A Study on BFS and DFS Adaptive Algorithms with Application in Computer Science

Girija B
Independent Research Scholar,
Oscar College,Vellore, India
girijaranjith2017@gmail.com

ABSTRACT
Many real life problems exhibits a connectivity structure in nature. Before, data solving techniques for including, bioinformatics, communication network, image data, wireless networks etc., are more complicated because of high computational complexity. Hence, nowadays, there are lots of graph models and these can be solved using graph theory algorithms such as BFS, DFS, Diijkstras algorithm and so on. These algorithms are applied in data structures. This paper explains BFS and DFS algorithms with application.

Keywords—graph, directed graph, connectivity, trees, subgraph, spanning subgraph, spanning trees.

 INTRODUCTION

		Mathematics plays an immense role in many fields, especially Graph Theory occupies an important role in the field of computer science. Graph theory is a mathematical model of pair wise relations between objects. Graphs are the convenient to represent mathematical objects. There is a wide range of application of graph theory in computer science.

Here, we will see, the algorithms such as BFS ANS DFS, with applications.

The Breadth First Traversal Algorithm

		This algorithm with vertices is used to search a graph data structure. It starts at the root of the graph and travels all the vertices at the current depth level. The BFS for a graph is similar to BFS of a tree. The only difference is graphs contain cycles but trees are not. To avoid repeated travel of same vertices, we divide into two categories:
· Visited
· Not visited.
	First we assume that all the vertices are reachable with the starting vertex. BFS uses a queue data structure for traversal. Starting from the first vertex, all the vertices in a particular level are visited first and the vertices in the next level are visited. All the adjacent unvisited vertices are pushed into the queue, and the vertices of current level are marked visited, and popped from the queue.

	Let us understand the working algorithm of BFS with the following simple example:
Step-1:	Initially the queue and visited arrays are empty.

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.08.53 AM.JPEG]

Step-2: 	Push node 0 into queue and mark visited.

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.08.53 AM.JPEG]

Step-3:	 Remove node 0 from the front of the queue and visit the unvisited neighbors and push them into queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.08.53 AM.JPEG]

Step-4: Remove node 1 from the front of the queueand visit the unvisited neighbours and push them into queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.09.19 AM.JPEG]

Step-5: Remove node 2 from the queue and visist the unvisited neighbors and push them into queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.09.19 AM.JPEG]
Step-6: Remove node 3 form the queue and visit the unvisited neighbors. As we can see that every neighbor of node 3 visited, so move to the next node that are in front of the queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.09.44 AM.JPEG]

Step-7: Remove node 4 from the front of the queue and visit the unvisited neighbors. As we can see that neighbors of node 4 visited, so move to the next node that are in front of the queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.09.44 AM.JPEG]

Now, queue become empty, so terminate the process of iteration.

Illustration C Program for BFS algorithm:

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 4.43.30 AM.JPEG]
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 4.43.30 AM (1).jpeg]
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 4.43.30 AM (2).jpeg]

The Depth First Search Algorithm

	DFS of a graph is similar to DFS traversal of a tree. There can be several DFS traversals in a graph.This algorithm is for traversing or it can be searching tree or graph data structures. The algorithm starts with a root node ans explores as far as possible along each branch before backtracking.

	Let us understand the working of DFS with the following illustration.

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.14.55 AM (1).jpeg]
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.14.55 AM.JPEG]

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.14.54 AM.JPEG]
Now stack becomes empty, which means we have visited all the nodes and our DFS traversal ends.

Let us implement above process by C Program

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 5.04.56 AM.JPEG]

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 5.04.55 AM.JPEG]

[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-31 at 5.04.55 AM (1).jpeg]

[bookmark: _GoBack]The difference between BFS and DFS Algorithms

	BFS is a vertex based technique and it uses queue data structure whereas DFS is an edge based technique and uses stack data structure.

Conclusion

	In this paper, we discuss about the algorithms of BFS and DFS with example and with implementation. Both the algorithms are very useful and easy to understand. We can use either BFS or DFS which suits for our program

AUTHOR PROFILE

Girija.B. completed her undergraduate, post graduate, and master's degrees in philosophy in mathematics at Auxilium College in Vellore, Tamil Nadu, where she also won the university's gold medal in Ug ,PG & M.Phil.. She is currently in research on mathematical algorithms used in computer science. Before beginning her research, she held a position as an assistant professor of mathematics at Sri ArcotMahalaksmi College of Arts and Science in Arcot, Ranipet.

