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  Chapter   1 

Introduction 

1.1 Introduction 

Phishing refers to a malicious cyber-security attack whereby deceptive messages are sent 

by malicious actors impersonating trusted entities. These messages skillfully manipulate 

unsuspecting users, inducing them to take detrimental actions, such as unwittingly 

downloading or clicking on malicious files, or divulging sensitive information. The crafty 

nature of phishing attacks involves the utilization of various techniques, including link 

manipulation, filter evasion, website forgery, and covert redirects. The escalating 

frequency of phishing attacks has emerged as a grave concern in recent times. A common 

modus operandi employed by attackers entails the creation of deceptive websites that 

closely mimic the names and appearances of legitimate counterparts, thereby enticing 

users to access these fraudulent platforms. 

Phishing attacks have become a significant concern owing to an increase in their 

numbers. A typical phishing attack technique involves using a phishing website, where 

the attacker lures users to access fake websites by imitating the names and appearances of 

legitimate websites, such as eBay, Facebook, and Amazon. It is difficult for the average 

person to distinguish phishing websites from normal websites because phishing websites 

appear similar to the websites they imitate. In many cases, users do not check the entire 

website URL, and, once they visit a phishing website, the attacker can access sensitive 

and personal information. With the growth in the field of e-commerce, phishing attack 

and cybercrimes are rapidly growing. Attackers use websites, emails, and malware to 

conduct phishing attacks. 

Regrettably, majority of the phishing crimes go unreported, with the true extent of the 

problem often underestimated. Scholars and experts actively engage in debates and put 

forth a range of potential measures, encompassing both human-centric educational 

initiatives and technological solutions. Among the notable anti-phishing approaches are 

strategies focused on prevention, user training, and detection. Presently, Machine 

Learning models exhibit considerable promise as effective tools for detecting phishing 

attempts, showcasing their potential in the ongoing battle against this pervasive threat. 
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This project proposes developing a web browser plugin using machine learning approach 

to detect phishing websites with a combination of well trained ensemble stacking model 

of advanced classifiers such as Cat boost & Light GBM and Random Forest to detect 

phishing website URLs & develop another defense layer wherein the website content 

analysis is performed to finally classify it as either original or a fake copy with analysis 

report and to catch malicious figures and contents that are found even on legitimate 

websites. This can effectively shield the users from malicious attackers. This design also 

makes use of a NoSQL Database namely MongoDB to store classified phishy website 

URLs so that when the same is encountered again, the response time required would be 

reduced. 

1.2 Problem Description 

Phishing attacks have become a significant concern in the rapidly growing field of e-

commerce and cybercrime. Users often struggle to distinguish phishing websites from 

legitimate ones, resulting in compromised security and the potential exposure of sensit ive 

information. Current anti-phishing solutions rely on human-based education and technical 

approaches, but there is a need for more effective detection mechanisms. This project 

aims to develop a web browser plugin that utilizes a machine learning approach to detect 

phishing websites. By leveraging a combination of well-trained ensemble stacking 

models, including CatBoost, Light GBM, and Random Forest, the plugin will analyze 

website URLs to identify potential phishing attempts. Additionally, the project will 

implement a website content analysis module, providing users with a comprehensive 

analysis report. The plugin will also incorporate MongoDB database, to store and 

efficiently retrieve classified phishing website URLs, reducing response time when 

encountering previously identified threats. Ultimately, this project seeks to provide an 

effective defense layer against phishing attacks, safeguarding users from malicious actors 

and enhancing their overall online security. 
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Chapter 2 

Literature Review 

2.1 Literature Survey 

Researchers have applied phishing website characteristics to undertake substantial anti-

phishing research. Black and Whitelist approach, heuristics, visual similarity and the most 

modern approach of machine learning are some of the phishing detection techniques. 

In a paper titled “Phishing website detection based on multidimensional features driven 

by deep learning” by the trio Peng Yang, G. Zhao & Peng Zeng [1] – IEEE 2019, they 

proposed a model where in first step, character sequence features of the given URL are 

extracted and used for quick classification by deep learning model of Convolutional 

Neural Network and Long Short Term Memory (CNN + LSTM model). In the next step, 

URL statistical features, webpage code features & classification result of deep learning 

are combined into multidimensional features. 

