
1

 Chapter 1

Introduction

1.1 Introduction

Phishing refers to a malicious cyber-security attack whereby deceptive messages are sent

by malicious actors impersonating trusted entities. These messages skillfully manipulate

unsuspecting users, inducing them to take detrimental actions, such as unwittingly

downloading or clicking on malicious files, or divulging sensitive information. The crafty

nature of phishing attacks involves the utilization of various techniques, including link

manipulation, filter evasion, website forgery, and covert redirects. The escalating

frequency of phishing attacks has emerged as a grave concern in recent times. A common

modus operandi employed by attackers entails the creation of deceptive websites that

closely mimic the names and appearances of legitimate counterparts, thereby enticing

users to access these fraudulent platforms.

Phishing attacks have become a significant concern owing to an increase in their

numbers. A typical phishing attack technique involves using a phishing website, where

the attacker lures users to access fake websites by imitating the names and appearances of

legitimate websites, such as eBay, Facebook, and Amazon. It is difficult for the average

person to distinguish phishing websites from normal websites because phishing websites

appear similar to the websites they imitate. In many cases, users do not check the entire

website URL, and, once they visit a phishing website, the attacker can access sensitive

and personal information. With the growth in the field of e-commerce, phishing attack

and cybercrimes are rapidly growing. Attackers use websites, emails, and malware to

conduct phishing attacks.

Regrettably, majority of the phishing crimes go unreported, with the true extent of the

problem often underestimated. Scholars and experts actively engage in debates and put

forth a range of potential measures, encompassing both human-centric educational

initiatives and technological solutions. Among the notable anti-phishing approaches are

strategies focused on prevention, user training, and detection. Presently, Machine

Learning models exhibit considerable promise as effective tools for detecting phishing

attempts, showcasing their potential in the ongoing battle against this pervasive threat.

2

This project proposes developing a web browser plugin using machine learning approach

to detect phishing websites with a combination of well trained ensemble stacking model

of advanced classifiers such as Cat boost & Light GBM and Random Forest to detect

phishing website URLs & develop another defense layer wherein the website content

analysis is performed to finally classify it as either original or a fake copy with analysis

report and to catch malicious figures and contents that are found even on legitimate

websites. This can effectively shield the users from malicious attackers. This design also

makes use of a NoSQL Database namely MongoDB to store classified phishy website

URLs so that when the same is encountered again, the response time required would be

reduced.

1.2 Problem Description

Phishing attacks have become a significant concern in the rapidly growing field of e-

commerce and cybercrime. Users often struggle to distinguish phishing websites from

legitimate ones, resulting in compromised security and the potential exposure of sensit ive

information. Current anti-phishing solutions rely on human-based education and technical

approaches, but there is a need for more effective detection mechanisms. This project

aims to develop a web browser plugin that utilizes a machine learning approach to detect

phishing websites. By leveraging a combination of well-trained ensemble stacking

models, including CatBoost, Light GBM, and Random Forest, the plugin will analyze

website URLs to identify potential phishing attempts. Additionally, the project will

implement a website content analysis module, providing users with a comprehensive

analysis report. The plugin will also incorporate MongoDB database, to store and

efficiently retrieve classified phishing website URLs, reducing response time when

encountering previously identified threats. Ultimately, this project seeks to provide an

effective defense layer against phishing attacks, safeguarding users from malicious actors

and enhancing their overall online security.

3

Chapter 2

Literature Review

2.1 Literature Survey

Researchers have applied phishing website characteristics to undertake substantial anti-

phishing research. Black and Whitelist approach, heuristics, visual similarity and the most

modern approach of machine learning are some of the phishing detection techniques.

In a paper titled “Phishing website detection based on multidimensional features driven

by deep learning” by the trio Peng Yang, G. Zhao & Peng Zeng [1] – IEEE 2019, they

proposed a model where in first step, character sequence features of the given URL are

extracted and used for quick classification by deep learning model of Convolutional

Neural Network and Long Short Term Memory (CNN + LSTM model). In the next step,

URL statistical features, webpage code features & classification result of deep learning

are combined into multidimensional features.

In a paper titled “Phishpedia: A hybrid Deep Learning approach to visually identify

phishing webpages” [2] Yun Lin, Ruofan Liu & Dinil Mon Divakaran – IEEE 2021, they

proposed a model to visually identify Phishing Webpages called Phishpedia. The model

takes as input a URL and a target brand list describing legitimate brand logos and their

web domains. It then generates a phishing target as output. It used faster-RCNN model

and PyTorch framework.

