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Mathematical modeling is a potent and essential instrument in ecology, offering a me- thodical and quantitative approach to comprehend the intricacies of natural ecosys- tems [1], [2]. The study of ecology involves investigating the interactions between living organisms and their environment, which poses multiple challenges due to the complex interconnections among species and the dynamic nature of ecological sys- tems [3]. By employing mathematical models, researchers can effectively address these intricacies and obtain valuable insights into the operations and conduct of eco- logical communities[4], [5]. These models have undergone thorough investigation and research following the influential theoretical contributions by Volterra [7] and [6]. However, to accurately capture the system’s dynamic behavior, it is crucial to con- sider the influence of past history on the model’s dynamics. This necessitates the incorporation of time delays into the models, leading to a more realistic depiction of predator-prey interactions using delayed differential equations.
Lately, the notion of infinite delay has garnered significant attention within math- ematical biology equations, serving as a method to integrate the cumulative impact of

 (
10
)

a system’s historical dynamics, a concept originally championed by Volterra. Numer- ous scholars (refer to [[8], [9]] as examples) have extensively investigated the stability and bifurcation characteristics of prey-predator systems. This research endeavor aims to capture the intricate interplay between species by considering not only their cur- rent interactions but also the enduring influence of their past states, allowing for a more comprehensive understanding of the system’s behavior over time.



[9],

The predator-prey system with distributed delay was formulated by Chen et al.
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∫
)Here, m represent the density of and n is the predator density. a1 and a2 are intrinsic growth rate of the prey and predator; K denotes the carrying capacity. The parameter d denotes the death rate of the predator. γ is the rate of predation by the predator, and δ represents the combined effect of the rate of predation and the rate of converting prey into predators. It is assumed that all of the parameters are positive constants. The kernel K : [0, ∞) → [0, ∞) is a L1 function, normalized such as
∞ K (s) ds = 1.
0

In natural ecosystems, population systems are inescapably subjected to the pervasive impact of environmental variability. This unpredictability often manifests as environ- mental ”white noise,” encompassing a wide range of stochastic fluctuations that can significantly affect population dynamics. Recognizing the imperative to mirror this intricate interplay between biological entities and their unpredictable surroundings, researchers have increasingly turned to stochastic differential equation (SDE) mod- els. These models serve as indispensable tools in the study of population dynamics due to their ability to encompass the inherent randomness and complexity present in ecological systems. Unlike their deterministic equivalents, SDE models not only acknowledge the deterministic forces governing populations but also incorporate the essential role of chance events and environmental variability in shaping population behaviors. Consequently, they offer a more comprehensive and nuanced perspective, facilitating a deeper understanding of the intricate ecological processes that unfold over time. Many researchers have explored the impacts of environmental random fluctuations on population dynamics by introducing random perturbations into de- terministic models (see, for example, [[10], [11]]). In this paper, we are inspired by the works of Imhof and Walcher [[12]] and adopt their approach, assuming that the environmental white noise is proportionally related to the variables m and n. This


assumption leads us to derive the following stochastic model, corresponding to system (1.1),
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where Qi(t) are standard Brownian motions that are mutually independent, Q stand for the white noise intensities, and i = 1, 2.
For convenience’s sake, we focus on the weak kernel situation in this study, which is K(t) = ηe−ηt with η > 0 and was first described by MacDonald [[13]]. Analogously, the strong kernel case may be explored. Both the weak kernel and the strong kernel have found extensive application in biological systems, including epidemiology [14] and population systems [15].
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 (
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)ηe−
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η(t


−s)m(s)n(s)ds

then, (1.2) is changed into the following comparable model using the linear chain approach.
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dp = η (mn − p) dt.
This research paper primarily concentrates on establishing precise and adequate crite- ria for the existence of a stationary distribution within the context of (1.3). Previous studies have explored the steady distribution of stochastic predator-prey models incor- porating time delay, exemplified by the stochastic delay cascade predator-prey model
[16] and the stochastic delay two-predator one-prey model [17]. However, these works primarily focused on discrete delay, while our current paper addresses distributed delay, showcasing its novelty and innovative aspect.
The subsequent lemma addresses the presence and uniqueness of global non negative solutions for system (1.3). Due to its conventional nature, we omit the proof here.

 (
+
)Lemma 1. Given any initial value (m(0), n(0), p(0))  ∈  R3  for (1.1), ∃  a  single,
unique solution (m(t), n(t), p(t)) for the system on the interval t ≥ 0 and with prob-
 (
+
) (
+
)ability one, the solution (m(t), n(t), p(t)) will remain in the real numbers R3  for all values of t > 0. In other words, the solution (m(t), n(t), p(t)) remains in R3  almost
surely for t ≥ 0.
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)Here we will present the primary outcomes for system (1.3).


Let us examine the integral equation:
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Lemma 2. [18] Assume that the coefficients of (2.1) satisfy the prerequisites for som e constant Q and are t-independent.
k	k
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)in VR ⊂ Rd

∀ R > 0 and ∃ a positive C2-function U (x) in Rd ∋
 (
+
)WU (x) ≤ −1.

outside some compact set, the stationary distribution is the solution to (2.1).
Remark 1. Remark 5 of Xu [19] reveals that (2.2) mentioned in Lemma 2 is not strictly necessary, it can be substituted with the requirement for the global existence of solutions of (2.1).
Lemma 3. [20] The following inequality is true for any m > 0
m(1 − m) + 2m ≤ √m.
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Proof. According to Lemma 2, it suffices to establish the existence of a non negative

 (
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)C-function U (m, n, p) and a closed set V ⊂ R3

such that,
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where x1,x2 are non negative constants. Ito’s formula [21] applied to U1 results in,
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When κ < 0, the predator population n is expected to undergo exponential decay with a probability of one, implying that the population will inevitably diminish.
lim n(t) = 0.
t→∞
Furthermore, the weak convergence of the distribution of m(t) occurs, leading to the emergence of a measure characterized by the density:
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Applying It¯o’s formula for differentiating lnU¯

results in:
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Performing integration from 0 to t and subsequently dividing both sides of equation (2.12) by t results in,
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a local martingale [21] results in
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Applying the upper limit to both sides of equation (2.13) and combining it with (2.14) and (2.15) yields
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 (
t
)This stands as the necessary assertion. Additionally, in the case where κ < 0, it can be readily deduced that limt→∞ suplnn(t) < 0
This implies limt→∞ y(t)  = 0 a.s.	In other words, the predator population n
exhibits exponential decay with a probability of one. This concludes the proof.


[bookmark: Conclusion]3	Conclusion

In this paper, we investigated a stochastic model that captures the interactions be- tween predator and prey species, accounting for distributed delays. The study’s initial focus was on establishing the existence of a stable pattern, known as a stationary dis- tribution, for positive solutions within this model. This was achieved by employing the stochastic Lyapunov function approach. Additionally, the research moved for- ward to outline specific conditions that lead to the complete elimination of predator populations. This extinction scenario points to the coexistence of a thriving prey pop- ulation with the absence of predators. In summation, this study contributes to our comprehension of ecological systems by offering insights into the intricate dynamics between predator and prey populations under the influence of distributed delays.
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