In a paper titled “Phishpedia: A hybrid Deep Learning approach to visually identify 

phishing webpages” [2] Yun Lin, Ruofan Liu & Dinil Mon Divakaran – IEEE 2021, they 

proposed a model to visually identify Phishing Webpages called Phishpedia. The model 

takes as input a URL and a target brand list describing legitimate brand logos and their 

web domains. It then generates a phishing target as output. It used faster-RCNN model 

and PyTorch framework. 

In a paper titled “Phishing website detection using diverse ML algorithms” [3] A. Zamir 

& N. Yousaf – IEEE 2021, they proposed an approach where the features of phishing data 

set are to be analyzed. Then, diverse machine learning algorithms like Random Forest, 

Neural Network, Bagging, K-Nearest Neighbor are applied on features. Afterwards, two 

stacking models: Stacking1 (RF þ NN þ Bagging) and Stacking2 (kNN þ RF þ Bagging) 

are applied by combining highest scoring classifiers to improve the classification 

accuracy. 

In a paper titled “Phishing website detection based on Convolutional Neural Network 

(CNN) & Random Forest (RF) ensemble learning” [4] R. Yang, K. Zheng & Bin Wu – 

IEEE 2021, they proposed phishing website detection method based on character 

embedding, CNN, and Random Forest. Here the URL data is transformed into a character 
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vector. Then CNN network is trained using the transformed URL data. After the model is 

trained, URL features are extracted & then the features extracted from different network 

layers are classified using Random Forest. 

In a paper titled “An effective & secure mechanism for phishing attack detection using 

ML approach” [5] by J. Visumathi, Miroslav Mahdal and Jose Anand – IEEE 2022, they 

presented detailed comparative analysis using ML classifiers. The algorithms used for 

ML approach were Support Vector Machine, Random Forest & Neural Network 

separately for classification of URL features. Neural Network was found to be having 

95.18% accuracy & is selected as best method. 

2.2 Comparative Analysis of the Related Work 

The table 2.1 discusses the comparative analysis of the current systems in light of the 

suggested proposal. 

Table 2.1 Comparative Analysis 

Sl. 

No 

Author(s) Algorithms/Techniques Performance 

Measures 

1. Peng Yang, G. Zhao and 

Peng Zeng 

Convolutional Neural Network 

and Long Short Term Memory 

Model 

Accuracy 

2. Yun Lin, Ruofan Liu 

and Dinil Mon 

Divakaran 

faster-RCNN model and PyTorch 

framework 

Accuracy 

3. A. Zamir and N. Yousaf Random Forest, Neural Network, 

Bagging, K-Nearest Neighbor 

Accuracy 

4. R. Yang, K. Zheng and 

Bin Wu 

Convolutional Neural Network 

and Random Forest 

Accuracy 

5. J. Visumathi, Miroslav 

Mahdal and Jose Anand 

Support Vector Machine, Random 

Forest & Neural Network 

Accuracy 
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2.3 Summary  

These were the research papers that we studied to gain a better understanding of the 

problem. Machine learning classification algorithms are more accurate compared to the 

traditional techniques when it comes to detecting phishing websites. Hence, we chose to 

analyze advanced classifiers like Random Forest, LightGBM, Cat Boost algorithms and 

form their ensemble model and implement the prediction model using the best and most 

efficient algorithm which is the ensemble model in the project.  
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Chapter 3          

Problem Formulation 

3.1 Problem Statement 
 

Phishing, a formidable cyber threat, inflicts substantial financial losses amounting to 

hundreds of millions of dollars annually while also causing numerous data breaches. The 

escalation in the prevalence of phishing attacks has sparked significant concern. These 

attacks are not only widely utilized but also exceptionally effective and damaging. 

Perpetrators employ sophisticated tactics to deceive users into unwittingly disclosing their 

confidential information, including passwords and credit card details. A typical method 

involves the creation of phishing websites that meticulously imitate the names and visual 

identities of legitimate online platforms like eBay, Facebook, and Amazon. Regrettably, 

discerning individuals find it arduous to differentiate between genuine websites and their 

fraudulent counterparts due to the striking similarities meticulously engineered by cyber 

criminals. 

In the recent years, cyber criminals delivered a wave of cyber attacks that were not just 

highly coordinated, but far more frequent and advanced than ever before seen. Simple 

endpoint attacks became complex, multi-stage operations. Ransomware attacks hit small 

businesses and huge corporations alike. Cryptomining malware attacks gave cyber 

criminals an easy foothold into company networks. 2022 was a year of massive data 

leaks, expensive ransomware payouts, and a vast, new, complicated threat landscape. And 

it was a year that saw cyber criminals up their threat game in a big way. Despite the 

widespread occurrence and severe consequences of phishing attacks, they often go 

underreported. This lack of reporting further complicates efforts to combat this form of 

cybercrime effectively. 