In a paper titled “Phishing website detection using diverse ML algorithms” [3] A. Zamir

& N. Yousaf – IEEE 2021, they proposed an approach where the features of phishing data

set are to be analyzed. Then, diverse machine learning algorithms like Random Forest,

Neural Network, Bagging, K-Nearest Neighbor are applied on features. Afterwards, two

stacking models: Stacking1 (RF þ NN þ Bagging) and Stacking2 (kNN þ RF þ Bagging)

are applied by combining highest scoring classifiers to improve the classification

accuracy.

In a paper titled “Phishing website detection based on Convolutional Neural Network

(CNN) & Random Forest (RF) ensemble learning” [4] R. Yang, K. Zheng & Bin Wu –

IEEE 2021, they proposed phishing website detection method based on character

embedding, CNN, and Random Forest. Here the URL data is transformed into a character

4

vector. Then CNN network is trained using the transformed URL data. After the model is

trained, URL features are extracted & then the features extracted from different network

layers are classified using Random Forest.

In a paper titled “An effective & secure mechanism for phishing attack detection using

ML approach” [5] by J. Visumathi, Miroslav Mahdal and Jose Anand – IEEE 2022, they

presented detailed comparative analysis using ML classifiers. The algorithms used for

ML approach were Support Vector Machine, Random Forest & Neural Network

separately for classification of URL features. Neural Network was found to be having

95.18% accuracy & is selected as best method.

2.2 Comparative Analysis of the Related Work

The table 2.1 discusses the comparative analysis of the current systems in light of the

suggested proposal.

Table 2.1 Comparative Analysis

Sl.

No

Author(s) Algorithms/Techniques Performance

Measures

1. Peng Yang, G. Zhao and

Peng Zeng

Convolutional Neural Network

and Long Short Term Memory

Model

Accuracy

2. Yun Lin, Ruofan Liu

and Dinil Mon

Divakaran

faster-RCNN model and PyTorch

framework

Accuracy

3. A. Zamir and N. Yousaf Random Forest, Neural Network,

Bagging, K-Nearest Neighbor

Accuracy

4. R. Yang, K. Zheng and

Bin Wu

Convolutional Neural Network

and Random Forest

Accuracy

5. J. Visumathi, Miroslav

Mahdal and Jose Anand

Support Vector Machine, Random

Forest & Neural Network

Accuracy

5

2.3 Summary

These were the research papers that we studied to gain a better understanding of the

problem. Machine learning classification algorithms are more accurate compared to the

traditional techniques when it comes to detecting phishing websites. Hence, we chose to

analyze advanced classifiers like Random Forest, LightGBM, Cat Boost algorithms and

form their ensemble model and implement the prediction model using the best and most

efficient algorithm which is the ensemble model in the project.

6

Chapter 3

Problem Formulation

3.1 Problem Statement

Phishing, a formidable cyber threat, inflicts substantial financial losses amounting to

hundreds of millions of dollars annually while also causing numerous data breaches. The

escalation in the prevalence of phishing attacks has sparked significant concern. These

attacks are not only widely utilized but also exceptionally effective and damaging.

Perpetrators employ sophisticated tactics to deceive users into unwittingly disclosing their

confidential information, including passwords and credit card details. A typical method

involves the creation of phishing websites that meticulously imitate the names and visual

identities of legitimate online platforms like eBay, Facebook, and Amazon. Regrettably,

discerning individuals find it arduous to differentiate between genuine websites and their

fraudulent counterparts due to the striking similarities meticulously engineered by cyber

criminals.

In the recent years, cyber criminals delivered a wave of cyber attacks that were not just

highly coordinated, but far more frequent and advanced than ever before seen. Simple

endpoint attacks became complex, multi-stage operations. Ransomware attacks hit small

businesses and huge corporations alike. Cryptomining malware attacks gave cyber

criminals an easy foothold into company networks. 2022 was a year of massive data

leaks, expensive ransomware payouts, and a vast, new, complicated threat landscape. And

it was a year that saw cyber criminals up their threat game in a big way. Despite the

widespread occurrence and severe consequences of phishing attacks, they often go

underreported. This lack of reporting further complicates efforts to combat this form of

cybercrime effectively.

