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ABSTRACT
Many real life problems exhibits a connectivity structure in nature. Before, data solving techniques for including, bioinformatics, communication network, image data, wireless networks etc., are more complicated because of high computational complexity. Hence, nowadays, there are lots of graph models and these can be solved using  graph theory algorithms such as BFS, DFS, Diijkstras algorithm and so on. These algorithms are applied in data structures. This paper explains BFS and DFS algorithms with application.
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 INTRODUCTION 

		Mathematics plays an immense role in many fields, especially Graph Theory occupies an important role in the field of computer science. Graph theory is a mathematical model of pair wise relations between  objects. Graphs are the convenient to represent mathematical objects. There is a wide range of application of graph theory in computer science.

Here, we will see, the algorithms such as BFS ANS DFS, with applications.

The Breadth First Traversal Algorithm

		This algorithm with vertices is used to search a graph data structure. It starts at the root of the graph and travels all the vertices at the current depth level. The BFS for a graph is similar to BFS of a tree. The only difference is graphs contain cycles but trees are not. To avoid repeated travel of same vertices, we divide into two categories:
· Visited
· Not visited.
	First we assume that all the vertices are reachable with the starting vertex. BFS uses a queue data structure for traversal. Starting from the first vertex, all the vertices in a particular level are visited first and the vertices in the next level are visited. All the adjacent unvisited vertices are pushed into the queue, and the vertices of current level are marked visited, and popped from the queue.

	Let us understand the working algorithm of BFS with the following simple example:
Step-1:	Initially the queue and visited arrays are empty.
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Step-2: 	Push node 0 into queue and mark visited.
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Step-3:	 Remove node 0 from the front of the queue and visit the unvisited neighbors and push them into queue.
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Step-4: Remove node 1 from the front of the queueand visit the unvisited neighbours and push them into queue.
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Step-5: Remove node 2 from the queue and visist the unvisited neighbors and push them into queue.
[image: C:\Users\RANJITH DESIGAN\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\WhatsApp Image 2023-08-30 at 5.09.19 AM.JPEG]
Step-6: Remove node 3 form the queue and visit the unvisited neighbors.  As we can see that every neighbor of node 3 visited, so move to the next node that are in front of the queue.
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Step-7: Remove node 4 from the front of the queue and visit the unvisited neighbors. As we can see that neighbors of node 4 visited, so move to the next node that are in front of the queue.
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Now, queue become empty, so terminate the process of iteration.

Illustration C Program for BFS algorithm:
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The Depth First Search Algorithm

	DFS of a graph is similar to DFS traversal of a tree. There can be several DFS traversals in a graph.This algorithm is for traversing or it can be  searching tree or graph data structures. The algorithm starts with a root node ans explores as far as possible along each branch before backtracking.

	Let us understand the working of DFS with the following illustration.
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Now stack becomes empty, which means we have visited all the nodes and our DFS traversal ends.

Let us implement above process by C Program
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[bookmark: _GoBack]The difference between BFS and DFS Algorithms

	BFS is a vertex based technique and it uses queue data structure whereas DFS is an edge based technique and uses stack data structure.

Conclusion

	In this paper, we discuss about the algorithms of BFS and DFS with example and with implementation. Both the algorithms are very useful and easy to understand. We can use either BFS or DFS which suits for our program
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