Therefore, there is an urgent need to develop robust and efficient methods for detecting 

phishing websites, enabling proactive defense against this pervasive threat. To address 

this problem, a comprehensive approach is required to accurately identify and distinguish 

phishing websites from legitimate ones. This entails leveraging advanced technologies, 

such as machine learning, data analytics, and website analysis, to detect subtle indicators 
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and patterns that differentiate phishing sites from genuine platforms. By developing 

effective detection mechanisms, individuals and organizations can better protect 

themselves against phishing attacks, mitigating the financial and reputational damages 

associated with such incidents 

3.2 Objectives of the Present Study 

The objectives of the proposed project are as follows:  

1. To train the ML Classifier models like Random Forest, Cat Boost, Light GBM 

and their ensemble model using the datasets of phishy & legitimate websites.. 

2. To run comparative analysis by calculating accuracy of each training model to 

know the best suitable model for phishing website detection. 

3. To create a phishing detection system using the best suitable model. 

4. To develop an interactive web browser plug-in for the real-time detection & 

blocking of Phishing website. 

3.3 Summary  

Utilizing machine learning techniques represents the optimal solution for detection of 

phishing websites. These advanced classification algorithms outperform traditional 

methods of identifying fraudulent sites. The development of a robust system for more 

accurate detection holds tremendous value for both IT professionals and individuals at 

risk. By promptly alerting users to the presence of phishing websites, this technology 

empowers them to take immediate preventive measures, such as avoiding interaction with 

malicious content and safeguarding their sensitive information. Such proactive actions 

can effectively impede the propagation of cyber threats and enhance overall 

cybersecurity. 
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Chapter 4           

Requirements and Methodology 

4.1 Hardware Requirements  
 

The hardware requirements for the proposed project are depicted in Table 4.1. 

 

Table 4.1: Hardware requirements 

Sl. No Hardware/Equipment Specification 

1. Graphics Card Intel 621 Graphics card or 2GB 

2. RAM 4GB or above 

 

4.2 Software Requirements  

The software requirements for the proposed project are depicted in Table 4.2. 

Table 4.2: Software requirements 

Sl. No Software Specification 

1. Anaconda Anaconda 64 bit 

2. Python Python 3 and above 

3. Framework Flask 

4. MongoDB Database MongoDB 5 and above 

5. Google Chrome web browser Version 108 and above 
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4.3 Methodology Used  

The proposed phishing detection system is implemented using the following steps: 

 

1) Data Acquisition & Preprocessing: This step involves collection of datasets of 

phishy and legitimate websites from open-source platforms like Kaggle and then 

preprocessing of data. 

 

2) Database Creation: This process follows blacklist methodology of phishing 

detection in which database containing blacklist of illegal websites is created. Any 

phishy website detected by our model will be added to blacklist database so that when 

the user encounters same website, the site is immediately blocked with faster response 

time. 

 

3) Training of URL classifier model: This involves selecting various classifier 

algorithms and training them using URL Features, running a comparative analysis of 

performance and choosing best suited model. We test various algorithms like Random 

Forest, CatBoost, Light GBM and their ensemble model, train and analyze the 

performance. Finally the best suited model which is the ensemble model is chosen. 

 

4) Developing Website content analysis module: Even after classification of website 

as legitimate, there is a possibility that a legitimate website may be housing unwanted 

images, icons and pop-ups. Hence a website content analysis is which provides user 

with information regarding presence of suspicious elements. 

 

5) Extraction of URL Features & Output Prediction: The user provides URL of the 

required website as input. Relevant features are extracted from this URL and a 

dataframe is created. The ensemble model takes the extracted features of the given 

website to predict whether the URL is suspicious or not. If the URL is found to be 

suspicious then the user is warned and the blacklist database will be updated 

automatically. 
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Chapter 5 

System Design 

5.1 Architecture of the Proposed System  

Figure 5.1 shows the architecture of the proposed system. 