REFERENCES

		

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/
A. Elumalai, “Graph theory applications in computer science and engineerin”, Malaya Journal of Matematik, Vol. S, No : 4025-4027, 2000.
Serafino Cicerone, Gabriele Di Stafano, “Graph algorithms and Applications” ISBN 978-3-0365-1542-7 (Hbk), ISBN 978-3-0365-1541-0 (PDF)

			

image2.jpeg

image3.jpeg
vns [TTTET]

sse CETT T

image4.jpeg

image5.jpeg
e 0 S 5 EWICH
Quese EEZI:EI:I

image6.jpeg

image7.jpeg

image8.jpeg
Finclude <stdie.ts
alin b

Finclude <

#dsfine MAX_VERTICES

/7 This stru: ropresents s direst
77 atjscancy list represencation
typades struct Graph b

71 Yo, of vertices

bool a1 EAX_VERTGES | INAX_VER
} Geaph
1/ Gonstuctor
Graphe Dragh ozoatelint ¥)
t

Grapht i = mallos|sizeot
BV s

Sor lint 4 = 07 4 < Vi 1ee) [
for Gint 5= 0 3 < Vi gee
@ >aeil411] - talse:

1
'
zetusn ¢
)
7/ Bestructor
Vodd Grapa_destroyiGeants §) { fre
7/ Functian ta add an sdge to grap
void Grapn_addEdge(Gzazh g, dnt v
¢
s Ade w zo vis et
a-adllellnl = true

image9.jpeg
77 Wark a3t ehe vereic

Boo1 vis xeal AN VERTICES]

o (a1 D ks g o)
visiteals) + taaner

'

{7 Greste s queus tor ars
o gueus tuAX VERTICES
it Trome 10, rear «

17 Wark the cusrent o
Vistreas] s true:
Scasatreniest T

whde (tront t+ seas) |

7/ Beguese & vastex tzom @
et eonea 1
Briateisa)t
/1 9ot w1 sasacent vercic
70 vareax's
77 1€ M wdincant hus not
70 then mack 51 s "
foe Tne eacent 0305
incaaten
AE (e ondiinl laagacent
ilialadsacent]
i it

)

)

1/ pesves cote

Oraph_sdabagels. 0.
Graph-sadEage s 1.

image10.jpeg
£/ priver cade
int eain()

0
14 Crante & graph
Grapht g - Graphcreate(4):
“ph_sddEdge k. 0, 1)
Sph_addEdga(g. 0. 2
Craph addBdge k. 1) 2)
C:aph_sddEdgalg. 2. 0)
Aph_nddEdge (g, 2, 31
Geaph sddRdgs g, 3. 3)
PrABteC Fallowing is Breadth B
*(szarzing from vertex
Graph_BEE (. 2)
Ceaph deszoy)
return 0:
|
output

Following is Bresstn First Traversal (starti

2031

Time Complexity: O(1+E), where V is the number
of nades and E's the number of edges.
Augiliary Space: O(V)

image11.jpeg
Stept: ntaly stack and visited arays are
empty

=

Stk and s sy v cmpty il

Stop 2: Vit 0 and put ts acjacent nodes

which ae ot visied yet into the stack.

[Eama

Vit node and put 1 fcent nedes 1,251

image12.jpeg
Step 3: Now,Node 1 st the 1op o the stack,
S0t node 1 s pop f rom the stack and
il of s scacent nodes hich are o
vtedin th sack

[oo===

Stap :Now Node 2t he t f th stack.
s0isitnode 2 ond pop rom the stackand
putalof s acacent rodes hich are ot
Vited 16,3, 4) i th sack

[Som==P

Vit node 2 and st s st
o (3 o sk

image13.jpeg
Step 5: Now, Node 4t the top of the stack,
50 isit node 4 and pop i from the sack and.
put alof s adjacent nodes which ae ot
vsted nth stack,

P

Vit noces

Step 6 Now Node 3 at the 0p of th stac,
soviitnode 3 and pop f from the sack and
putal of s adacent nodes which ae not.
isitec inth stack,

image14.jpeg
[Oy O
#inc150e <eratoins

P N —
fat visii00]
/4 Gren stmuctuze ta stare mumber
1% Sostives ind miwarmnd
77 Rajacency matrix
Struet oraph

Tae v

int £

i

7/ Bunction <o L

ut date o goagh
errinl)

struct Graphe 0 - (struct Orsp
malloe|siseotistrust Goapt
P

peinte(Hemory Frrarin |
Zaturn UL
'

GE 1

0-5Mdi - tintosimalloct (05T,

Tor (nt k- 0.k < @i kee)
G-Aailk] - (inceimallosi(

)

for (nt u = 0: w < Qo wee)
for (imt v - 0: v < g3V

[T
3

image15.jpeg
S

)
17 88 tunceson 0
voud Sréserace o6
h

SRS

vala) o
priatei

o lnty 20}y < 0w ves)
e W
Drsio, vt

'

orsto. 11t
0

'

vosa malanl]

i

B
Bescaversaiio

image16.jpeg
Output

0134562

Time Complexity: O(V + E)
Auxiliary Space: O(V)

image1.jpeg

