ 0 for 0 ≤ r ≤ R.	

(vi) 
Electric field intensity E , such that E(0) = 0 , is taken to be monotonically increasing, i.e.,  ˃ 0 for 0 ≤ r ≤ R.

(vii) Pressure anisotropy vanishes at the centre, i.e., Δ(0)=0  [3]. 
 
(viii)  The charged interior solution should be matched with the Reissner–Nordström     exterior solution, for which the metric is given by: 


                              (28)                                     
through the boundary r=R where M and Q are the total mass and the total charge of the star,     
respectively. 

5.  Physical Analysis








  We now present the analysis of the physical characteristics for the new model. The metric functions and should remain positive throughout the stellar interior and in the origin  , .We note in r=0 that .This demonstrates that the gravitational potentials are regular at the centre r=0 . The energy density and radial pressure are positive and well behaved inside the stellar interior. Also, we have the central density and pressure   , . According to the expression of radial pressure, pr(0)  will be non-negative  at the centre as it is satisfied by the condition 3AaC  ˃    .

In the surface of the star r=R , we have  and   


                                                                 (29)
For a realistic star, it is expected that the gradient of energy density and radial pressure should be decreasing functions of the radial coordinate 𝑟. In this model, for all 0 <  r < R,  we obtain respectively:  

     ˂ 0                                                                    (30)       

   ˂ 0    

and according to the equations (29) and (30), the energy density and radial pressure decrease from the centre to the surface of the star. 
From eq. (17), we have for the total mass of the star :  

                                                                 (32)


 The causality condition demands that the radial sound speed defined as should not exceed the speed of light and it must be within the limit in the interior of the star [3]. With the transformations of Durgapal and Bannerji [70] in this model  we have:


                                                             	   (33)                                                                                                        
                                                               
On the boundary r=R, the solution must match the Reissner–Nordström exterior space–time as: 


                            (34)



and therefore, the continuity of  and across the boundary r=R  is  


                                                                                        (35)              
 
Then for the matching conditions, we obtain:  


                                                                        (36)      

    
In Table 1 presents the values of the parameters chosen K, A, B and a. The masses of stellar objects are also shown

Table 1. Parameters a, A, B and stellar masses for different values of k
	        k
	         A
	     B(x10-5)
	          a
	    M(Mʘ)

	     0.0011
	       0.2  
	       1.5
	      0.011
	    0.60Mʘ

	     0.0012
	       0.2
	       1.5
	      0.011
	    0.55Mʘ 

	     0.0013
	       0.2
	       1.5
	      0.011
	    0.48Mʘ 


Where Mʘ is the mass of the sun
     The figures 1, 2, 3, 4, 5,  6, 7, 8 and 9 represent the graphs of ρ , pr , M(x)  , σ2 , E2, Δ , 



 , and   with the radial coordinate, respectively. In all the cases we have considered C=1.    
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[bookmark: _Hlk141612480]Figure 1. Variation of energy density with the radial coordinate for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
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 Figure 2. Variation of radial pressure with the radial coordinate for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
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[bookmark: _Hlk141612523]Figure 3. Variation of Mass function M with the radial parameter for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
 . 
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Figure 4. Variation of charge density with the radial parameter for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
 . 
                         [image: ]
Figure 5. Variation of electric field intensity with the radial parameter for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
   . 
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Figure 6. Variation of anisotropy with the radial parameter for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
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Figure 7. Variation of radial speed sound with radial coordinate for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
  .  	           [image: ]
Figure 8. Variation of gradient of density with radial coordinate for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
 . 
                       [image: ]

Figure 9. Variation of gradient of radial pressure with radial coordinate for k=0.0011 (solid line), k=0.0012 (long-dash line) and k=0.0013 (dash-dot line).
.  




    The Fig. 1 shows that the energy density is continuous, finite, decreases radially outward and vanishes at the boundary. In Fig. 2, we note that the radial pressure ρ also is finite, continuous and monotonically decreasing function. In Fig. 3, it is observed that the mass function is regular, strictly increasing and well behaved. Fig. 4 shows that the charge density is regular at the centre, non-negative and decreases with the radial parameter for the chosen k values. In Fig. 5, the electric field intensity E2 is positive and monotonically increasing throughout the interior of the star in all the considered cases.  In Fig. 6, the anisotropy factor Δ vanishes at r=0, it monotonically increases and is continuous in the stellar interior. In Fig. 7, we note that the   is within the desired range    for the different  values of k, which is a physical requirement for the construction of a realistic star [3]. The Figures 8 and 9 respectively show that the gradients of radial pressure  and energy density  are decreasing throughout the star.
    We can compare the values calculated for the mass function with observational data. For k=0.0011 the values of A, B and a allow to obtain a mass of 0.6Mʘ which can correspond to astronomic object GJ 440 also known as LHS 43 [73] or could be associated with the orange dwarf GJ 380 [74]. For the case k=0.0012   we obtained comparable masses with the red dwarf  Lacaille 8760 with a mass between (0.56-0.60)Mʘ [75].  With k=0.0013, the resulting  mass is very similar to the red dwarf  Lalande 21185  whose mass is 0.46Mʘ  [76].  The values of the masses for these compact stars are tabulated is Table 2
	Compact Star 
	Masses M(Mʘ)

	   LHS 43
	     0.62Mʘ

	   GJ  380
	     0.64Mʘ

	  Lacaille 8760
	(0.56-0.60)Mʘ

	  Lalande 21185
	     0.46Mʘ


                           Table 2. The reported values of the masses for the compact stars



  There is also quantum contribution to these masses, since the state of the clock affects environment vacuum oscillations, like neutrino oscillations that change flavor of the quark-gluon-plasma as well as switching quaternion operation of gauge fields of light as well as sound outputs quantum activities [8, 52, 54, 61,62]. The underlying mass effects on dwarf compact stars perhaps will explain their variability with energy density, pressure, mass function, charge density, anisotropy, electric intensity of field, especially in the interior of these stellar objects, and radial sound aspects correlating results demonstrated successfully above [52, 55, 56, 57, 58, 59, 60, 62, 63, 64].
6. Conclusion
    In this work, we have developed some simple relativistic charged stellar models obtained by solving Einstein-Maxwell field equations for a static spherically symmetric locally anisotropic fluid distribution with a particular form of gravitational potential and the generalized Chaplygin equation of state and presented a new class of solution that satisfies the physical requirements of a anisotropic charged stellar model. 
   How the energy matter wavefunction creates situations with equation of state potential, expansion with quintessence field cosmologies with interior having dark energy matter generation compact stellar anisotropic gravitational potential and structure of many objects, especially strange quark stars as well have been key in Quantum Astrophysical projects ongoing. The underlying mass effects on dwarf compact stars perhaps will explain their variability with energy density, pressure, mass function, charge density, anisotropy, electric intensity of field, especially in the interior of these stellar objects, and radial sound aspects correlating results demonstrated successfully above. quantum contribution to these masses, since the state_of_the_clock affects environment vacuum oscillations, like neutrino oscillations that change flavor of the quark-gluon-plasma as well as switching quaternion operation of gauge fields of light as well as sound outputs quantum activities.
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