 

Figure 5.1: Architecture of the proposed system 

The first step is to collect, clean and pre-process the data set. The data set is then trained 

using the ML classification algorithms Random Forest, Cat Boost, LightGBM and their 

ensemble stacking model. The accuracy is calculated for each model and the most 

accurate model will be used to implement the web browser plugin. A MongoDB blacklist 

consisting of suspicious URLs is created. A feature extraction code to acquire feature 

values corresponding to the dataset used is developed using selected model. Similarly a 

website content analyzer code is developed. After integrating the various components of 

the project – Prediction model, website content analyzer and blacklist, it is deployed as 

the final plugin application. 
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5.2 System Flowchart  

A system flowchart is a way of depicting how data flows in a system and how decisions 

are made to control events. Figure 5.2 depicts the system flowchart. 

 

Figure 5.2: System Flowchart  

The raw dataset must be loaded, cleaned, and preprocessed. The dataframe is created with 

the selected features. The prediction model is created using Ensemble stacking model of 

Random Forest, Cat Boost and Light GBM. This model classifies the website into Phishy 

and legitimate. 
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  Chapter 6 

Implementation 

6.1 Pseudocode 

Algorithm: Ensemble Stacking Model for Phishing Website Detection. 

Input: URL of websites which could be phishy or legitimate. 

Output: A prediction model predicting legitimacy of website. 

1. Load the dataset and extract the features into the variable x. Extract the target 

feature into the variable y. 

2. Split the data into training and testing sets. Assign 80% of the data to the training 

set and 20% to the testing set. Set the random_state parameter to 42 for 

reproducibility. 

3. Create the base models: 

a. Initialize a random forest and assign it to the variable rf. 

b. Initialize a CatBoost classifier and assign it to the variable cat. 

c. Initialize an LGBM classifier and assign it to the variable lgbm. 

4. Create the voting classifier: 

a. Create a list of tuples called estimators, where each tuple consists of a 

string identifier and a corresponding base model. 

b. Initialize a stacking classifier with the estimators and the final_estimator 

set to lgbm. Assign it to the variable stack_model. 

5. Fit the stack_model and use it for predicting legitimacy of websites by taking 

URL input and extracting URL features, subsequently classifying the URL into 

phishy or legitimate. 

  

Dataset Creation using feature importance graph 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

#Reading the csv file and storing it in a dataframe 

data = pd.read_csv("dataset_phishing.csv") 

print(data) 
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#Viewing the statistical details of the data 

print(data.describe()) 

#Determining the datatypes of data in each column 

print(data.dtypes) 

#Total null values in the dataset 

print(data.isnull().sum()) 

sns.heatmap(data.isnull()) 

plt.show() 

 

# Creating a new dataframe with selected columns 

df = 

pd.DataFrame(data,columns=['url','length_url','ip','nb_dots','nb_hyphens','nb_at','nb_q

m','nb_and','nb_eq','nb_percent','nb_slash','nb_colon','nb_semicolumn','nb_www','nb_

com','nb_dslash','https_token','prefix_suffix','phish_hints','shortening_service','whois_

registered_domain','domain_age','status']) 

print(df) 

 

#Replacing the categorical values 

df["status"].replace({"legitimate":0,"phishing":1},inplace=True) 

print(df) 

#Convert dataframe into csv file 

df.to_csv('phishing_dataset_latest.csv',index=False) 

 

Training algorithms like Random Forest, Cat Boost, LightGBM & 

their ensemble model using the dataset created 

from sklearn.model_selection import train_test_split  

from sklearn.preprocessing import StandardScaler 

from sklearn import metrics 

from sklearn.ensemble import RandomForestClassifier 

from catboost import CatBoostClassifier 

from lightgbm import LGBMClassifier 

from sklearn.ensemble import StackingClassifier 

from sklearn.metrics import accuracy_score 
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# Load dataset 

data = pd.read_csv("phishing_dataset_latest.csv") 

X = data.iloc[:,:-1].drop(['url'], axis=1) 

y = data['status'] 

 

# Split data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Create the base models 

rf = RandomForestClassifier(n_estimators=10) 

cat = CatBoostClassifier() 

lgbm = LGBMClassifier(num_leaves=31,max_depth=-

1,learning_rate=0.1,n_estimators=100) 

 

# Create the voting classifier 

estimators = [('rf', rf), ('cat', cat)] 

stack_model = StackingClassifier(estimators=estimators, final_estimator=lgbm) 

 

# Fit the voting model on the training data 

stack_model.fit(X_train, y_train) 

# Make predictions on the test data 

y_pred = stack_model.predict(X_test) 

# Evaluate the model 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

 

cnf_matrix=metrics.confusion_matrix(y_test,y_pred) 

print(cnf_matrix) 

sns.heatmap(pd.DataFrame(cnf_matrix),annot=True,fmt='g') 

plt.show() 

 

# Save ML model to disk in pickle file 

model_filename = "StackingModel.sav" 

saved_model = pickle.dump(stack_model, open(model_filename,'wb')) 
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Pseudo code for URL Feature Extraction 

#various feature extraction functions like url_length, domain_age implemented. 

