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ABSTRACT 
Information and communication technology (ICT) advancement is necessary for smart cities to materialize. On top of a "smart grid" is a "smart city". One of the primary objectives of the new smart cities is to install a variety of smart systems that are beneficial to the environment and enhance the quality of life for the citizens. Electric vehicles (EVs) are being used differently in order to increase the dependability and sustainability of the transportation system. A number of issues, such as the need to provide a charging infrastructure and estimate peak loads, have emerged as EV use has grown. How difficult the situation is must be taken into account by management. These issues have received numerous inventive remedies. These rely primarily on automation.More EV drivers have emerged over time. Large-scale charging of electric vehicles has a negative effect on the electricity system. When running at full capacity, transformers may experience additional voltage fluctuations, power loss, and heat. These difficulties cannot be overcome without effective EV management. When directing electric vehicles (EVs) to charging stations, a machine-learning (ML)-based charge management system takes into account slow-charging, fast-charging, and vehicle-to-grid (V2G) technologies. Charger costs, high voltage costs, load fluctuation costs, and power loss costs are all decreased by this action. Different machine learning (ML) methods' efficacy is compared and evaluated. These methods include Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM). The outcomes indicate that LSTM
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INTRODUCTION 

The significance of electric vehicles (EVs) has increased as the car industry has evolved. Sales of EVs will increase by 40% annually to 2.1 million in 2019. With 7.3 million chargers deployed globally in 2019 and a 60% increase in the number of public charging stations added in 2019 compared to , electric vehicle (EV) chargers are now a crucial component of the world's infrastructure. Furthermore, 30% of all vehicles are anticipated to be electrified by 2030, with 43 million sales globally. This has been tremendously aided by quickly evolving technologies, such as DC-DC converters with enhanced performance.EVs must be handled appropriately as soon as feasible. The large number of EVs on the road puts tremendous strain on the distribution system because it takes a lot of energy to charge these vehicles. Demand for these vehicles is predicted to increase as new driving tactics are created to assist drivers in reducing their running expenses. With more electric vehicles on the road, more electricity is required to power their charging stations. The load curve climbs as there are more EVs on the road, placing more strain on the transformer and the rest of the distribution system. The distribution grid cannot function effectively and stably without a good management system. Apple Inc. has created an app for electric automobiles. However, neither the demands on the electric vehicle (EV) charging infrastructure nor its disadvantages are taken into account. The creation of smart cities is tremendously aided by the advancement of ICT. An ICT-based structure is referred to as a "smart city." In order to deal with the numerous issues that urban surroundings bring up, it is utilized to encourage and create sustainable behaviors. An intelligent network of devices and items that are connected to one another through wireless and cloud technology makes up a smart city. In order to help citizens, towns, and corporations make the best decisions possible to raise living standards, the Internet of Things manages and analyzes the data it receives in real time.Lowering living costs and fostering sustainability are two benefits of integrating technology and data with a city's physical infrastructure. Connected automobiles can readily access parking meters and electric vehicle (EV) charging facilities. The physical infrastructure and ICT are combined in a smart city to offer advantages including increased mobility, comfort, air and water quality, and energy conservation. Smart buildings in a smart city will use a variety of sensors, motors, centralized units, networks, interfaces, and intelligent metering infrastructure.To improve tourist and resident convenience and efficiency, governmental entities are attempting to use cellular and Low Power Wide Area technologies connected to the infrastructure. Smart cities must integrate a smart grid concept into their energy infrastructure in order to reduce energy use. In all grid nodes, an intelligent metering system establishes two-way communication.Customers can improve the grid's dependability and energy efficiency by taking active or passive measures. By making it easier for EVs and renewable energy sources to be effectively integrated into the grid, the smart grid can also help reduce environmental pollution. Thanks to smart city technologies, governmental organizations might engage with the public, build infrastructure, and monitor operations and development. Smart cities leverage IoT technology to improve operations, service delivery, and public engagement. Smart cities are the best way to alleviate population pressure in both emerging and wealthy countries, according to recent research. Traffic jams, housing, pollution, government, electricity supply, etc. ICT is used to increase productivity, communicate with municipal or urban services, and improve the goods and services offered by local government. improved government-citizen relations save cost.The purpose of this literature review is to provide policymakers and smart city planners with information on how to consider community needs and well-being when making plans or choices. The drop in worldwide CO2 emissions and the rising cost of carbon fuels provide an explanation for the demand for eco-friendly vehicle technologies. Modern electrical vehicles (EVs), as opposed to conventional automobiles, will improve air quality by lowering carbon emissions. If electric vehicles are properly incorporated, the primary problems caused by utilizing conventional automobiles will be resolved. Electricity demand on the grid has not yet been significantly impacted by the proliferation of electric vehicles. In the future, electric vehicles will be more accessible and less expensive.They will thus have a significant influence on how the smart grid functions and how much energy is required. Intelligent management solutions are necessary to reduce the faults associated with power allocation and electricity flow across the smart grid. The distribution grid was optimized while billing expenses were decreased by comparing the dependability and performance of several ML approaches.The machine learning (ML) methods employed in this paper (LSTM) include Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Deep Neural Networks (DNN), and Long Short-Term Memory.