Therefore, there is an urgent need to develop robust and efficient methods for detecting

phishing websites, enabling proactive defense against this pervasive threat. To address

this problem, a comprehensive approach is required to accurately identify and distinguish

phishing websites from legitimate ones. This entails leveraging advanced technologies,

such as machine learning, data analytics, and website analysis, to detect subtle indicators

7

and patterns that differentiate phishing sites from genuine platforms. By developing

effective detection mechanisms, individuals and organizations can better protect

themselves against phishing attacks, mitigating the financial and reputational damages

associated with such incidents

3.2 Objectives of the Present Study

The objectives of the proposed project are as follows:

1. To train the ML Classifier models like Random Forest, Cat Boost, Light GBM

and their ensemble model using the datasets of phishy & legitimate websites..

2. To run comparative analysis by calculating accuracy of each training model to

know the best suitable model for phishing website detection.

3. To create a phishing detection system using the best suitable model.

4. To develop an interactive web browser plug-in for the real-time detection &

blocking of Phishing website.

3.3 Summary

Utilizing machine learning techniques represents the optimal solution for detection of

phishing websites. These advanced classification algorithms outperform traditional

methods of identifying fraudulent sites. The development of a robust system for more

accurate detection holds tremendous value for both IT professionals and individuals at

risk. By promptly alerting users to the presence of phishing websites, this technology

empowers them to take immediate preventive measures, such as avoiding interaction with

malicious content and safeguarding their sensitive information. Such proactive actions

can effectively impede the propagation of cyber threats and enhance overall

cybersecurity.

8

Chapter 4

Requirements and Methodology

4.1 Hardware Requirements

The hardware requirements for the proposed project are depicted in Table 4.1.

Table 4.1: Hardware requirements

Sl. No Hardware/Equipment Specification

1. Graphics Card Intel 621 Graphics card or 2GB

2. RAM 4GB or above

4.2 Software Requirements

The software requirements for the proposed project are depicted in Table 4.2.

Table 4.2: Software requirements

Sl. No Software Specification

1. Anaconda Anaconda 64 bit

2. Python Python 3 and above

3. Framework Flask

4. MongoDB Database MongoDB 5 and above

5. Google Chrome web browser Version 108 and above

9

4.3 Methodology Used

The proposed phishing detection system is implemented using the following steps:

1) Data Acquisition & Preprocessing: This step involves collection of datasets of

phishy and legitimate websites from open-source platforms like Kaggle and then

preprocessing of data.

2) Database Creation: This process follows blacklist methodology of phishing

detection in which database containing blacklist of illegal websites is created. Any

phishy website detected by our model will be added to blacklist database so that when

the user encounters same website, the site is immediately blocked with faster response

time.

3) Training of URL classifier model: This involves selecting various classifier

algorithms and training them using URL Features, running a comparative analysis of

performance and choosing best suited model. We test various algorithms like Random

Forest, CatBoost, Light GBM and their ensemble model, train and analyze the

performance. Finally the best suited model which is the ensemble model is chosen.

4) Developing Website content analysis module: Even after classification of website

as legitimate, there is a possibility that a legitimate website may be housing unwanted

images, icons and pop-ups. Hence a website content analysis is which provides user

with information regarding presence of suspicious elements.

5) Extraction of URL Features & Output Prediction: The user provides URL of the

required website as input. Relevant features are extracted from this URL and a

dataframe is created. The ensemble model takes the extracted features of the given

website to predict whether the URL is suspicious or not. If the URL is found to be

suspicious then the user is warned and the blacklist database will be updated

automatically.

10

Chapter 5

System Design

5.1 Architecture of the Proposed System

Figure 5.1 shows the architecture of the proposed system.

Figure 5.1: Architecture of the proposed system

The first step is to collect, clean and pre-process the data set. The data set is then trained

using the ML classification algorithms Random Forest, Cat Boost, LightGBM and their

ensemble stacking model. The accuracy is calculated for each model and the most

accurate model will be used to implement the web browser plugin. A MongoDB blacklist

consisting of suspicious URLs is created. A feature extraction code to acquire feature

values corresponding to the dataset used is developed using selected model. Similarly a

website content analyzer code is developed. After integrating the various components of

the project – Prediction model, website content analyzer and blacklist, it is deployed as

the final plugin application.

11

5.2 System Flowchart

A system flowchart is a way of depicting how data flows in a system and how decisions

are made to control events. Figure 5.2 depicts the system flowchart.

Figure 5.2: System Flowchart

The raw dataset must be loaded, cleaned, and preprocessed. The dataframe is created with

the selected features. The prediction model is created using Ensemble stacking model of

Random Forest, Cat Boost and Light GBM. This model classifies the website into Phishy

and legitimate.