#Function to extract features 

def featureExtraction(url): 

  parsed = urlparse(url) 

  scheme = parsed.scheme 

  domain = urlparse(url).netloc 

  words_raw = re.split("\-|\.|\/|\?|\=|\@|\&|\%|\:|\_", domain.lower()) 

  features = [] 

  features.append(url_length(url)) 

  features.append(having_ip_address(url)) 

  features.append(count_dots(url)) 

  features.append(count_hyphens(url)) 

  features.append(count_at(url)) 

  features.append(count_qm(url)) 

  features.append(count_and(url)) 

  features.append(count_equal(url)) 

  features.append(count_percentage(url)) 

  features.append(count_slash(url)) 

  features.append(count_colon(url)) 

  features.append(count_semicolumn(url)) 

  features.append(check_www(words_raw)) 

  features.append(check_com(url)) 

  features.append(count_double_slash(url)) 

  features.append(https_token(scheme)) 

  features.append(prefix_suffix(url)) 

  features.append(phish_hints(url)) 

  features.append(shortening_service(url)) 

  features.append(whois_registered_domain(url)) 

  features.append(domainAge(url)) 

  features.append(get_google_index_count(url)) 

  return features 
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MongoDB Database creation 

from genericpath import exists 

from pydoc import cli 

from numpy import true_divide 

import pymongo 

client = 

pymongo.MongoClient('mongodb+srv://<username>:<password>@cluster0.xwat7j

a.mongodb.net/phishing-websites?retryWrites=true&w=majority') 

# connect to DB 

db = client['phishing-websites']   

 

# connect to collection in DB 

collection = db['blacklist'] 

 

def addURL_MongoDB(url): # add new URL to DB 

    data = {'url' : url} 

    collection.insert_one(data) 

 

def search_URL(url):   # search user input URL in database 

    found = collection.find({'url' : url}) 

    exists = True 

    if found: 

        for result in found: 

            return exists 

        exists = False 

    return exists 

 

Prediction and updating Database 

import feature_extraction as fe 

import database as db 

import pickle 

model_filename = "StackingModel.sav" 

# Load model to predict new data 

with open(model_filename, 'rb') as f: 

    rfc = pickle.load(f) 
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# Classify URL input 

def classifyURL(url): 

    if db.search_URL(url): 

        return "Phishy" 

    else: 

        df = fe.featureExtraction(url) 

        res = int(rfc.predict([df])) 

        if res: 

            db.addURL_MongoDB(url) 

            return "Phishy"  

        return "Legitimate" 

 

Plugin rendering Manifest file 

{ 

  "manifest_version": 3, 

  "name": "Citadel", 

  "version": "1.0.0", 

  "description": "Web Advisor", 

"icons": 

{ 

"128":"icon.png" 

}, 

  "permissions": [ 

    "activeTab", 

    "webNavigation" 

  ], 

  "background": { 

    "service_worker": "background.js" 

  } 

} 

 

#Background.js 

const visitedURLs = new Set(); 

chrome.webNavigation.onBeforeNavigate.addListener(details => { 
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  const { url, tabId, parentFrameId } = details; 

  // Ignore if the navigation is a subframe of an existing tab 

  if (parentFrameId !== -1) { 

    return; 

  } 

  // Ignore if URL starts with "chrome", "file", or "chrome-extension" 

  if (url.startsWith('chrome') || url.startsWith('file') || url.startsWith('chrome-

extension')) { 

    return; 

  } 

// Ignore if URL starts with Google search query 

  if (url.startsWith('https://www.google.com/search?')) { 

    return; 

  } 

  // Check for infinite loop 

  if (visitedURLs.has(url)) { 

    return; 

  } 

  // Ignore localhost URLs except for form submission to /results 

  if ((url.startsWith('http://localhost') || url.startsWith('http://127.0.0.1:5000/')) && 

!url.includes('localhost/results')) { 

    return; 

  } 

  visitedURLs.add(url); 

