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ABSTRACT


The stability analysis of induction motor normally uses conventional steady state torque-speed characteristics. Study of stability during transient conditions is rather rare in literature. Rigorous analysis for stability based on full nonlinear dynamical model is lacking. For this purpose, stability analysis using the Lyapunov’s theorem is essentially required. Global asymptotic stability for induction motor drive using Lyapunov criteria is analyzed using the full nonlinear dynamical model. The transient model is considered in stationary α-β reference frame about steady state operating point. Equations are derived for energy and power balance. The equations can be used to obtain an appropriate candidate for Lyapunov function for stability analysis. Global asymptotic stability condition in the sense of Lyapunov is derived at any possible speed, with load and without load, with variations in parameters and frequency. These generalized conditions of stability for any operating speed, load, frequency and parameters with a case study for confirmation are the outcomes.
Keywords--- Stationary reference frame, Induction motor, Decoupling control, Global stability, Lyapunov theorem, Energy balance equation, Power balance equation
I. INTRODUCTION


Induction motor offers a nonlinear, coupled and multivariable dynamics. Induction motor control has advanced from scalar control techniques to vector control [1]-[3], and decoupling control through state feedback linearization [4]-[10]. On the basis of these relatively new control strategies, a lot of modern controllers and estimation techniques, [8] have been applied. But, most of the researchers try, experiment and succeed to apply these modern control and estimation techniques without sufficient theoretical study of stability. The stability analysis of induction motor normally uses conventional steady state torque-speed characteristics [9]-[10]. Study of stability during transient conditions is rare in literature. Rigorous analysis for stability based on full nonlinear dynamical model is essentially required.


The state feedback linearization and vector control techniques are successfully implemented. They assure complete decoupling between motor speed and flux with certain motor physical parameters. But, some of the control techniques are sensitive to variations in speed, frequency, parameter and load. So, it is pertinent to analyze motor sustaining capability at steady state and transient durations. For this reason stability analysis using the Lyapunov’s criteria is essentially required. Such a work is reported [11], with induction motor model in synchronously rotating reference frame. But, main drawback of synchronously rotating reference frame model, is requirement of synchronous angle, θe, which is obtained from a phase locked loop (PLL) and integrating the synchronous speed, ωe. This means additional cost and complexity of the system, for predicting the stability on-line. This drawback is not present, with induction motor model in stationary reference frame. Such type of global asymptotic stability analysis using Lyapunov’s theorem for induction motor drive is presented in this paper. Global asymptotic stability using Lyapunov’s theorem for induction motor drive is discussed taking the full nonlinear transient model in stationary α-β reference frame, about a steady state operating point. Considering frequency, synchronous speed, load and motor parameters, conditions of stability are derived. The stability using Lyapunov approach is studied considering variations in frequency, speed, load and motor parameters. This work presents a theoretical demonstration of the stability analysis of the induction motor drive system utilizing the Lyapunov’s stability theorem [4].
II.
STATE-SPACE MODEL NEAR STEADY STATE OPERATING POINT
 

Many control schemes are developed for the induction motor drive using its model in stationary (α-β) reference frame with stator current components (iαs, iβs), rotor flux components (ψαr, ψβr) and speed (ωr) as variables [6]-[10]. The mathematical model is presented below.
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where, 
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where, suffixes (α, β ) denote the direct and quadrature axis equivalent components in the stator mounted reference frame.  Ls, and Rs are are the stator inductance and resistance, respectively. Lr, and Rr are the the rotor inductance and resistance, respectively. Lm is the mutual inductance between stator and rotor. np is the number of pole pair. J is the moment of inertia and B is the viscous friction coefficient. Tl  is the load torque. Input stator voltage components in the stator mounted reference frame are uαs  and uβs . The leakage coefficient, σ is defined as 
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. The motor speed is ωr. The state feedback linearization decoupling and control algorithm for motor speed and rotor flux is expressed in [10] as:
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Induction motor is stable at steady state condition for rated slip operation. The feedback linearization and decoupling control also ensures the stable motor operation near rated slip. In this research work, any possible operating point near steady state condition is assumed. 


The steady state point state variable set is xo.
where,  
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The steady state point is a fixed point. So, the system response about this point is given by the equations:
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When the variables and parameters at operating condition of motor drive system change, motor dynamic model deviates from its known model at steady state position. If error in the variables converge to zero, then after sometime motor drive system operates at steady state in another stable position. Theoretical analysis of this drive system error variable set is presented below.


The set of error variables for induction motor drive system is defined as given in (5).
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The state space model of this drive system with the errors as variables is obtained from (1) as: 
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III.
POWER AND ENERGY BALANCE EQUATIONS


In the stationary reference axes with the induction motor rotor and stator current α-β components as variables, the magnetic energy (wf ) and mechanical energy equations are expressed as in equation (7),  [11]. Then total motor energy defined as (wp) in equation (9).
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The total motor stored energy in terms of stator fixed α-β axes variables like stator current is components (iαs, iβs), rotor flux ψαr, ψβr components and motor speed, ωr  is given by [11].
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Taking the derivatives of (10) and substituting from (1) and simplifying leads to equation (11). 
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Equation (11) is for the power balance of induction motor as in [12]. Equation (11) states that the time rate of change of stored energy is the difference of input power and sum of mechanical power output with power loss.

Power loss in stator and rotor windings is expressed as in (12).
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The power loss equation using the stator current and the rotor flux α-β components is given by substituting (13) and (14) in (12), [12].