12

 Chapter 6

Implementation

6.1 Pseudocode

Algorithm: Ensemble Stacking Model for Phishing Website Detection.

Input: URL of websites which could be phishy or legitimate.

Output: A prediction model predicting legitimacy of website.

1. Load the dataset and extract the features into the variable x. Extract the target

feature into the variable y.

2. Split the data into training and testing sets. Assign 80% of the data to the training

set and 20% to the testing set. Set the random_state parameter to 42 for

reproducibility.

3. Create the base models:

a. Initialize a random forest and assign it to the variable rf.

b. Initialize a CatBoost classifier and assign it to the variable cat.

c. Initialize an LGBM classifier and assign it to the variable lgbm.

4. Create the voting classifier:

a. Create a list of tuples called estimators, where each tuple consists of a

string identifier and a corresponding base model.

b. Initialize a stacking classifier with the estimators and the final_estimator

set to lgbm. Assign it to the variable stack_model.

5. Fit the stack_model and use it for predicting legitimacy of websites by taking

URL input and extracting URL features, subsequently classifying the URL into

phishy or legitimate.

Dataset Creation using feature importance graph

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

#Reading the csv file and storing it in a dataframe

data = pd.read_csv("dataset_phishing.csv")

print(data)

13

#Viewing the statistical details of the data

print(data.describe())

#Determining the datatypes of data in each column

print(data.dtypes)

#Total null values in the dataset

print(data.isnull().sum())

sns.heatmap(data.isnull())

plt.show()

Creating a new dataframe with selected columns

df =

pd.DataFrame(data,columns=['url','length_url','ip','nb_dots','nb_hyphens','nb_at','nb_q

m','nb_and','nb_eq','nb_percent','nb_slash','nb_colon','nb_semicolumn','nb_www','nb_

com','nb_dslash','https_token','prefix_suffix','phish_hints','shortening_service','whois_

registered_domain','domain_age','status'])

print(df)

#Replacing the categorical values

df["status"].replace({"legitimate":0,"phishing":1},inplace=True)

print(df)

#Convert dataframe into csv file

df.to_csv('phishing_dataset_latest.csv',index=False)

Training algorithms like Random Forest, Cat Boost, LightGBM &

their ensemble model using the dataset created

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

from sklearn.ensemble import RandomForestClassifier

from catboost import CatBoostClassifier

from lightgbm import LGBMClassifier

from sklearn.ensemble import StackingClassifier

from sklearn.metrics import accuracy_score

14

Load dataset

data = pd.read_csv("phishing_dataset_latest.csv")

X = data.iloc[:,:-1].drop(['url'], axis=1)

y = data['status']

Split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Create the base models

rf = RandomForestClassifier(n_estimators=10)

cat = CatBoostClassifier()

lgbm = LGBMClassifier(num_leaves=31,max_depth=-

1,learning_rate=0.1,n_estimators=100)

Create the voting classifier

estimators = [('rf', rf), ('cat', cat)]

stack_model = StackingClassifier(estimators=estimators, final_estimator=lgbm)

Fit the voting model on the training data

stack_model.fit(X_train, y_train)

Make predictions on the test data

y_pred = stack_model.predict(X_test)

Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

cnf_matrix=metrics.confusion_matrix(y_test,y_pred)

print(cnf_matrix)

sns.heatmap(pd.DataFrame(cnf_matrix),annot=True,fmt='g')

plt.show()

Save ML model to disk in pickle file

model_filename = "StackingModel.sav"

saved_model = pickle.dump(stack_model, open(model_filename,'wb'))

15

Pseudo code for URL Feature Extraction

#various feature extraction functions like url_length, domain_age implemented.

#Function to extract features

def featureExtraction(url):

 parsed = urlparse(url)

 scheme = parsed.scheme

 domain = urlparse(url).netloc

 words_raw = re.split("\-|\.|\/|\?|\=|\@|\&|\%|\:|_", domain.lower())

 features = []

 features.append(url_length(url))

 features.append(having_ip_address(url))

 features.append(count_dots(url))

 features.append(count_hyphens(url))

 features.append(count_at(url))

 features.append(count_qm(url))

 features.append(count_and(url))

 features.append(count_equal(url))

 features.append(count_percentage(url))

 features.append(count_slash(url))

 features.append(count_colon(url))

 features.append(count_semicolumn(url))

 features.append(check_www(words_raw))