ELECTRIC VEHICLE ENABLING TECHNOLOGIES

Electric vehicle charging systems has the following technologies:

Wireless Sensor Networks (WSN)

WSN consists of number of sensors or nodes, that are connected together to track the various sort of data.

On-site energy resources and smart energy management
Smart energy management software makes the best use of these distributed energy resources, which are often solar panels and battery banks, to maximize the usage of renewable energy while minimizing operational expenses and demand charges.
OCPP 2.0.1
New and enhanced features for device administration, transaction processing, credit card payments, security, smart charging capabilities, support for display and messaging, and OCPP extensibility are included in the most recent version, OCPP 2.0.1.
Wireless EV charging moves to early adoption and roadway trials
Wireless charging can operate in two different ways. One method is electromagnetic inductive charging, in which the EV parks over a charging pad that transfers energy to the EV battery via electromagnetic waves.The other is dynamic in-road wireless charging, which uses devices embedded in the roadway that supplies electricity to the EV as it is driving.
IOT Technology
Data from EV charging stations may be continuously monitored and analyzed thanks to IoT technology.
APPLICATIONS OF MACHINE LEARNING METHODS IN SUSTAINABLE ENVIRONMENT
Some of such applications are listed below to enhance sustainable environmentgrowth:

    Hybrid Energy Storage System
A hybrid energy storage system (HESS) is a type of energy storage that may accommodate demanding driving circumstances by combining two or more energy storage sources. HESSs must have an appropriate energy management method and topology given their function in order to ensure well-coordinated power distribution across various energy sources. By deciding how well electricity is distributed among various components, this also has an impact on the lifespan of HESSs and the performance, efficiency, and cost-effectiveness of the larger system. The two most frequently studied areas in HESS research are topologies and energy management systems. Different energy management systems could differ significantly from one another since different topologies use various power sources. Numerous fresh investigations on the topology and energy management system have been carried out recently.
Application of Reinforcement Learning in HESS Energy Management

The sophisticated reinforcement learning techniques utilized for energy management in HESSs are summarized in this section. The first section is devoted to early attempts to employ straightforward algorithms in this field. The section then reviews current developments in the development of hybrid algorithms and the integration of several algorithms for HESS energy management.
Managed Charging of Electric Vehicle
Electric vehicles are currently successfully using frequency droop control, one of the most used frequency control techniques. Regulating the output of generators connected to the primary power grid is now the principal method for controlling the frequency. Electric vehicles are a fantastic replacement for conventional power plants as they are phased out because their batteries may be charged or discharged in response to frequency deviation alarms. In light of this, we look into frequency management in a power grid model with loads, conventional producers, and a sizeable number of EVs.On the one hand, the control procedures guarantee the main grid's stable power balance and frequency management. On the other hand, these methods can accommodate a variety of EV charging requirements. The techniques that are offered are made to lower battery-powered equipment failure rates. The EV literature, in contrast, usually focuses on determining the appropriate charge level. The effectiveness of the solutions is then compared to other cutting-edge V2G control systems. The results of numerical studies utilizing a precise model of the power grid demonstrate that the suggested methods work effectively in real-world operating situations.
Machine Learning Techniques
SVM may be applied to issues involving more than two classes. The algorithm was created so that, by utilizing different normalization techniques, it may be utilized to handle problems involving several categories. The approach passed rigorous testing, and it was found to work well with a variety of normalization methods. The accuracy of its multiclass categorization was also very strong and also investigated the use of DNN for categorizing multi-type photos. Because of this, the proposed algorithm has a wide range of applications, including for classes that are notoriously difficult to label and are regularly misclassified by existing ML techniques utilizing a DNN-improved class identification also looked into the algorithm's ability to predict trip times. Its regressive forecasts were the most precise and trustworthy.
TYPES OF AUTOMOTIVE SENSORS AND ACTUATORS USED IN ELECTRIC VEHICLES:
There are various kinds of sensors used in automotive or electric vehicles to read the real-time signals and take necessary actions to manage in-vehicle functions such as ignition time, ABS, speed control, etc. The types of automotive sensors and actuators are:
1. Engine speed sensor