[image: image32.wmf]mr

rs

rr

L

ii

LL

a

aa

y

=-+



(13)


[image: image33.wmf]mr

rs

rr

L

ii

LL

a

aa

y

=-+


 
(14)



The power loss equation is derived as given in (15).
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For the stability analysis using Lyapunov approach, above power and energy balance equations are used. The total stored energy wp in terms of error variables is given by (16).
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(16)


The total stored energy at steady state point, wp is given by (17) using the steady state point variables. 
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Difference of (16) from (17) gives, where, wp(e) using the error variables, where, wp(e)=wp−wp(0)
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(18)
Arranging (18) in the error product form as in (19):
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where,
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The derivative of wp is the same as the right-hand side of the power balance equation (11), as rewritten below [11].
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Equation (20) is expressed in error vector product form as in (21).
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 where,
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IV.
INDUCTION MOTOR STABILITY ANALYSIS USING LYAPUNOV APPROACH
A. The Lyapunov Function Selection


The first term of equation (19) is taken as a Lyapunov function candidate, V.
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Derivative of the Lyapunov function using (19), (21) and (22) is obtained as:
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As the last two terms in above equation cancel each other, this gives equation (23).
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where,
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B.
Global Asymptotic Stability of The Induction Motor Drive


For the Global asymptotic stability theorem ([4], pp.65) the scalar function V of the state error (e) should have continuous first order derivative and satisfy the followings. 

(a)
V(e) is positive definite
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 For the first condition to be satisfied, the leading principal minors of K need to be positive definite. These are verified and mentioned below.
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The principal minors of K are positive definite. The verification confirms that all principal minors are positive. For the Lyapunov function defined in equation (22), conditions (a) and (d) hold good. Further conditions (b) and (c) are checked as follows.
C.
Global Asymptotic Stability of the Induction Motor Without Load


In this case, motor load torque is zero. If viscous friction coefficient, B is 0, then developed torque, Te is also 0. So, the current components iαro and iβro become zero. So, equations (13) and (14) lead to (26) and (27).
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Substituting (26) and (27) in (23), matrix M converts to Mo, as given below.
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This matrix Mo needs to be positive semidefinite. For this all the principal minors of M0 are derived and mentioned in (29) to (33) below. 
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Here it is noted that M0 is positive semidefinite if it satisfies the following condition, which is derived from (31) and (32).
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The left hand side of inequality (34) is dependent on the motor parameters. Inequality (34) gives positive value in case of small induction motors [11] and at less values of speed. For larger induction motors, the left hand side of inequality (34) becomes negative. So, at the time of starting large induction motor it is necessary to increase the rotor and stator resistances. This concludes the fact that, smaller induction motors can be started directly online at no load without loosing stability. In larger induction motors, rotor and stator resistances have to be increased for stability during starting acceleration.

 Condition (c) in (24) leads to:  
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From (28) what follows is (35).
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(35)
Here, an expression in terms motor parameters and error variables is considered as given in left hand side of (36) as given below. This expression should be positive or zero.
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(36)
On expanding the above:
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Subtracting (35) from (37):
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Finally, 
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The left side of (38) will be equal to zero, only when e=0.
D.
Global Asymptotic Stability of Induction Motor Drive With Load


When the induction motor is loaded the positive definiteness of matrix M is evaluated. This positive definiteness of matrix M will be fulfilled if the leading principal minors are positive. The derived expressions of leading principal minors are given in equations (40) to (44).
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E.
Case Study



Above conditions for positive definiteness of matrix M are verified by taking induction motor with specifications as follows. 5 Hp (3.7Kw), 6pole, ∆-connected, 415V, 1445 rpm. The motor parameters are as follows. Rs=7.5Ω, Lm=0.5H, Ls=0.52H, Lr=0.52H, Rr=5.4Ω, J=0.16 kg-m2, B=0.035 kg-m2/s.

Substituting the parameter values in the matrix M, 
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The minors of matrix, M are 
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Solving for higher principal minors
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The foregoing equation is solved to find the real roots. If:
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The matrix M is related to motor current and flux values at steady state. So, for testing the positive definiteness the following three sets of observations (Table-I) have been considered [10].

(a) Induction motor running at 52.19 rad/s (500 rpm) under no load.
(b) Induction motor running at 52.19 rad/s (500 rpm) subjected to 10 N.m load torque.
(c) Induction motor running at 104.7 rad/s (1000 rpm) under no load.  



During the stability study test following results are obtained for determinant of the matrix M5 and principal minor M4 as shown in Table-I.
Table 1: Stability Test Results for Three cases
	ωro (rad/s)
	Tl (N.s)
	iαso(A)

 iβso(A)
	ψαr0 (V.s) 
ψβr0 (V.s)
	Principal Minor

	52.1
	0.575
	2.17

1.947
	0.45

-0.48
	M4=8.1e4

M5=2.12e4

	52.02
	10.1
	-5.415

-8.468
	0.220

-0.427
	M4=8.1e4

M5=2.72e5

	104.7
	0.4
	-1.78

-3.965
	-3.965

-0.48
	M4=1.16e8

M5=5.9e6

	
	
	
	
	


V.
CONCLUSION 


The global asymptotic stability using Lyapunov’s theorem for the perturbed induction motor drive near steady state operating point has been analyzed without load and with load. It has been noticed that stability depends on slip at the operating point and motor parameters at the operating condition. The rotor resistance has more predominant effect than other parameters. The fact that increase of rotor circuit resistance through addition of extra resistance increases the starting torque thereby making the motor capable of accelerating stably is confirmed and reestablished through stability study. The sufficient condition for stability is also derived. This stability analysis helps to understand the stability and instability of the induction motor drive. 
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