 features.append(check_com(url))

 features.append(count_double_slash(url))

 features.append(https_token(scheme))

 features.append(prefix_suffix(url))

 features.append(phish_hints(url))

 features.append(shortening_service(url))

 features.append(whois_registered_domain(url))

 features.append(domainAge(url))

 features.append(get_google_index_count(url))

 return features

16

MongoDB Database creation

from genericpath import exists

from pydoc import cli

from numpy import true_divide

import pymongo

client =

pymongo.MongoClient('mongodb+srv://<username>:<password>@cluster0.xwat7j

a.mongodb.net/phishing-websites?retryWrites=true&w=majority')

connect to DB

db = client['phishing-websites']

connect to collection in DB

collection = db['blacklist']

def addURL_MongoDB(url): # add new URL to DB

 data = {'url' : url}

 collection.insert_one(data)

def search_URL(url): # search user input URL in database

 found = collection.find({'url' : url})

 exists = True

 if found:

 for result in found:

 return exists

 exists = False

 return exists

Prediction and updating Database

import feature_extraction as fe

import database as db

import pickle

model_filename = "StackingModel.sav"

Load model to predict new data

with open(model_filename, 'rb') as f:

 rfc = pickle.load(f)

17

Classify URL input

def classifyURL(url):

 if db.search_URL(url):

 return "Phishy"

 else:

 df = fe.featureExtraction(url)

 res = int(rfc.predict([df]))

 if res:

 db.addURL_MongoDB(url)

 return "Phishy"

 return "Legitimate"

Plugin rendering Manifest file

{

 "manifest_version": 3,

 "name": "Citadel",

 "version": "1.0.0",

 "description": "Web Advisor",

"icons":

{

"128":"icon.png"

},

 "permissions": [

 "activeTab",

 "webNavigation"

],

 "background": {

 "service_worker": "background.js"

 }

}

#Background.js

const visitedURLs = new Set();

chrome.webNavigation.onBeforeNavigate.addListener(details => {

18

 const { url, tabId, parentFrameId } = details;

 // Ignore if the navigation is a subframe of an existing tab

 if (parentFrameId !== -1) {

 return;

 }

 // Ignore if URL starts with "chrome", "file", or "chrome-extension"

 if (url.startsWith('chrome') || url.startsWith('file') || url.startsWith('chrome-

extension')) {

 return;

 }

// Ignore if URL starts with Google search query

 if (url.startsWith('https://www.google.com/search?')) {

 return;

 }

 // Check for infinite loop

 if (visitedURLs.has(url)) {

 return;

 }

 // Ignore localhost URLs except for form submission to /results

 if ((url.startsWith('http://localhost') || url.startsWith('http://127.0.0.1:5000/')) &&

!url.includes('localhost/results')) {

 return;

 }

 visitedURLs.add(url);

 // Redirect to localhost/results with URL as query parameter

 const redirectURL = `http://localhost:5000/results?url=${url}`;

 if (!url.includes('localhost/results')) {

 chrome.tabs.update(tabId, { url: redirectURL });

 }

});

19

Chapter 7

System Testing, Results and Discussion

 7.1 System Testing

Table 7.1: Unit test cases

Test case

number

Input Stage Expected

behavior

Observed

behavior

Status

P=Pass

F=Fail

1 Enter input

values from the

test set

Catch

Phish page/

search bar

in browser

The result

should appear

as predicted

by Phishing

Detection

Plugin

As expected P

2 Enter input

values from the

test set

Catch

Phish page/

search bar

in browser

The

Phishing

Detection

Plugin result

should

change

accordingly

As expected P

 7.2 Result Analysis

The main aim of the project was to predict the legitimacy of any website using machine learning

algorithms. Table 7.2 shows the analysis that was performed on the four models with different

training and testing sizes. It was found that ensemble model was the most accurate in all the

cases.

Table 7.2: Analysis of the four algorithms

Training Size Testing Size Accuracy

RF CB LGBM Ens

80% 20% 0.9481 0.9488 0.9501 0.9514

70% 30% 0.9457 0.9442 0.9454 0.9475

20

Figure 7.1: Graph analysis of the first set

Figure 7.1 shows the bar graph for the accuracy of the four algorithms where the train set size

was 80% and the test set size was 20%.

Figure 7.2: Graph analysis of the second set

Figure 7.2 shows the bar graph for the accuracy of the four algorithms where the train set size

was 70% and the test set size was 30%.