2. Wheel speed sensor

3. Vehicle speed sensor

4. Throttle position sensor

5. Temperature sensor

6. Mass airflow (MAF) rate sensor

7. Exhaust gas oxygen concentration sensor

8. Crankshaft angular position/RPM sensor

9. Manifold Absolute Pressure (MAP) sensor
10. Accelerometer (knock sensors)

These are the commonly used sensors. There may be other sensors based on the automotive application. All these sensors are associated with the power trains.

Fig.1 : AUTOMOTIVE SENSORS AND ACTUATORS USED IN ELECTRIC VEHICLES
01. ENGINE SPEED SENSOR
An engine speed sensor is needed to provide input for the electronic controller for several functions. The reluctance sensor can be used to measure engine speed. The four tabs will pass through the sensing coil once for each crankshaft revolution. We count the pulses of voltage from the sensing coil in one minute and divide by four, we will know the engine speed in revolutions per minute (RPM). An electronic circuit is used to start and stop the counter circuit. The counter can be used to count the number of pulses through a special signal processing circuit.
02. WHEEL SPEED SENSOR
Used in ABS, Odometer. Contactless – Magnetic or optical method. Magnetic method – Hall effect. The sensor provides square wave output whose frequency is proportional to the wheel speed. Wheel-speed sensor using Hall technology incorporates the Hall-sensing element, signal amplifier, and signal processing all on a single chip. It consists of a transistor whose base is excited by the magnetic effect. The circuit is exposed to the changing magnetic field of the rotating encoder, which is either a multipole or a steel wheel. In the case of a steel wheel application, a magnet placed inside the sensor is needed. Changing the magnetic field around the Hall element induces an alternating voltage across the same.The alternating voltage is proportional to the changing magnetic field. The sinusoidal voltage is processed by the circuit into an alternating digital output signal. The frequency of the current pulses is directly proportional to the wheel speed. Detection of very low speed nearly up to stand-still (0.1km/h) is possible.
03. VEHICLE SPEED SENSOR
The ECM (Engine control module) uses this information to modify engine functions such as ignition timing, air/fuel ratio, transmission shift points, and to initiate diagnostic routines. Used in ABS (wheel speed sensor), speedometer, and cruise control system. The Vehicle Speed sensor or VSS measures transmission/transaxle output. The Vehicle Speed sensor is typically located at the transmission or transaxle. The speed sensor can be implemented magnetically or optically.

04. THROTTLE POSITION SENSOR
A variable that must be measured for electronic engine control is the throttle plate angular position. The throttle plate is linked mechanically to the accelerator pedal. The throttle plate restricts the airflow into the intake manifold When the driver depresses the accelerator pedal, this linkage causes the throttle plate angle to increase, allowing more air to enter the engine and thereby increasing engine power. Most throttle angle sensors are essentially potentiometers. This potentiometer can be used to measure any angular rotation, in particular the throttle angle. The only disadvantage to the potentiometer for automotive applications is its analog output. For digital engine control, the voltage v(a) must be converted to digital format using an analog-to-digital converter.
05. TEMPERATURE SENSOR
Temperature is an important parameter throughout the automotive system. In an electronic fuel control system, it is vital to know the temperature of the coolant, the temperature of the inlet air, and the temperature of the exhaust gas oxygen sensor.
06. AIR FLOW RATE SENSOR
The correct operation of an electronically controlled engine requires a measurement of the mass flow rate of air (Rm) into the engine. This requires a sensor that can sense the airflow rate into the intake manifold of the engine. The sensor is normally mounted as part of the air cleaner assembly. Rhw is a heated filament resistor. The resistance of the filament changes as the temperature of the filament changes. This is used in Wheatstone’s network. The output of this n/w is given to a differential amplifier. The resulting analog output is fed to the V/F converter. The film element is electrically heated to a constant temperature above that of the inlet air. As air flows across the hot film, heat is carried away from the film by the moving air. The amount of heat carried away varies in proportion to the mass flow rate of the air. The heat lost by the film to the air tends to cause the resistance of the film to vary, which unbalances the bridge circuit, thereby producing an input voltage to the amplifier. This voltage is given to a V/F converter – a variable-frequency oscillator whose frequency is proportional to the input voltage.
07. EXHAUST GAS OXYGEN CONCENTRATION SENSOR
Feedback control for fuel delivery is based on maintaining the air/fuel ratio at stoichiometry (i.e., 14.7:1 – torque reaches a maximum for this ratio). In order to burn completely 1 kg of fuel, we need 14.7 kg of air. The amount of oxygen in the exhaust gas is used as an indirect measurement of the air/fuel ratio. Also known as lambda sensor.
Equivalence ratio λ = (air/fuel)/(air/fuel at stoichiometry)
The mixture at stoichiometry (ideal) when lambda=1