  // Redirect to localhost/results with URL as query parameter 

  const redirectURL = `http://localhost:5000/results?url=${url}`; 

  if (!url.includes('localhost/results')) { 

    chrome.tabs.update(tabId, { url: redirectURL }); 

  } 

}); 
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Chapter 7 

System Testing, Results and Discussion 

    7.1 System Testing 

Table 7.1: Unit test cases 
 

Test case 

number 

Input Stage Expected 

behavior 

Observed 

behavior 

Status 

P=Pass 

F=Fail 

1 Enter input 

values from the 

test set 

Catch 

Phish page/ 

search bar 

in browser 

The result 

should appear 

as predicted 

by Phishing 

Detection 

Plugin 

As expected P 

2 Enter input 

values from the 

test set 

Catch 

Phish page/ 

search bar 

in browser 

The 

Phishing 

Detection 

Plugin result 

should 

change 

accordingly 

As expected P 

 

 

 

 7.2 Result Analysis 

The main aim of the project was to predict the legitimacy of any website using machine learning 

algorithms. Table 7.2 shows the analysis that was performed on the four models with different 

training and testing sizes. It was found that ensemble model was the most accurate in all the 

cases. 

Table 7.2: Analysis of the four algorithms 
 

Training Size Testing Size Accuracy 

RF CB     LGBM Ens 

80% 20% 0.9481 0.9488 0.9501 0.9514 

70% 30% 0.9457 0.9442 0.9454 0.9475 
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Figure 7.1: Graph analysis of the first set 

 

Figure 7.1 shows the bar graph for the accuracy of the four algorithms where the train set size 

was 80% and the test set size was 20%. 

 

 

 

Figure 7.2: Graph analysis of the second set 

 

 
Figure 7.2 shows the bar graph for the accuracy of the four algorithms where the train set size 

was 70% and the test set size was 30%. 
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Figure 7.3: Graph analysis of the third set 

 

Figure 7.3 shows the bar graph for the accuracy of the four algorithms where the train set 

size was 60% and the test set size was 40%. 

 
 

 
 

Figure 7.4: Graph analysis of the fourth set 

 

Figure 7.4 shows the bar graph for the accuracy of the four algorithms where the train set 

size was 50% and the test set size was 50%. 
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Figure 7.5: Home Page 

Figure 7.5 is the home page for the users who use this application in the web version. 
 

 
 

 

Figure 7.6 Catch Phish page 

 

Figure 7.6 is the Catch Phish page. Here, the user will enter the URL. URL features will be 

extracted. These features are the ones that are responsible for the result. 
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Figure 7.7: Browser search bar with plugin enabled 

Figure 7.7 is the page where user can type URL directly in their browser with plugin enabled. 

 
 

 
Figure 7.8 Prediction of site legitimacy 

 

Figure 7.8 is the result page where the prediction is being carried out. 
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Figure 7.9: Website analysis 

 

Figure 7.8 is the result page where the website analysis is being carried out. 
 

 
 

 

Figure 7.10: Phishy site blocking 

 

Figure 7.9 shows the blocking of phishy website by the phishing detection plugin. 
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      7.3 Summary 

The application was developed using the Flask framework. The Python programming languages 

is used alongside basic HTML. The figures in the previous section showed the snapshots of 

various pages of the application. Since Ensemble stacking model of Random Forest, 

LightGBM and CatBoost was found to be the most accurate among the four algorithms, the 

prediction model was created using it. 
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Chapter 8 

Conclusion and Scope for Future Work 

8.1 Conclusion 

The project proposes an efficient method for improvising current phishing detection techniques 

by combining both blacklist approach and machine learning approach. The use of blacklist 

approach reduces the response the since the URL will be searched in the database before going 

through feature extraction and being passed to the classifier for prediction. This application is 

aimed at providing both higher accuracy and speed so that anyone who uses the phishing 

detection plugin finds it synchronized to real-time providing a seemingly effortless and ease of 

use. It can be used by every surfer to effectively shield from malicious attackers. The simple 

design helps even the novice user to understand the usage and easily access the application. 

Hence this can be helpful in significantly reducing phishing crimes when deployed and used on 

larger scale. 

8.2 Scope for Future Work 

The project can be further improvised by developing a desktop application which could be 

downloaded to user’s system. This can help user get relevant messages and warnings and also 

changes in any features could be notified immediately. The project can also be incorporated 

with an API service for developers to use the model for requesting result of determining the 

legitimacy of websites in their applications. 
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