21

Figure 7.3: Graph analysis of the third set

Figure 7.3 shows the bar graph for the accuracy of the four algorithms where the train set

size was 60% and the test set size was 40%.

Figure 7.4: Graph analysis of the fourth set

Figure 7.4 shows the bar graph for the accuracy of the four algorithms where the train set

size was 50% and the test set size was 50%.

22

Figure 7.5: Home Page

Figure 7.5 is the home page for the users who use this application in the web version.

Figure 7.6 Catch Phish page

Figure 7.6 is the Catch Phish page. Here, the user will enter the URL. URL features will be

extracted. These features are the ones that are responsible for the result.

23

Figure 7.7: Browser search bar with plugin enabled

Figure 7.7 is the page where user can type URL directly in their browser with plugin enabled.

Figure 7.8 Prediction of site legitimacy

Figure 7.8 is the result page where the prediction is being carried out.

24

Figure 7.9: Website analysis

Figure 7.8 is the result page where the website analysis is being carried out.

Figure 7.10: Phishy site blocking

Figure 7.9 shows the blocking of phishy website by the phishing detection plugin.

25

 7.3 Summary

The application was developed using the Flask framework. The Python programming languages

is used alongside basic HTML. The figures in the previous section showed the snapshots of

various pages of the application. Since Ensemble stacking model of Random Forest,

LightGBM and CatBoost was found to be the most accurate among the four algorithms, the

prediction model was created using it.

26

Chapter 8

Conclusion and Scope for Future Work

8.1 Conclusion

The project proposes an efficient method for improvising current phishing detection techniques

by combining both blacklist approach and machine learning approach. The use of blacklist

approach reduces the response the since the URL will be searched in the database before going

through feature extraction and being passed to the classifier for prediction. This application is

aimed at providing both higher accuracy and speed so that anyone who uses the phishing

detection plugin finds it synchronized to real-time providing a seemingly effortless and ease of

use. It can be used by every surfer to effectively shield from malicious attackers. The simple

design helps even the novice user to understand the usage and easily access the application.

Hence this can be helpful in significantly reducing phishing crimes when deployed and used on

larger scale.

8.2 Scope for Future Work

The project can be further improvised by developing a desktop application which could be

downloaded to user’s system. This can help user get relevant messages and warnings and also

changes in any features could be notified immediately. The project can also be incorporated

with an API service for developers to use the model for requesting result of determining the

legitimacy of websites in their applications.

References
[1] Peng Yang, G. Zhao & Peng Zeng “Phishing website detection based on

multidimensional features driven by deep learning”, IEEE 2019 (For research/ technical

papers)

[2] Yun Lin, Ruofan Liu & Dinil Mon Divakaran “Phishpedia: A hybrid Deep Learning

approach to visually identify phishing webpages”, IEEE 2021 (For research/ technical

papers)

[3] A. Zamir & N. Yousaf “Phishing website detection using diverse ML algorithms”, IEEE

2021 (For research/ technical papers)

[4] R. Yang, K. Zheng & Bin Wu “Phishing website detection based on CNN &

RandomForest ensemble learning”, IEEE 2021 (For research/ technical papers)

[5] J. Visumathi, Miroslav Mahdal and Jose Anand “An effective & secure mechanism for

phishing attack detection using ML approach”, IEEE 2022 (For research/ technical

papers)

[6] Safa Alrefaai, Ghina Özdemir "Detecting Phishing Websites Using Machine Learning",

IEEE 2022 (For research/ technical papers)

[7] Bryan Espinoza, Jéssica Simba, Walter Fuertes, "Phishing Attack Detection: A Solution

Based on the Typical Machine Learning Modeling Cycle", IEEE 2019 (For research/

technical papers)

[8] Andrii Mykytiuk, Victoria Vysotska, Solomiia Albota, "Spam Filtration System with the

Use of Machine Learning Technology", IEEE 2021 (For research/ technical papers)

[9] Yongjie Huang, Qiping Yang, Jinghui Qin, Wushao Wen, "Phishing URL Detection via

CNN and Attention-Based Hierarchical RNN", IEEE 2019 (For research/ technical

papers)

[10] Ashit Kumar Dutta, "Detecting phishing websites using machine learning technique",

Research Gate 2021 (For research/ technical papers)

	2.1 Literature Survey
	2.3 Summary
	Chapter 7
	7.1 System Testing
	7.2 Result Analysis
	Figure 7.6 Catch Phish page

	7.3 Summary
	Chapter 8
	8.1 Conclusion