The mixture is lean (lean fuel, more air) if lambda > 1

The mixture is rich (more fuel, lean air) if lambda < 1

Two types of sensors: –

· zirconium dioxide (ZrO2 ) – titanium dioxide (TiO2 ).

· zirconium dioxide is the most commonly used.

· The EGO sensor consists of a thimble-shaped section of ZrO2 with thin platinum electrodes on the inside and outside of the ZrO2. The inside electrode is exposed to air, and the outside electrode is exposed to exhaust gas through a porous protective overcoat. Oxygen ions have two excess electrons and each electron has a negative charge; thus, oxygen ions are negatively charged.
· The ZrO2 has a tendency to attract oxygen ions, which accumulate on the ZrO2 surface just inside the platinum electrodes. The platinum plate on the air reference side (inside) of the ZrO2 is exposed to a much higher concentration of oxygen ions than the exhaust gas side.
· The air reference side becomes electrically more negative than the exhaust gas side. Therefore, an electric field exists across the ZrO2 material, and a voltage, Vo, results. The polarity of this voltage is positive on the exhaust gas side and negative on the air reference side of the ZrO2. The magnitude of this voltage depends on the concentration of oxygen in the exhaust gas and on the sensor temperature.
· The quantity of oxygen in the exhaust gas is represented by the oxygen partial pressure. (proportion of the total exhaust gas pressure/atmospheric pressure that is due to the quantity of oxygen.)
EGO partial pressure
· for rich mixture is 10–16 to 10–32 of atmospheric pressure.
· for lean mixture is ~10–2 of atmospheric pressure
Consequently, for a rich mixture, there is a relatively low oxygen concentration in the exhaust and a higher EGO sensor output. For a lean mixture, the exhaust gas oxygen concentration is relatively high resulting in a relatively low EGO sensor output. For a fully warmed EGO sensor, the output voltage is about 1 volt for a rich mixture and about .1 volt for a lean mixture.
08. CRANKSHAFT ANGULAR POSITION/RPM SENSOR
Crankshaft position measured directly using magnetic phenomena. This sensor consists of a permanent magnet with a coil of wire wound around it. A steel disk that is mounted on the crankshaft (usually in front of the engine) has tabs that pass between the pole pieces of this magnet. This sensor is of the magnetic reluctance type and is based on the concept of a magnetic circuit. Reluctance – opposition to magnetic flux. A magnetic circuit is a closed path through a magnetic material. The magnetic circuit here is the closed path through the magnet material and across the gap between the pole pieces. When a tab on the steel disk passes through the gap, the flow of the magnetic flux changes significantly. The reluctance of a magnetic circuit is inversely proportional to the magnetic permeability of the material along the path. The magnetic permeability of steel is a few thousand times larger than air; therefore, the reluctance of steel is much lower than air. The steel has a lower reluctance than air, and the “flow” of magnetic flux increases to a relatively large value. This rate of change of flux induces a voltage across the coil. A peak in voltage indicates a tab crossing the pole piece as shown.
09. MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR
The MAP sensor measures the absolute pressure inside the intake manifold of the engine. MAP Sensor- Silicon diaphragm diffused strain gauge. Piezoresistivity occurs in certain semiconductors so that the actual resistivity (a property of the material) changes in proportion to the strain (fractional change in length). The strain induced in each resistor is proportional to the diaphragm deflection, which, in turn, is proportional to the pressure on the outside surface of the diaphragm. This pressure is the manifold pressure. Wheatstone bridge is used for measurement of strain.
10. ACCELEROMETER (KNOCK SENSORS)
Another sensor having application in closed-loop engine control is the so-called knock sensor. This sensor is employed in closed-loop ignition timing to prevent undesirable knock. Knock can be described generally as a rapid rise in cylinder pressure during combustion. It occurs most commonly with high manifold pressure and excessive spark advance. Knocking has to be detected and prevented so as to
