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ABSTRACT
The outage probability (OP), average bit-error probability (ABEP) as well as ergodic capacity of decode- and-forward (DF) relay-based dual-hop transmission are evaluated in this analysis. The mixed fading channel environments are considered to study the system performance. The channel connecting the source to relay experiences Generalized-K (KG) distribution, whereas the link joining the relay with the destination is assumed as κ- μ distribution. To analyse the system’s performance, the probability density function (PDF) based approach is used. The BPSK as well as QPSK modulation schemes are applied to analyse the ABEP of the system. The results are validated by computer simulations.

Keywords: Dual-hop relaying, Generalized-K, Decode- and–forward, k   fading, Outage probability, Ergodic
capacity, ABEP.

1. INTRODUCTION
In dual-hop cooperative communication, a source node transmits to the destination node via an additional node named as relay node [1]. Whenever the direct transmission between the base station and the end user or the destination node is in a deep fade, the relay is suitable to improve the SNR. The relay is used to cooperate the communication process by retransmitting the signal and thereby improving the SNR at the destination. Communication can take place in dual phases. Dual-hop networks improve the data rate in wireless networks. There are several relay transmission protocols. The standard protocols are amplify and forward (AF) as well as decode and forward (DF) protocols. In case of AF protocol, the signal is amplified by a relay and later retransmit. It blindly amplifies the input signal and forwards it. Therefore the external input noise gets amplified in AF protocol. In DF communication, relay decodes the symbols transmitted by the source node and subsequently sends the symbols to end user [2]. The advantage of using DF communication is that it does not amplify the noise of the environment. [3].
In the available literature, cooperative transmission systems operating over fading channels are analysed in several works. In [4], the analysis of the dual-hop AF

carried out. Asymptotic analysis at high SNR for ABEP was performed to depict the effect of channel parameters on the communication system behaviour. Dual-hop transmission models with the DF technique under Nakagami-m fading channels were analysed in [5] [6] [7]. Dual-hop transmissions under Gamma fading channels were investigated in [8]. The performance of a dual-hop AF variable gain relaying system under Gamma distribution was investigated in [9]. The performance of DF based cooperative free-space optical (FSO) network with multiple relays was investigated in [10]. The asymptotic ABER and asymptotic OP analysis were derived for the source to relay links. In [11], the performance of dual-hop AF transmission operating in a non-identical Rician fading environment was presented. A generic moment-based approach for the evaluation of dual- hop wireless communication employing AF systems nder generalized fading channels was presented in [12]. In [13], the performance of multi-hop communication links was
investigated   under    KG	fading environment. An expression for the MGF of the SNR of dual-hop with non- regenerative wireless communication systems over i.i.d α– μ fading channels was derived in [14]. The expressions for outage probability and ABER of the system were derived from the SNR expression. These works are based on symmetric fading condition, which is not suitable for fundamental wireless communication environment characteristics.
Nevertheless, several articles have also mentioned the performance of dual-hop relaying techniques over asymmetric fading conditions. The asymmetric channel models mean wireless channel conditions of every hop are different because of the possibility that receiving signals may be different for the two relay links [15]. These mixed fading propagation channels are more realistic for precisely modelling numerous practical dual-hop communications scenarios.
The performance of a two-hop AF system was studied in [16], considering links undergo Rayleigh and Rician fading, respectively. The performance of a two-hop AF cooperative system was presented in [17] for source-to-
relay  experience       fading,  whereas  the relay-to-
destination  undergoes   k     fading  environment. The
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2. SYSTEM AND CHANNEL DESCRIPTION
A dual-hop communication system is considered where the transmission from a source node S to the destination node D takes place through the cooperation of a relay node R. Transmission from S to D occurs in two different time slots. The source node S sends a signal to the relay node R in the first time slot whereas, in the second time slot, R decodes the received signal and sends the resulting decoded signal to D. The S is situated in an intensely shadowed environment; therefore it is considered that there is no direct sight between S and D node.
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The parameter k2    is the ratio between total power of
the dominant component and total power of the scattered waves. The symbol   represents the number of multipath
clusters, whereas I . is the modified Bessel function of the first kind and  th order  [28].  The  k   shadowed physical model comprises clusters of multipath waves, that travel in a non-homogeneous environment. Within  a  cluster,  the  waves  consist  of  one  dominant
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3. OP ANALYSIS
The OP is a prime performance metric that is utilized
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(21) and expressing I . as infinite series [31, (8.445)],

QPSK modulation techniques. It can be noticed that ABEP performance is improving for BPSK modulation as compared to a QPSK modulation scheme. The ABEP
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performance of the analyzed system is better for larger the
values of k1 and m .
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In Fig. 4, ABEP versus average SNR per hop is plotted
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modulation techniques. It is shown in Fig. 4 that the ABEP of BPSK improves as compared to QPSK for two-hop DF

 (
G


)Simplifying with the aid of [31, (7.813.1)],

relaying over considered fading environments. As
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expected, ABEP performance enhances with an addition in the values of k2 and  .
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In Fig. 5,  Cerg  versus average SNR per hop is framed
for  k   2  and   1 with 	 2dB and 	 6dB .
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5. RESULTS AND DISCUSSIONS
The derived expressions of OP, ergodic capacity as

The ergodic capacity increases with an increment in the values of k1 as well as m . It is noticed that Cerg degrades when the outage threshold SNR value is high.
In Fig. 6, Cerg versus average SNR per hop is plotted

well as ABEP in the aforesaid sections for dual-hop DF

for

k1  5.5

and m  2 . The

Cerg

increases with an

relay system under KG as well as k  

fading links

advancement  in  the  values of  k2	as well as  . The

are evaluated. In Fig. 1 and Fig. 2,

Pout

versus average

ergodic capacity improves with the decrease in threshold

SNR per hop are depicted for the outage threshold values

SNR from  th  6dB to  th  2dB .

 th  2dB and  th  6dB . It is detected that outage

In the analytical computation of derived expressions,

performance develops when the outage threshold SNR value is low. In Fig. 1, k2  2 and   1 are kept constant. The outage performance boosts with the advance in the values of k1 as well as m . An increase in k1 means reduced in the shadowing effect, hence as expected, the

the infinite series terms are truncated to obtain correctness up to the 7th place of decimal digit. The explanatory curves are plotted from (11) and (13), considering 21 summations and in case of (23), the number of 51 summations are considered to obtain the correctness of the results.

system’s outage improves with an enhance in k1

and for

[image: ]a fixed value of m . Furthermore, for the constant weight of k1  1.5 , the outage performance strengthens as the amount of m hikes, analogous to the small-scale fading becoming less severe.

In Fig. 2,

Pout

versus average SNR per hop is

depicted for

k1  5.5

and m  2 . The outage

performance increases with an advance in the values of k2

as well as  . The k  

fading model is activated for

LOS   wireless  communications  and  the  parameter   k2
points out the power of the dominant component. Consequently, the outage improves with the increment  in
k2   and  for a fixed  value of  . The parameter    is  the
actual  expansion  of  the  quantity  of  clusters  [27].  As

Fig. 1: Outage probability Pout

of dual-hop DF relay
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fading channels for
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Fig. 6: Cerg of dual-hop DF relay system over KG along with k   fading channels for k1  5.5 , m  2 and  1   2 .
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