minimize engine and valve damage. One way of controlling knocking is to sense when knocking begins and then retard the ignition until the knocking stops. A knock sensor using magnetostriction to sense or detect knock. Other sensors use piezoelectric crystals or the piezo resistance of a doped silicon semiconductor. Magnetostriction is a phenomenon whereby the magnetic properties (magnetic susceptibility or permeability) of a ferromagnetic material change depending on stress. The forces associated with knock cylinder pressure are transmitted through the mounting frame to the magnetostrictive rods. When sensing knock, the magnetostrictive rods, which are in a magnetic field, change the flux field in the coil due to knock-induced forces. This change in flux produces a voltage change in the coil. This voltage is used to sense excessive knock. Possible measures to overcome knocking are retarding the timing, adding fuel, reducing boost pressure, etc. The frequency of knock is specific and depends on the bore (piston) diameter of the engine. DSPs improve the SNR (signal-to-noise ratio) to detect knock. Consists of a thermistor mounted in a housing that is designed to be inserted into the coolant stream. This housing is typically threaded with pipe threads that seal the assembly against coolant leakage. A thermistor is made of semiconductor material whose resistance varies inversely with temperature. For example, at –40˚C a typical coolant sensor has a resistance of 100,000 ohms. The resistance decreases to about 70,000 ohms at 130˚C.
TYPES OF ELECTRIC VEHICLE
There are three type of electric vehicle; 
a) Battery Electric Vehicle (BEV) 
b) Hybrid Electric Vehicle (HEV) 
c) Range Extended Electric Vehicle
a) Battery Electric vehicle consist of an electric motor which is powered by battery connected                                to it. Electric motor is used for the movement in this type of vehicle. It does not produce emission. In traffic, BEV delivers high torque to the wheels and smoother acceleration than Internal combustion engine. It is noiseless while operating motor. But on other side there are some disadvantages like, high production cost, limited top speed, more recharge time required.
b) Hybrid electric vehicle is a combination of electric motor and new traditional Internal combustion engine. This vehicle can work with both electric and gasoline powered vehicle. When electric motor stop giving power then switch into Fuel mode. In HEV low speed mechanical electric motor used specifically in city traffic. When vehicle use electric power, there is no emission.
c) Range extended electric vehicle mostly designed to run by the battery but have gasoline generator to recharge battery when charging is low.
ADVANTAGES OF ELECTRIC VEHICLE (EV)
1. No fuel, No pollution. 

2. It required less maintenance. 

3. Total operation is noise free. 

4. It generates high starting torque. 

5. We can charge at home.
6. Less Running cost than gasoline powered vehicle. 

7. It helps to save fossil fuels.

DISADVANTAGES OF ELECTRIC VEHICLE (EV) 
1. It is quite Expensive. 

2. Not for long range travelling because availability of less number of electric charging power station. 

3. It requires more time for recharging the battery
MATHEMATICAL REPRESENTATION FOR ELECTRIC VEHICLE MODELING 


For modeling purposes, the recommended Electric Vehicles  is discussed. The drive consists of six components: the electrical motor, power electronics, battery, motor controller, battery controller and vehicle interface. The vehicle interface provides the interface for the sensors and controls which communicate with the motor controller and battery controller. The motor controller normally controls the power supplied to the motor, while the battery controller controls the power from the battery. The battery is for energy storage, usually lithium-ion cells which provide more than 200 V and high current to the power electronics. The power electronics manipulate the voltage, current and frequency provided to suit the motor requirements. By considering both directions of operation (clockwise and anti-clockwise) and both modes (acceleration and deceleration), the motor’s operation can be described in four quadrants of operation. This can be visualized by plotting the motor speed and the applied torque on the x–y axis. The drive is in motoring mode when the speed and torque values having the same polarity (1st Quadrant & 3rd Quadrant), and in regenerating mode when the speed and torque values differ in polarity (2nd Quadrant & 4th Quadrant). In the 1st Quadrant, with both positive polarities, the motor moves forward, but in the 3rd Quadrant, the motor moves backward. In the 2nd Quadrant, when the torque is positive and speed is negative, the motor is decelerating returning energy to the battery in reverse braking, while in the 4th Quadrant, the energy returns to the battery during forward braking. The battery energy is decreased during motoring mode, but is increased in regenerating mode during regenerative braking when the motor is operating as a generator. To model an EV, all mathematical equations to represent each component in the EV drive train were determined. For a DC motor, the torque developed in the motor, Td is proportional to the armature current, Ia; 

    



Td = Km · Ia                                                                (1) 

where, Km is the motor constant depending on its winding construction. 

Voltage developed in the motor, Vd is proportional to armature speed, ωd;





Vd = Km · ωd                                                              (2)

Voltage at the high side of the motor (terminal voltage), 

VH is given by; 




VH = IH · Ra + LH · di(t)/dt + Vd                                            (3) 

where, IH is the current at the high side (terminal current), Ra is the armature resistance value, and LH is the inductor value at the high side. By assuming that there is no friction loss and no inertia loss, the electrical torque developed, Td, is equal to the output mechanical torque, Tmech. Hence, the developed electrical power is equal to the developed mechanical power. A simple motor controller is used to maintain the input power equal to the output power. The controller is assumed to be ideal with zero loss and no time lag. High side voltage (input), 




VH = K · VL                                                                              (4) 

High side current (input), 




IH = (1/K) · IL                                                                           (5)

where K is the controller gain value, VL is voltage at the low side (output), and IL is the current at the low side (output). The battery is modeled as the voltage source, EB and internal power loss in the battery resistance, RA. 




VL = IL · RA + EB                                                                   (6) 

The required battery’s internal voltage is calculated using the current and voltage from the motor controller. The difference between the calculated EB (EB (calculated)) and the actual EB (EB (actual)) represents the battery voltage error, BErr to be used by the P-I controller for gain adjustment. 




BErr = EB (actual) - EB (calculated)                                        (7) 

The (P-I controller employs the values of the proportional gain, KP and integral gain, KI to compute the motor controller’s, K value. 




K = ( KP + s·KI ) · BErr                                                            (8) 

In the drive cycle the road was modeled in the computer simulation to help reduced the expensive on-road test . For the driving test and simulation purposes, the vehicle speed values were established for a drive cycle of 100 s. Normally, the torque value is acquired from the speed value and the vehicle dynamics. However, since the vehicle dynamics are not included in the model, it is assumed that the torque values are known for the simulation. The speed and torque data were respectively added into the drive cycle subsystem using look-up tables. 

CONCLUSION


The global adoption of smart cities (ICT) depends on the advancement of information and communication technology. A smart grid is necessary in any growing metropolis. To cut greenhouse gas emissions and fight climate change, businesses and government agencies are supporting the usage of electric vehicles (EVs). Due to their increased prevalence in modern, sophisticated power networks, electric vehicles have caused a number of previously unanticipated issues. Implementing technology that saves money to manage energy supply and demand as well as developing more effective methods of customer billing are two major problems. Many potential solutions have been put forward for this problem. This necessitates a detailed analysis of charging practices, industry standards, and various data-driven models and machine-learning methodologies to enable the seamless integration of electric vehicles into the smart grid. We look at the most current innovations in energy management services and apps based on smart grids as well as the rising popularity of electric vehicles. This means that those who have a say in how infrastructure is developed must take community health, public safety, access to electricity and information, the supply of services, and other factors into account.The creation of a smart city and related technologies will be successful if all relevant parties and essential factors are taken into account. As technology has evolved toward long-term solutions, challenges and possibilities have appeared. We discuss the conductive and inductive methods of charging electric vehicles. There is an overview of the most significant research that have been conducted on electric vehicles, connector hybrid electric vehicle kinds, charging rates, and battery capacity. This essay examines recent developments in both fixed and portable wireless charging. International standards exist for wirelessly charging electric vehicles, although various wireless charging technologies use a variety of frequencies. To integrate the smart grid, the effectiveness of modern machine learning algorithms and robotic models is being evaluated.
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